
Integration Testing 
Path Based"

Chapter 13!
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Call graph based integration"

  Use the call graph instead of the decomposition tree!

  What is a call graph?!
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Call graph definition"

  Is a directed, labeled graph!
  Vertices are methods  
"

  A directed edge joins calling vertex to the called 
vertex  
"

  Adjacency matrix is also used 
"

  Does not scale well, although some insights are useful"
  Nodes of high degree are critical"
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SATM call graph example"
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Call Graph of the SATM System

Look at adjacency  
matrix p204"
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Call graph integration strategies"

  What types of integration strategies are used?!
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Call graph integration strategies – 2"

  Pair-wise Integration Testing!

  Neighborhood Integration Testing !
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Pair-wise integration"

  What is pair-wise integration!
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Some Pair-wise Integration Sessions
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Pair-wise integration session example"
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Pair-wise integration – 2"

  The idea behind Pair-Wise integration testing  
!
  Eliminate need for developing stubs / drivers  
"

  Use actual code instead of stubs/drivers"
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Pair-wise integration – 3"

  In order not to deteriorate the process to a big-bang 
strategy 
!
  Restrict a testing session to just a pair of units in the 

call graph  
"

  Results in one integration test session for each edge 
in the call graph "
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Neighbourhood integration"

  What is neighbourhood integration?!
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Two Neighborhood Integration SessionsNeighbourhood integration example "

Neighbourhoods  
for nodes 16 & 26"
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Neighbourhood integration – 2"

  The neighbourhood of a node in a graph!
  The set of nodes that are one edge away from the 

given node 
"

  In a directed graph!
  All the immediate predecessor nodes and all the 

immediate successor nodes of a given node"
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Neighbourhood integration – 3"

  Neighborhood integration testing  
!
  Reduces the number of test sessions  
"

  Fault isolation is difficult"



IntP–15 

Pros of call-graph integration"

  What are the pros of call-graph integration?!

!
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Pros of call-graph integration – 2"

  Reduces the need for drivers and stubs!
  Relative to functional decomposition integration 
"

  Neighborhoods can be combined to create “villages”!

  Closer to a build sequence!
  Well suited to devising a sequence of builds with 

which to implement a system  
"
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Cons of call-graph integration"

  What are the cons of call-graph integration?!

!
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Cons of call-graph integration – 2"

  Suffers from fault isolation problems!
  Especially for large neighborhoods  
"

  Redundancy!
  Nodes can appear in several neighborhoods  
"

  Assumes that correct behaviour follows from correct 
units and correct interfaces!
  Not always the case"

!
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Path-based integration"

  What is path-based integration?"

  Why use it?!
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Path-Based Integration – 2"

  Motivation!
  Combine structural and behavioral type of testing for 

integration testing as we did for unit testing 
"

  Basic idea!
  Focus on interactions among system units"
  Rather than merely to test interfaces among 

separately developed and tested units  
"

  Interface-based testing is structural while interaction-
based testing is behavioral!
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Source node"

  What is it? "
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Source node – 2"

  A program statement fragment at which program 
execution begins or resumes. 
!
  For example the first “begin” statement in a program. 
"

  Nodes immediately after nodes that transfer control to 
other units. "
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Sink node"

  What is a sink node? !
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Sink node"

  A statement fragment at which program execution 
terminates 
 !
  The final “end” in a program as well as statements 

that transfer control to other units"
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Module execution path (MEP)"

  What is a module execution path? !
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Module execution path (MEP) – 2"

  A sequence of statements within a module that!
  Begins with a source node  
"

  Ends with a sink node  
"

  With no intervening sink nodes "
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Message"

  What is a message? !
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Message – 2"

  A programming language mechanism by which one unit 
transfers control to another unit 
!

  Usually interpreted as subroutine / function invocations 
!

  The unit which receives the message always returns 
control to the message source!
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MM-path"

  What is an MM-path?"
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MM-path – 2"

  A module to module path!
  An interleaved sequence of module execution paths 

and messages  
 "

  Used to describes sequences of module execution paths 
that include transfers of control among separate units 
!

  MM-paths always represent feasible execution paths, 
and these paths cross unit boundaries!
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MM-path example "

     Source nodes ���
      Sink nodes 

MM-path"

MEP(C,1) = <1, 2, 4, 5>"
MEP(C,2) = <1, 3, 4, 5>"

MEP(B,1) = <1, 2> "
MEP(B,2) = <3, 4>"

MEP(A,1) = <1, 2, 3, 6> 
MEP(A,2) = <1, 2, 4> 
MEP(A,3) = <5, 6> "Module Execution Paths"
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MEPs and DD-paths"

  What is the correspondence between MEPs and a 
DD-paths?!
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MEPs and DD-paths – 2"

  There is no correspondence between MM execution 
paths and DD-paths!
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MEPs and slices"

  What is the correspondence between MEPs and 
slices?"
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MEPs and slices – 2"

  There is no correspondence but there is an analog  
!
  The intersection of a module execution path with a 

unit is the analog of a slice with respect to the MM-
path function"
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MM-path graph "

  What is an MM-path graph?"
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MM-path graph – 2 "

  Given a set of units their MM-path graph is the directed 
graph in which!
  Nodes are module execution paths"
  Edges correspond to messages and returns from one 

unit to another  
"

  The definition is with respect to a set of units !
  It directly supports composition of units and 

composition-based integration testing "
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Solid lines indicate messages (calls) 
Dashed lines indicate returns from calls"

MM-path graph example"

MEP(C,2)"
"

MEP(A,1)"
"

MEP(A,2)"
"

MEP(A,3)"
"

MEP(B,1)"
"

MEP(C,1)"
"

MEP(B,2)"
"
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MM-path guidelines"

  How long, or deep, is an MM-path?  What determines 
the end points?!

  Quiescence points are natural endpoints for MM-paths!
  Message quiescence"
  Data quiescence"
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Message quiescence"

  Occurs when a unit that sends no messages is reached!
  Module C in the example"
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Data quiescence"

  Occurs when a sequence of processing ends in the 
creation of stored data that is not immediately used!
  The causal path Data A has no quiescence"
  The non-causal path D1 and D2 is quiescent at the 

node P-1"
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MM-path metric"

  What is the minimum number of MM-paths that are 
sufficient to test a system?"
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MM-Path metric – 2"

  What is the minimum number of MM-paths that are 
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of 

units  
"

  What about loops?  How should they be treated?"
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MM-Path metric – 3"

  What is the minimum number of MM-paths that are 
sufficient to test a system?!
  Should cover all source-to-sink paths in the set of 

units"

  What about loops?  How should they be treated?!
  Use condensation graphs to get directed acyclic 

graphs"
  Avoids an excessive number of paths"
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Pros of path-based integration"

  Benefits of hybrid of functional and structural testing!
  Functional – represent actions with input and output"
  Structural – how they are identified"

  Avoids pitfall of structural testing!
  Unimplemented behaviours cannot be tested 
"

  Fairly seamless union with system testing!
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Pros of path-based integration – 2"

  Path-based integration is closely coupled with actual 
system behaviour!
  Works well with OO testing 
"

  No need for stub and driver development 
!



IntP–47 

Cons of path-based integration"

  There is a significant effort involved in identifying MM-
paths!
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MM-path compared to other methods "

Strategy! Ability to test 
interfaces!

Ability to test 
co-functionality!

Fault isolation  
resolution!

Functional 
decomposition!

Acceptable, can 
be deceptive!

Limited to pairs 
of units!

Good to faulty 
unit!

Call-graph! Acceptable! Limited to pairs 
of units!

Good to faulty 
unit!

MM-path! Excellent! Complete! Excellent to unit 
path level!


