
The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 2

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to maximize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 3

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6

Data Dependence

 Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 4

7Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

Introduction

8Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 5

9

Control Dependence

 Must preserve exception
behavior.

 We should not change
the exception behavior of
the program.

 We often relax this to
“reordering of instruction
must not raise new
exceptions”

 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1: ……

 No data dependence
prevents us from
exchanging BEQZ
and LW, but might
result in memory
protection exception

Copyright © 2012, Elsevier Inc. All rights reserved.

10Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU
 Preserving the order alone

is not sufficient (must have
the correct value in R1)

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduction• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniques

No dependence
between iterations

MIPS code?

12Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Stalls

Loop: L.D F0,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall (assume integer load latency is 1) 8
BNE R1,R2,Loop 9

C
om

piler Techniques

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 7

13Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Scheduling

Scheduled code:
Loop: L.D F0,0(R1) 1

DADDUI R1,R1,#-8 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,8(R1) 6
BNE R1,R2,Loop 7

C
om

piler Techniques

14Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1) ;drop DADDUI & BNE

L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,Loop

C
om

piler Techniques

 note: number
of live registers
vs. original loop

1 stall

2 stalls

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 8

15Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

Loop: L.D F0,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)

L.D F14,-24(R1)

ADD.D F4,F0,F2

ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2

S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32

S.D F12,16(R1)

S.D F16,8(R1)

BNE R1,R2,Loop

C
om

piler Techniques

Loop iterations are
independent

16Copyright © 2012, Elsevier Inc. All rights reserved.

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

piler Techniques

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 9

17

Loop Level Parallelsim

 Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.

 the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use
of X[i] twice is within a single iteration.

 Thus loop iterations are parallel (or independent from each
other).

Copyright © 2012, Elsevier Inc. All rights reserved.

For(i=0;i<100;i++)

x[i]=x[i]+A;

18

Loop Level Parallelsim

 Loop-carried Dependence: A data dependence between
different loop iterations (data produced in earlier iteration used
in a later one).

 LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.

 LLP analysis is normally done at the source code level or
close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the
registers used for addressing and incrementing.

 Instruction level parallelism (ILP) analysis, on the other hand,
is usually done when instructions are generated by the
compiler

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 10

19

Loop Level Parallism

 S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).

 does not prevent loop iteration parallelism.

 S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

 These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Copyright © 2012, Elsevier Inc. All rights reserved.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop

Carried

Dependence

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1];} /* S2 */

}

20

Loop Level parallelism

 for(i=0;i<=100;i++)

 A[i] = A[i] + B[i]; /* S1 */

 B[i+1] = C[i] + D[i]; /* S2 */

 S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

 The dependence is not circular, S2 does not
depend on S1 in the previous iteration

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 11

21Copyright © 2012, Elsevier Inc. All rights reserved.

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

Loop Start-up code

Loop Completion code

Iteration 1

Not Loop
Carried
Dependence

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

22

Finding Dependence

 Finding dependences in the program is very
important for renaming and executing
instructions in parallel.

 Arrays and pointers makes finding dependences
very difficult.

 Assume array indices are affine, which means
on the form where and are
constant.

 GCD test can be used to detect dependences.

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 12

23

Finding Dependence

 Assume we stored an array with index value of
ai+b and loaded an array with an index value of
cj+d

 Are they pointing to the same location?

 Assume the loop limit is m,n

 Are there

Copyright © 2012, Elsevier Inc. All rights reserved.

dkcbjankjmkj such that ,,

24

GCD test

 A simple and sufficient test for absence can be
found.

 If a loop dependence exists, then

Copyright © 2012, Elsevier Inc. All rights reserved.

)(divides),(bdacGCD

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 13

25

GCD Test -- Example

Copyright © 2012, Elsevier Inc. All rights reserved.

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}

a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2

d - b = -3

2 does not divide -3 No dependence
is not possible.

5,7,9,11,13,15,17,19,21,23,….

4,6,8,10,12,14,16,18,20,22,…..

26

Dependence Analysis

 Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

 Objects are referenced using pointers

 Array indexing using another array a[b[i]]

 Dependence may exist for some values of input,
but in reality the input never takes these values.

 When we want to more than the possibility of
dependence (which write causes it?)

 Dependence analysis across procedure
boundaries

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 14

27

Dependence Analysis

 Sometimes, points-to analysis might help.

 We might be able to answer simpler questions,
or get some hints.

 Do 2 pointers point to the same list?

 Type information

 Information derived when the object was
allocated

 Pointer assignments

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Software Pipelines
 Software pipelined loop chooses instructions

from different loop iterations, thus separating the
dependent instructions within one iteration of the
original loop

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 15

29

Software Piplines

Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8

BNE

Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

30

Software Pipelines

Copyright © 2012, Elsevier Inc. All rights reserved.

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations (2 iterations fewer)

1 2 3 4 5 6

1 2 3 4
finish

code

start-up

code

Loop Body of software Pipelined Version

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 16

31

Branch Prediction

 Dynamic scheduling deals with data dependence
improving, the limiting factor is the control
dependence.

 Branch prediction is important for processors
that maintains a CPI of 1, but it is crucial for
processors who tries to issue more than one
instruction per cycle (CPI < 1).

 We have already studied some techniques
(delayed branch, predict not taken), but these do
not depend on the dynamic behavior of the code.

Copyright © 2012, Elsevier Inc. All rights reserved.

32

Branch History Table

 A small memory indexed by the lower portion of
the address of the branch instruction.

 The memory contains only 1-bit, to predict taken
or untaken

 If the prediction is incorrect, the prediction bit is
inverted.

 In a loop, it mispredicts twice
 End of loop case, when it exits instead of looping as

before

 First time through loop on next time through code,
when it predicts exit instead of looping

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 17

33Copyright © 2012, Elsevier Inc. All rights reserved.

Consider a loop that is taken 9 times in a row then
not taken

34

2-Bit Predictor

 Uses 2 bits to add some hysteresis to the
prediction – Compare with 1 bit?

 2 bits are as good as N bits (approx.)

Copyright © 2012, Elsevier Inc. All rights reserved.

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 18

35

2-bit Predictor

 4096 entries 2-bit predictor miss rate

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

36

Correlating Branch Predictors

Copyright © 2012, Elsevier Inc. All rights reserved.

B1 if (aa==2)

aa=0;

B2 if (bb==2)

bb=0;

B3 if (aa!==bb){

DSUBUI R3, R1, #2

BNEZ R3, L1 ; b1 (aa!=2)

DADD R1, R0, R0 ; aa==0

L1: DSUBUI R3, R1, #2

BNEZ R3, L2 ; b2 (bb!=2)

DADD R2, R0, R0 ; bb==0

L2: DSUBUI R3, R1, R2 ; R3=aa-bb

BEQZ R3, L3 ; b3 (aa==bb)

If the condition is true B1,B2 branch NOT TAKEN

If the condition is true B3 NOT taken

If B1 and B2 both NOT TAKEN B3 TAKEN

There is a correlation between B3 and both B1 and B2

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 19

37

Correlating Branch Predictors

 Correlating predictors (rw0-level predictors) use
the behavior of other branches to make
prediction.

 Simplest (1-bit) has 2 predictions, one if the last
branch is take, the second is when the last
branch is not taken

 The prediction is on the form NT/T

Copyright © 2012, Elsevier Inc. All rights reserved.

38

Example

Copyright © 2012, Elsevier Inc. All rights reserved.

Initial d d==0? B1 d befoe b2 d==1 b2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

B1 if (d==0)
d=1;

B2 if (d==1)

{

BNEZ R1, L1 ; d == 0 ?
DADD R1, R0, #1 ; YES d==1

L1: DADD R3, R1, #-1
BNEZ R3, L2 ; b2 (bb!=2)

L2:
If b1 not taken, b2 is
taken for sure

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 20

39

Example

Copyright © 2012, Elsevier Inc. All rights reserved.

Initial d d==0? B1 d befoe b2 d==1 B2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

d B1 B1 newB1 B2 B2 new B2
Pred action pred pred action pred

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

Miss on every prediction

40

Example

Copyright © 2012, Elsevier Inc. All rights reserved.

Initial d d==0? B1 d befoe b2 d==1 b2

0 Y NO 1 Y NO

1 N Taken 1 Y NO

2 N Taken 2 N Taken

d b1 b1 newb1 b2 b2 new b2
Pred action pred pred action pred

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T /NT NT T/NT NT/T NT NT/T

Misprediction on first try
only

X X

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 21

41

Correlating Predictors

 The previous predictor is called (1,1) predictor.
 It uses one bit for history (last branch), to choose

among two (21) 1-bit branch predictors.
 In general a predictor could me (m,n) predictor.
 It uses the last m branch to choose among 2m

branch predictors each is n-bit predictor.

Copyright © 2012, Elsevier Inc. All rights reserved.

42

(2,2) Correlating Predictors

Copyright © 2012, Elsevier Inc. All rights reserved.

(2,2) predictor

– Behavior of recent
branches selects
between four
predictions of next
branch, updating just
that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

0 1

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 22

43

Comparison

Copyright © 2012, Elsevier Inc. All rights reserved.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

li eqntott espresso gcc fppp spice doduc tomcatv matrix300 nasa7

1024 entrirs (2,2)

unlimited entries 2‐bit

4096 entries 2‐bit

44Copyright © 2012, Elsevier Inc. All rights reserved.

Branch Prediction

 Basic 2-bit predictor:
 For each branch:

 Predict taken or not taken
 If the prediction is wrong two consecutive times, change prediction

 Correlating predictor:
 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes of preceding n

branches

 Local predictor:
 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes for the last n

occurrences of this branch

B
ranch P

rediction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 23

45

Tournament Predictor

 Tournament predictor:
 Combine correlating predictor with local predictor
 A selector is sued to decide which one of these to use

 The selector could be similar to a 2-bit predictor
 A saturating 2-bit binary counter with 2 outcomes

P1/P2

Copyright © 2012, Elsevier Inc. All rights reserved.

Use P1

Use P1 Use P2

Use P2

46Copyright © 2012, Elsevier Inc. All rights reserved.

Branch Prediction Performance

B
ranch P

rediction

Branch predictor performance

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 24

47

Alpha 21264 Branch Predictor

 Tournament predictor using, 4K 2-bit counters
indexed by local branch address.

 Global predictor
 4K entries index by history of last 12 branches (212 =

4K)
 Each entry is a standard 2-bit predictor

 Local predictor
 Local history table: 1024 10-bit entries recording last

10 branches, index by branch address
 The pattern of the last 10 occurrences of that

particular branch used to index table of 1K entries
with 3-bit saturating counters

Copyright © 2012, Elsevier Inc. All rights reserved.

48

Intel Core i7 Branch Predictor

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 25

49Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling

 Rearrange order of instructions to reduce stalls
while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture
 Handles cases where dependencies are unknown at

compile time

 Disadvantage:
 Substantial increase in hardware complexity
 Complicates exceptions

B
ranch P

rediction

50Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling

 Dynamic scheduling implies:
 Out-of-order execution
 Out-of-order completion

 Creates the possibility for WAR and WAW
hazards

 Tomasulo’s Approach
 Tracks when operands are available
 Introduces register renaming in hardware

 Minimizes WAW and WAR hazards

B
ranch P

rediction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 26

51Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Example:

DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

+ name dependence with F6

B
ranch P

rediction

antidependence

antidependence

52Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Example:

DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D T,F10,F14

MUL.D F6,F10,T

 Now only RAW hazards remain, which can be strictly
ordered

B
ranch P

rediction

The University of Adelaide, School of Computer Science 24 September 2013

Chapter 2 — Instructions: Language of the Computer 27

53Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Register renaming is provided by reservation stations
(RS)
 Contains:

 The instruction
 Buffered operand values (when available)
 Reservation station number of instruction providing the

operand values
 RS fetches and buffers an operand as soon as it becomes

available (not necessarily involving register file)
 Pending instructions designate the RS to which they will send

their output
 Result values broadcast on a result bus, called the common data bus (CDB)

 Only the last output updates the register file
 As instructions are issued, the register specifiers are renamed

with the reservation station
 May be more reservation stations than registers

B
ranch P

rediction

