Computer Architecture

A Quantitative Approach, Fifth Edition

| Chapter 2

| Memory Hierarchy Design

Introduction

uononpo.nu|

= Programmers want unlimited amounts of memory with
low latency

= Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory
= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor
= Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor

Memory Hierarchy

uononpo|

L2
o]
CPU a
Memory O bus | Disk storage
©
2 Disk
memo
Ragistar Lavel 1 Leval 2 Level 3 Memary mlir\ingi
raference Cache Cache Cache refarence
Size: 1000 bytes B4 KB 256 KB 2-4MB 4-18 GB 4-18TE
Speed: 300ps 1ns 3-10ns 10-20ns 50-100ns 5-10ms

{a) Memaory hierarchy for server

Memory
bus
Memery

CPU

FLASH
Register Lewel 1 Level 2 Memory n}emory
referance Cache Cache reference relerence
reference reference
Size: 500 bytes B4 KB 258 KB 266512 MB 4-8GB
Spead: 500ps 2ns 10-20ns 50100 ns 25-80us

(b} Memary hierarchy for a personal mobile davice

=
Memory Performance Gap :
Q
§.
100,000
10,000 - rew
§ 1,000
@
£ Processaor,
=]
T 100
[
10 L
Memory
1 v T T T T T
1980 1985 1990 1995 2000 2005 2010
Year

Memory Hierarchy Design

uononpo|

= Memory hierarchy design becomes more crucial
with recent multi-core processors:
= Aggregate peak bandwidth grows with # cores:

= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

=« DRAM bandwidth is only 6% of this (25 GB/s)

» Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

Performance and Power

uononpo.nu|

= High-end microprocessors have >10 MB on-chip

cache
= Consumes large amount of area and power budget

Terminology

s A Block: The smallest unit of information
transferred between two levels.

= Hit: Item is found in some block in the
upper level (example: Block X)

s Miss: Item needs to be retrieved from a

block in the lower level (Block Y)
= Miss Rate =1 - (Hit Rate)

= Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Cache operation

s Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Cache Organization: Placement

1 Direct mapped cache: A block can be placed in only one
%oca;tl_on (cache block frame), given by the mapping
unction:
index= (Block address) MOD (Number of blocks in
cache)

7 Eully associative cache: A block can be placed anywhere
In cache. (N0 mapping function).

3 Set associative cache: A block can be Placed ina]
restricted set of places, or cache block frames. A setis a

group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

Direct Mapped Cache

cccccccc
oooooooo
oooooooo

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Direct Mapped Cache. ...

3130 ,.,.431211 ,.,21
1K = 1024 Blocks I Py l Ij{s‘;|
Each block = one word it 1\20 10 g bata
Tag
Index

Can cache up to
232 byteS = 4 GB Index Valid Tag Data
of memory 1 ‘
Mapping function: °® +
Cache Block frame number = Lo2r
(Block address) MOD (1024) o \}
i.e. index field or A
10 low bit of block address =

Block Address = 30 bits

Direct mapped Cache

Address (showing bit positions)

31...6 15..4 3210

T 1711

1 12 |2 Byt
Hit e e pata
Tag offset
Index Block offset
16 bits 128 bits
vV Tag Data
4K
entries
16 32 32 32 32
G 1 [
Mux
32

Block Address = 28 bits

Index =12 bits

Cache Organization

Fully associatlve: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywherg in set 0
{12 mod 8) (12 mod 4)

Block 01234567 Block 01234587 Block 01234567
no. no. no.

Cache

g e R Qg

Block frame address

Block 111 1 1 222223
N+ 0123456788012340678901234567890

—w

Memory

Cache Organization

= Each block frame in cache has an address tag.
= The tags of every cache block that might contain the required
data are checked in parallel.
= Avalid bit is added to the tag to indicate whether this entry
contains a valid address.
= The address from the CPU to cache is divided into:
= A block address, further divided into:
= Anindex field to choose a block set in cache.
. (no index field when fully associative).
= Atag field to search and match addresses in the selected set.
= A block offset to select the data from the block.

Block Address
Index

Cache Organization

«—

Physical Memory Address Generated by CPU

Block Address
Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size \
Number of Sets

Mapping function:

Cache set or block frame number = Index =

= iBIock Addressi MOD iNumber of Setsi

Set Associative: 4K 4Way

Address
3130...12111098...3210

‘|\22)
;

1024 block frames
_ Index V Tag Data V Tag Data V Tag Data V Tag Data
Each block = one Yvord o T
4-way set associative : !
1024 / 4= 256 sets >
253 =
254]
Can cache up to s 1] 1
2% pytes = 4 GB I I B
(= g _ f
of memory = ? g) -
Block Address = 30 bits L ‘ |
%J 4-to-1 multiplexor

Mapping Function: Cache Set Number = index= (Block address) MOD (256"t Data

Miss Rate

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Cache Performance

CPUtime = Instruction count x CPl x Clock cycle time
CPlexecution = CPI with ideal memory

CPlI= CPlexecution + Mem Stall cycles per instruction
Mem Stall cycles per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

CPUtime = Instruction Count x (CPlexecution +
Mem Stall cycles per instruction) x Clock cycle time

CPUtime = IC x (CPlexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x Miss rate
CPUtime = IC x (CPlexecution + Misses per instruction x Miss penalty) x
Clock cycle time

Cache Performance

Assuming the following execution and cache parameters:
= Cache miss penalty = 50 cycles

= Normal instruction execution CPI ignoring memory stalls = 2.0
cycles -

= Missrate =2%
= Average memory references/instruction = 1.33

s CPUtime = IC x [CPI execution + Memory accesses/instruction
x Miss rate x Miss
penalty] x Clock cycle time

= CPUtime with cache = IC x (2,0 +(1.33 x 2% x 50)) x clock
cycle time

. = IC x 3.33 x Clock cycle time
-_—

= Lower CPI execution increases the impact of cache miss clock

Cache Performance

Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)
with a single level of cache.

= CPlexecution= 1.1
= Instruction mix: 50% arith/logic, 30% load/store, 20% control
= Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

= CPl = CPlgecuion ¥ mMem stalls per instruction

. Mem Stalls per instruction =

. Mem accesses per instruction x Miss rate x Miss
penalty

. Mem accesses per instruction=1 + .3 = 1.3

. Mem Stalls per instruction = 1.3 x .015x50 = 0.975

. CPI= 1.1 + .975= 2.075

= The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times
faster

Cache Performance

Suppose for the previous example we double the clock rate to 400 MHZ,
how much faster is this machine, assuming similar miss rate, instruction
mix?
Since memory speed is not changed, the miss penalty takes more CPU
cycles:

Miss penalty = 50 x 2 = 100 cycles.

CPI= 11+ 1.3x.015x100= 1.1+1.95= 3.05

Speedup = (CPlold x Cold)/ (CPInew x Cnew)
= 2.075 x2/ 3.05 = 1.36

The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

Cache Performance

Suppose a CPU uses separate level one (L1) caches for instructions and data

(Harvard memory architecture) with different miss rates for instruction and data access:
= CPlecuion = 1.1

= Instruction mix: 50% arith/logic, 30% load/store, 20% control

= Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.

A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes. Find the resulting CPI using this cache? How much faster is the CPU with ideal memory?

CPl = CPlgeeiion + Mem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Mem Stall cycles per instruction= 1 x0.5/100 x200 + 0.3x 6/100 x 200 = 1 +
3.6 =46

CPl = CPlgecuion T Mmem stalls per instruction = 1.1 +4.6 = 5.7

—

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPIl would have been = 1.1 + 1.3 X200 = 261.1

Cache Performance

r ﬂ'_“

Size Instruction cache Data cache Unified cache
1 KB 3.06% 24.61% 13.34%
2KB 2.26% 20.57% 9.78%

1 KB 1.78% 15.94%% 7.24%
8 KB 1.10% 10.19% 4.57%

16 KB 0.04% 6.47% 2.87%

32 KB 0.39% 4.82% 1.99%

64 KB 0.153% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

Write Policy

1 write Though: Data is written to both the cache block
and to a block of main memory.

= The lower level always has the most updated data; an important feature for
I/O and multiprocessing.

= Easier to implement than write back.
= A write buffer is often used to reduce CPU write stall while data is written to

memory.
2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to
main memory when it's being replaced from cache.

= Writes occur at the speed of cache

= A status bit called a dirty or modified bit, is used to indicate whether the
block was modified while in cache; if not the block is not written back to main
memory when replaced.

= Uses less memory bandwidth than write through.

Write Policy

Write Allocate:

The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:

The block is modified in the lower level (lower
cache level, or main

memory) and not loaded into cache.

Example

= Which has a lower miss rate 16KB cache for both
instruction or data, or a combined 32KB cache?
(0.64%, 6.47%, 1.99%).

= Assume hit=1cycle and miss =50 cycles. 75% of
memory references are instruction fetch. \ 8°"\s

= Miss rate of split
cache=0.75%0.64%+0.25%6.47%=2.1%

= Slightly worse than 1.99% for combined cache. But,
what about average memory access time?

» Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) =
2.05 cycles.

Combined cache: [Extra cycle for load/store

)

ii%il+l.99*50|+25°io|l+ +1.99%*5ii =2.24

Example

= A CPUwith CPlgecuion = 1.1 Mem accesses per instruction = 1.3

Uses a unified L1 Write Through, No Write Allocate, with:
= No write buffer.

= Perfect Write buffer
= A realistic write buffer that eliminates 85% of write stalls
Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
CPl = CPlgeciion ¥ mem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3= 11.5%

Example

s A CPU with CPlgecuion = 1.1 uses a unified L1 with
with write back, with write allocate, and the probability
a cache block is dirty = 10%

= Instruction mix: 50% arith/logic, 15% load, 15%
store, 20% control

= Assume a cache miss rate of 1.5% and a miss penalty

of%Oc-y;les ‘*"6/‘“‘5\- 60‘\6
-5 (V3. 50 +0-9 +|.3yo.\vloc3

N ©O¢

Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with local miss rate 40%, (T, =2
cycles)

= Memory access penalty, M =100 cycles. Find CPI.

1,3(_5_ %0.6v2 + 5 ,o,q.\,uw)

\NOo \oo

Example

s CPU with CPl cuiion = 1.1 running at clock rate = 500 MHz
= 1.3 memory accesses per instruction.
= Forl;:

Cache operates at 500 MHz with a miss rate of 1-H1 = 5%
Write though to L, with perfect write buffer with write allocate

= ForlL,:

Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T, = 2 cycles)
Write back to main memory with write allocate
Probability a cache block is dirty = 10%

= Memory,access penalty, M =100 cycles. Find CPL

o.05 (o- vy A+ G YO.‘]v\OC
« O "0\ ‘7063

Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with a local miss rate 40%, (T, =
2 cycles)

= L, cache operates at 100 MHz with a local miss rate 50%, (T;=
5 cycles)

= Memory access penalty, M= 100 cycles. Find CPI.

1w

