

Assessment (No Makeup)

- Quizzes: 20% (5:30-5:50pm)
 - Quiz 1 for Chapter 1 on Jan. 21
 - Quiz 2 for Chapter 2 on Feb. 2
 - Quiz 3 for Chapter 3 on Feb. 11
 - Quiz 4 for Appendix on Mar. 4
 - Quiz 5 for Chapter 4 Parts 1 and 2 on Apr. 1
- Lab: 25%
 - 7 lab sessions
 - Starts in week 4
- Midterm test: 20% on Feb. 25, 5:30-6:45pm
- Final exam: 35%

	Year of introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386™	1985	275,000
486™ DX	1989	1,180,000
Pentium®	1993	3,100,000
Pentium II	1997	7,500,000
Pentium III	1999	24,000,000
Pentium 4	2000	42,000,000

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

10	chnology Trer	nds
tec coi	ectronics chnology ntinues to evolve Increased capacity and performance Reduced cost	104 Тевм ^{256М} 512М 64М ^{256M} 512М 105 1960 1962 1964 1966 1968 1990 1992 1904 1996 1968 2000 2002 2004 2 Учег of Introduction DRAM capacity
Year	Technology	Relative performance/cost
	1	Relative performance/cost
Year	Technology	Relative performance/cost 1 35
Year 1951	Technology Vacuum tube	1
Year 1951 1965	Technology Vacuum tube Transistor	1 35

Response Time and Throughput

- Response time (execution time)
 - How long it takes to do a task
 - Important to computer users
- Throughput (bandwidth)
 - Total amount of work done per unit time
 - Important to server, data center
- Different performance metrics are needed to benchmark different systems.
- Single application is not sufficient to measure the performance of computers

- Define Performance = 1/(Execution Time)
- "X is n time faster than Y"

 $Performance_{x}/Performance_{y}$

- = Execution time_Y/Execution time_X = n
- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A
 = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

Clock Cycles = Instruction Count × Ave Cycles per Instruction

CPU Time = Instruction Count × CPI × Clock Cycle Time

Instruction Count × CPI

Clock Rate

- Instruction Count: no. of instruction for a program
 - Determined by program, Instruction Set Architecture (ISA) and compiler
- Average cycles per instruction (CPI)
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

 Alternative compile in classes A, B, C 	d progra	m using i	nstruction
Class	A	В	С
CPI for class	1	2	3
IC in program 1	2	1	2
IC in program 2	4	1	1
Program 1: IC = 5 Clock Cycles = 2×1 + 1×2 + 2×3 = 10 Avg. CPI = 10/5 = 2.		= 9	

Name	Description	IC×10 ⁹	CPI	Tc (ns)	Exec time	Ref time	SPECrat
perl	Interpreted string processing	2,118	0.75	0.40	637	9,777	15
bzip2	Block-sorting compression	2,389	0.85	0.40	817	9,650	11
gcc	GNU C Compiler	1,050	1.72	0.47	24	8,050	11
mcf	Combinatorial optimization	336	10.00	0.40	1,345	9,120	6
go	Go game (AI)	1,658	1.09	0.40	721	10,490	14
hmmer	Search gene sequence	2,783	0.80	0.40	890	9,330	10.
sjeng	Chess game (AI)	2,176	0.96	0.48	37	12,100	14.
libquantum	Quantum computer simulation	1,623	1.61	0.40	1,047	20,720	19
h264avc	Video compression	3,102	0.80	0.40	993	22,130	22
omnetpp	Discrete event simulation	587	2.94	0.40	690	6,250	9
astar	Games/path finding	1,082	1.79	0.40	773	7,020	9
xalancbmk	XML parsing	1,058	2.70	0.40	1,143	6,900	6
Geometric m						11.7	

SPECpower_	ssj2008	for X4
------------	---------	--------

Target Load %	Performance (ssj_ops/sec)	Average Power (Watts)
100%	231,867	295
90%	211,282	286
80%	185,803	275
70%	163,427	265
60%	140,160	256
50%	118,324	246
40%	920,35	233
30%	70,500	222
20%	47,126	206
10%	23,066	180
0%	0	141
Overall sum	1,283,590	2,605
∑ssj_ops/ ∑power		493

Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

