
Integration Testing 
Path Based"

Chapter 13!

IntP–2

Call graph based integration"

  Use the call graph instead of the decomposition tree!

  What is a call graph?!

IntP–3

Call graph definition"

  Is a directed, labeled graph!
  Vertices are methods  
"

  A directed edge joins calling vertex to the called
vertex  
"

  Adjacency matrix is also used 
"

  Does not scale well, although some insights are useful"
  Nodes of high degree are critical"

IntP–4

SATM call graph example"

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Call Graph of the SATM System

Look at adjacency  
matrix p204"

IntP–5

Call graph integration strategies"

  What types of integration strategies are used?!

IntP–6

Call graph integration strategies – 2"

  Pair-wise Integration Testing!

  Neighborhood Integration Testing !

IntP–7

Pair-wise integration"

  What is pair-wise integration!

IntP–8

Some Pair-wise Integration Sessions

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Pair-wise integration session example"

IntP–9

Pair-wise integration – 2"

  The idea behind Pair-Wise integration testing  
!
  Eliminate need for developing stubs / drivers  
"

  Use actual code instead of stubs/drivers"

IntP–10

Pair-wise integration – 3"

  In order not to deteriorate the process to a big-bang
strategy 
!
  Restrict a testing session to just a pair of units in the

call graph  
"

  Results in one integration test session for each edge
in the call graph "

IntP–11

Neighbourhood integration"

  What is neighbourhood integration?!

IntP–12

1
5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Two Neighborhood Integration SessionsNeighbourhood integration example "

Neighbourhoods  
for nodes 16 & 26"

IntP–13

Neighbourhood integration – 2"

  The neighbourhood of a node in a graph!
  The set of nodes that are one edge away from the

given node 
"

  In a directed graph!
  All the immediate predecessor nodes and all the

immediate successor nodes of a given node"

IntP–14

Neighbourhood integration – 3"

  Neighborhood integration testing  
!
  Reduces the number of test sessions  
"

  Fault isolation is difficult"

IntP–15

Pros of call-graph integration"

  What are the pros of call-graph integration?!

!

IntP–16

Pros of call-graph integration – 2"

  Reduces the need for drivers and stubs!
  Relative to functional decomposition integration 
"

  Neighborhoods can be combined to create “villages”!

  Closer to a build sequence!
  Well suited to devising a sequence of builds with

which to implement a system  
"

IntP–17

Cons of call-graph integration"

  What are the cons of call-graph integration?!

!

IntP–18

Cons of call-graph integration – 2"

  Suffers from fault isolation problems!
  Especially for large neighborhoods  
"

  Redundancy!
  Nodes can appear in several neighborhoods  
"

  Assumes that correct behaviour follows from correct
units and correct interfaces!
  Not always the case"

!

IntP–19

Path-based integration"

  What is path-based integration?"

  Why use it?!

IntP–20

Path-Based Integration – 2"

  Motivation!
  Combine structural and behavioral type of testing for

integration testing as we did for unit testing 
"

  Basic idea!
  Focus on interactions among system units"
  Rather than merely to test interfaces among

separately developed and tested units  
"

  Interface-based testing is structural while interaction-
based testing is behavioral!

IntP–21

Source node"

  What is it? "

IntP–22

Source node – 2"

  A program statement fragment at which program
execution begins or resumes. 
!
  For example the first “begin” statement in a program. 
"

  Nodes immediately after nodes that transfer control to
other units. "

IntP–23

Sink node"

  What is a sink node? !

IntP–24

Sink node"

  A statement fragment at which program execution
terminates 
 !
  The final “end” in a program as well as statements

that transfer control to other units"

IntP–25

Module execution path (MEP)"

  What is a module execution path? !

IntP–26

Module execution path (MEP) – 2"

  A sequence of statements within a module that!
  Begins with a source node  
"

  Ends with a sink node  
"

  With no intervening sink nodes "

IntP–27

Message"

  What is a message? !

IntP–28

Message – 2"

  A programming language mechanism by which one unit
transfers control to another unit 
!

  Usually interpreted as subroutine / function invocations 
!

  The unit which receives the message always returns
control to the message source!

IntP–29

MM-path"

  What is an MM-path?"

IntP–30

MM-path – 2"

  A module to module path!
  An interleaved sequence of module execution paths

and messages  
 "

  Used to describes sequences of module execution paths
that include transfers of control among separate units 
!

  MM-paths always represent feasible execution paths,
and these paths cross unit boundaries!

IntP–31

1	

2	

 3	

4	

5	

 6	

A	

B	

1	

2	

3	

4	

C	

1	

2	

5	

3	

4	

MM-path example "

 Source nodes ���
 Sink nodes

MM-path"

MEP(C,1) = <1, 2, 4, 5>"
MEP(C,2) = <1, 3, 4, 5>"

MEP(B,1) = <1, 2> "
MEP(B,2) = <3, 4>"

MEP(A,1) = <1, 2, 3, 6> 
MEP(A,2) = <1, 2, 4> 
MEP(A,3) = <5, 6> "Module Execution Paths"

IntP–32

MEPs and DD-paths"

  What is the correspondence between MEPs and a
DD-paths?!

IntP–33

MEPs and DD-paths – 2"

  There is no correspondence between MM execution
paths and DD-paths!

IntP–34

MEPs and slices"

  What is the correspondence between MEPs and
slices?"

IntP–35

MEPs and slices – 2"

  There is no correspondence but there is an analog  
!
  The intersection of a module execution path with a

unit is the analog of a slice with respect to the MM-
path function"

IntP–36

MM-path graph "

  What is an MM-path graph?"

IntP–37

MM-path graph – 2 "

  Given a set of units their MM-path graph is the directed
graph in which!
  Nodes are module execution paths"
  Edges correspond to messages and returns from one

unit to another  
"

  The definition is with respect to a set of units !
  It directly supports composition of units and

composition-based integration testing "

IntP–38

Solid lines indicate messages (calls) 
Dashed lines indicate returns from calls"

MM-path graph example"

MEP(C,2)"
"

MEP(A,1)"
"

MEP(A,2)"
"

MEP(A,3)"
"

MEP(B,1)"
"

MEP(C,1)"
"

MEP(B,2)"
"

IntP–39

MM-path guidelines"

  How long, or deep, is an MM-path? What determines
the end points?!

  Quiescence points are natural endpoints for MM-paths!
  Message quiescence"
  Data quiescence"

IntP–40

Message quiescence"

  Occurs when a unit that sends no messages is reached!
  Module C in the example"

IntP–41

Data quiescence"

  Occurs when a sequence of processing ends in the
creation of stored data that is not immediately used!
  The causal path Data A has no quiescence"
  The non-causal path D1 and D2 is quiescent at the

node P-1"

IntP–42

MM-path metric"

  What is the minimum number of MM-paths that are
sufficient to test a system?"

IntP–43

MM-Path metric – 2"

  What is the minimum number of MM-paths that are
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of

units  
"

  What about loops? How should they be treated?"

IntP–44

MM-Path metric – 3"

  What is the minimum number of MM-paths that are
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of

units"

  What about loops? How should they be treated?!
  Use condensation graphs to get directed acyclic

graphs"
  Avoids an excessive number of paths"

IntP–45

Pros of path-based integration"

  Benefits of hybrid of functional and structural testing!
  Functional – represent actions with input and output"
  Structural – how they are identified"

  Avoids pitfall of structural testing!
  Unimplemented behaviours cannot be tested 
"

  Fairly seamless union with system testing!

IntP–46

Pros of path-based integration – 2"

  Path-based integration is closely coupled with actual
system behaviour!
  Works well with OO testing 
"

  No need for stub and driver development 
!

IntP–47

Cons of path-based integration"

  There is a significant effort involved in identifying MM-
paths!

IntP–48

MM-path compared to other methods "

Strategy! Ability to test 
interfaces!

Ability to test 
co-functionality!

Fault isolation  
resolution!

Functional
decomposition!

Acceptable, can
be deceptive!

Limited to pairs
of units!

Good to faulty
unit!

Call-graph! Acceptable! Limited to pairs
of units!

Good to faulty
unit!

MM-path! Excellent! Complete! Excellent to unit
path level!

