The University of Adelaide, School of Computer Science 24 September 2013

Computer Architecture

A Quantitative Approach, Fifth Edition

| Chapter 3

| Instruction-Level Parallelism
and Its Exploitation

Introduction

uononpo.nu|

= Pipelining become universal technique in 1985
= Overlaps execution of instructions
= Exploits “Instruction Level Parallelism”

= Beyond this, there are two main approaches:

= Hardware-based dynamic approaches
= Used in server and desktop processors
= Not used as extensively in PMP processors

= Compiler-based static approaches
= Not as successful outside of scientific applications

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 24 September 2013

Instruction-Level Parallelism

uononpo|

= When exploiting instruction-level parallelism,
goal is to maximize CPI

= Pipeline CPI =
= |deal pipeline CPI +
= Structural stalls +
=« Data hazard stalls +
= Control stalls

= Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches

Data Dependence

uononpo.nu|

» Loop-Level Parallelism
= Unroll loop statically or dynamically
= Use SIMD (vector processors and GPUSs)

= Challenges:

= Data dependency
= Instruction j is data dependent on instruction i if
= Instruction i produces a result that may be used by instruction j
= Instruction j is data dependent on instruction k and instruction k
is data dependent on instruction i

» Dependent instructions cannot be executed
simultaneously

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science

24 September 2013

Data Dependence

= Dependencies are a property of programs

= Pipeline organization determines if dependence
Is detected and if it causes a stall

= Data dependence conveys:
= Possibility of a hazard
= Order in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

= Dependencies that flow through memory
locations are difficult to detect

uononpo|

= Loop:

L.D
ADD.D
S.D
DADDUI
BNE

Data Dependence

FO,0(R1)
F4,F0,F2
F4,0(R1)
R1,R1,#-8
R1,R2,Loop

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 24 September 2013

Name Dependence

uononpo|

= Two instructions use the same name but no flow
of information
= Not a true data dependence, but is a problem when
reordering instructions
= Antidependence: instruction j writes a register or
memory location that instruction i reads
= Initial ordering (i before j) must be preserved
= Output dependence: instruction i and instruction j
write the same register or memory location
= Ordering must be preserved

= To resolve, use renaming techniques

Other Factors

uononpo.nu|

» Data Hazards
= Read after write (RAW)
= Write after write (WAW)
= Write after read (WAR)

= Control Dependence
= Ordering of instruction i with respect to a branch

instruction
= Instruction control dependent on a branch cannot be moved
before the branch so that its execution is no longer controller
by the branch
= An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 24 September 2013

Control Dependence

DADDU R2,R3,R4

= Must preserve exception =
behavior. . BEQZ R2,L1
= We should not change = W R10(R2)
the exception behavior of ® L7 -
the program.
= We often relax this to = No data dependence
“reordering of instruction prevents us from

must not raise new
exceptions”

exchanging BEQZ
and LW, but might
result in memory
protection exception

=
Examples .
Example 1: = OR instruction dependent 8
DADDU R1,R2,R3 on DADDU and DSUBU
BEQZ R4,L = ing th d I
psusu RLRLRs ™ Preserving the order alone
Lo is not sufficient (must have
OR R7,R1,R8 the correct value in R1)
Example 2: _
DADDU R1,R2,R3 = Assume R4 isn’t used after
BEQZ R12,skip skip
DSUBU R4,R5R6 = Possible to move DSUBU
. DADDU R5,R4,R9 before the branch
skip:
OR R7,R8,R9

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science 24 September 2013

@)
. . . o
Compiler Techniques for Exposing ILP 2
5}
o . =
= Pipeline scheduling S
. . =
= Separate dependent instruction from the source 2
instruction by the pipeline latency of the source 3
instruction
= Example: No dependence
for (i=999; i>=0; i=i-1) between iterations
. . ?
x[i] = X[i] + s: MIPS code~
Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

(@)
- - o
Pipeline Stalls =
T.
)
_|
Loop: L.D F0,0(R1) 1 w
stall 2 3
ADD.D F4,F0,F2 3 E
stall 4 n
stall 5
S.D F4,0(R1) 6
DADDUIR1,R1,#-8 7
stall (assume integer load latency is 1) 8
BNE R1,R2,Loop 9
Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Chapter 2 — Instructions: Language of the Computer 6

The University of Adelaide, School of Computer Science

24 September 2013

Pipeline Scheduling

Scheduled code:

Loop: L.D FO0,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

~No ok, NP

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

sanbiuyoa] Jajidwo)d

Loop Unrolling

= Loop unrolling

= Unroll by a factor of 4 (assume # elements is divisible by 4)

= Eliminate unnecessary instructions
Loop: L.D F0,0(R1)

ADD.D F4,FO,F2

S.D F4,0(R1) :drop D

L.D F6,-8(R1)
—_—

1 stall ADD.D F8F6,F
S.D F8,-8(R1) ;drop DADDUI
L.D F10,-16(R1)

ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)
ADDUI R1,R1#-32
BNE R1,R2,Loop

2 stalls

= note: number
of live registers
vs. original loop

sanbiuyoay Jajidwo)d

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science

24 September 2013

Loop: L.D
L.D
L.D
L.D
ADD.D
ADD.D
ADD.D
ADD.D
S.D
S.D
DADDUI
S.D
SD
BNE

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F4,0(R1)
F8,-8(R1)
R1,R1,#-32
F12,16(R1)
F16,8(R1)
R1,R2,Loop

Loop Unrolling/Pipeline Scheduling

= Pipeline schedule the unrolled loop:

Loop iterations are
independent

sanbiuyoa] Jajidwo)d

Strip_ Mining

= Unknown number of loop iterations?
= Number of iterations = n
= Goal: make k copies of the loop body

= Generate pair of loops:
= First executes n mod k times
= Second executes n / k times
= “Strip mining”

sanbiuyoay Jajidwo)d

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science

24 September 2013

Loop Level Parallelsim

» Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.

For(i=0;i<100;i++)
X[[]=x[i]+A,;

» the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use

of twice is within a single iteration.

- Thus loop iterations are parallel (or independent from each
other).

Loop Level Parallelsim

= . A data dependence between
different loop iterations (data produced in earlier iteration used
in a later one).

= LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.

= LLP analysis is normally done at the source code level or
close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the
registers used for addressing and incrementing.

= Instruction level parallelism (ILP) analysis, on the other hand,
is usually done when instructions are generated by the
compiler

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 24 September 2013

Iteration # — i

Loop Level Parallism

for (i=1; i<=100; i=i+1) {

Not Loop

Ali+1] = Ali] + C[i]; /* S1%/ Carried <
B[i+1] = B[i] +A[i+1];} [*S2 */ Dependence\zl

Dependency Graph

= S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).
- does not prevent loop iteration parallelism.
= S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

- These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Loop Level parallelism

n for(i=0;i<=100;i++)
. A[i] = A[i] + BJi]; [* S1 *
. B[i+1] = C[i] + D[i]; /*S2 */

= S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

= The dependence is not circular, S2 does not
depend on S1 in the previous iteration

Chapter 2 — Instructions: Language of the Computer 10

The University of Adelaide, School of Computer Science

24 September 2013

for (i=1; i<=100; i=i+1) {
Ali] = Ali] + B[i];
B[i+1] = C[i] + D[il;

}

| ALI=ALIBIL | A=A+ B2

B[2] = C[1] + D[1]; BI3] = C[2] + D[2]; |
A[1] =A[1] + B[1];
for (i=1; i<=99; i=i+1)

}

Loop Start-up code Iteration 1

A[1] =A[1] + B[1];

Not Loop
Carried
Dependence

B[2] = C[1] + D[1];

A[99] = A[99] + B[99];

I* 81 *
I* 82 */

A[100] = A[100] + B[10

B[100] = C[99] + D[99]; B[101] = C[100] + D[100];

{

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

B[101] = C[100] + D[100];

| B[100] = C[09] + D[og]; ‘ B[101] = C[100] + D[100];
Loop Completion code

Finding Dependence

» Finding dependences in the program is very
important for renaming and executing
Instructions in parallel.

Arrays and pointers makes finding dependences
very difficult.

Assume array indices are affine, which means
on the form where and are
constant.

GCD test can be used to detect dependences.

Chapter 2 — Instructions: Language of the Computer

11

The University of Adelaide, School of Computer Science 24 September 2013

Finding Dependence

= Assume we stored an array with index value of
ai+b and loaded an array with an index value of
cj+d

= Are they pointing to the same location?

» Assume the loop limit is m,n

n Are there

j)k m<j,k<nsuchthat ax j+b=cxk+d

GCD test

= A simple and test for absence can be
found.

» If a loop dependence exists, then

GCD(c,a) divides (d —b)

Chapter 2 — Instructions: Language of the Computer 12

The University of Adelaide, School of Computer Science

24 September 2013

GCD Test -- Example
for(i=1; i<=100; i=i+1) {

}

a=2 b=3 c=2
GCD(a,c) = 2
d-b= -3

is not possible.

5,7,9,11,13,15,17,19,21,23,.....
4,6,8,10,12,14,16,18,20,22,.....

x[2*i+3] = x[2*i] * 5.0:

d=0

2 does not divide -3 = No dependence

Dependence Analysis

situations

= Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these

= Objects are referenced using pointers
= Array indexing using another array a[bli]]

= Dependence may exist for some values of input,
but in reality the input never takes these values.

= When we want to more than the possibility of
dependence (which write causes it?)

= Dependence analysis across procedure
boundaries

Chapter 2 — Instructions: Language of the Computer

13

The University of Adelaide, School of Computer Science 24 September 2013

Dependence Analysis

» Sometimes, points-to analysis might help.

= We might be able to answer simpler questions,
or get some hints.

= Do 2 pointers point to the same list?
= Type information

= Information derived when the object was
allocated

» Pointer assignments

Software Pipelines

» Software pipelined loop chooses instructions
from different loop iterations, thus separating the
dependent instructions within one iteration of the
original loop

lteration
0

Iteration
1 lteration
Iteration

3 lteration

4

Software-
pipelined
iteration

Chapter 2 — Instructions: Language of the Computer 14

The University of Adelaide, School of Computer Science 24 September 2013

Software Piplines

Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE

Before: Unrolled 3 times After: Software Pipelined Version

1 L.D FO,0(R1) L.D FO,0(R1)
% éDB-D Ei’g(()ég ADD.D F4,FO,F2
4 L.D FO.-8(R1) . g'g FFAE)’O_%RD_)
5 ADD.D F4,F0,F2 - ,O0(R1) ;Stores M[|:_|
6 S.D Fa.-8(R1) 2 ADD.D F4,FO,F2 ;Adds to M[i-1]
7 LD FO.-16(R1) 3 L.D FO,-16(R1);Loads M[i-2]
8 ADD.D F4.FO.F2 4 DADDUI R1,R1,#-8
9 S.D F4.-16(R1) 5 BNE R1,R2,LOOP
10 DADDUI R1,R1,#-24 S.D F4, 0(R1)
11 BNE R1,R2,LO0P ADDD F4,FO0,F2

S.D F4,-8(R1)

Software Pipelines

ADD. ADD.D ADD.D ADD.D ADD.D ADD.D

1 s.p 255 35 4. S.D s.0 \

4 Software Pipelined loop iterations (2 iterations fewer)

Loop Body of software Pipelined Version

Chapter 2 — Instructions: Language of the Computer 15

The University of Adelaide, School of Computer Science

24 September 2013

Branch Prediction

= Dynamic scheduling deals with data dependence
improving, the limiting factor is the control
dependence.

= Branch prediction is important for processors
that maintains a CPI of 1, but it is crucial for
processors who tries to issue more than one
instruction per cycle (CPI < 1).

= We have already studied some techniques
(delayed branch, predict not taken), but these do
not depend on the dynamic behavior of the code.

Branch History Table

= A small memory indexed by the lower portion of
the address of the branch instruction.

= The memory contains only 1-bit, to predict taken
or untaken

» If the prediction is incorrect, the prediction bit is
inverted.
= In a loop, it mispredicts twice

= End of loop case, when it exits instead of looping as
before

= First time through loop on next time through code,
when it predicts exit instead of looping

Chapter 2 — Instructions: Language of the Computer

16

The University of Adelaide, School of Computer Science

24 September 2013

| PC of instruction to fetch
Look up Predicted PC
Number of
entries
in branch-
target
bufier
No: instruction is
not predicted to be Branch
branch. Proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

Consider a loop that is taken 9 times in a row then
not taken

2-Bit Predictor

» Uses 2 bits to add some hysteresis to the
prediction — Compare with 1 bit?

» 2 bits are as good as N bits (approx.)
T

Predict Taken

NT
?. Predict Taken

NT NT

Predict Not
Taken

T

Predict Not

Taken T

NT

Chapter 2 — Instructions: Language of the Computer

17

The University of Adelaide, School of Computer Science

24 September 2013

2-bit Predictor

0.2

= 4096 entries 2-bit predictor miss rate

0.18

0.16

0.14

0.12

0.1 1

0.08 -
0.06 -
0.04 -
0.02 -

Correlating Branch Predictors

) DSUBUI R3, R1, #2
if(@@==2)————g\nez R3 L1 : bl (aal=2)
aa=0; DADD R1,R0,R0 ; aa==
if (bb::2)_l'l—’ DSUBUI R3, R1, #2
BNEZ R3, L2 ;b2 (bb!=2)
bb=0; DADD R2,R0,R0 ;bb==
if (@aa!l==bb){~t2~> DSUBUI R3,R1,R2 ;R3=aa-bb
BEQZ R3, L3 ; b3 (aa==bb)

If the condition is true > B1,B2 branch NOT TAKEN

If the condition is true > B3 NOT taken

If B1 and B2 both NOT TAKEN B3 > TAKEN

There is a correlation between B3 and both B1 and B2

Chapter 2 — Instructions: Language of the Computer

18

The University of Adelaide, School of Computer Science 24 September 2013

Correlating Branch Predictors

» Correlating predictors (rwO-level predictors) use
the behavior of other branches to make
prediction.

= Simplest (1-bit) has 2 predictions, one if the last
branch is take, the second is when the last
branch is not taken

= The prediction is on the form NT/T

Example
e BNEZ R1, L1 ;d==07?
B1 if (d==0) DADD R1,R0,#1 ; YESd==1
d=1; L1: DADD R3,RL #1
B2 if (d==1) BNEZ R3, L2 : b2 (bb!=2)
{ L2:
If bl not taken, b2 is
taken for sure
Initial d d==07? Bl d befoe b2 d==1 b2
0 Y NO 1 Y NO
1 N Taken 1 Y NO
2 N Taken 2 N Taken

Chapter 2 — Instructions: Language of the Computer 19

The University of Adelaide, School of Computer Science

Example
Initial d d==07? B1 d befoe b2 d==1 B2
0 Y NO
1 N Taken
2 N aken
d B1 B1 newB1
Pred actio pred
2 NT T
0 T NT NT
2 NT T T NT T T
0 T NT NT T NT NT
Miss on every prediction

Example
Initial d d==07? Bl d befoe b2 d==1 b2
0 Y NO 1 Y NO
1 N Taken 1 Y NO
2 N Taken 2 N Taken
d b1 b1 newbl b2 b2 new b2
Pred action pred pred action pred
2 NTINT X T TINT NT/NT % T NT/T
0 T/INT 4 NT T/INT NT/T NT NT/T
2 TINT v T TINT NT/T T NT/T
0 TINT + NT TINT NT/T v ONT NT/T
Misprediction on first try
only

Chapter 2 — Instructions: Language of the Computer

24 September 2013

20

The University of Adelaide, School of Computer Science 24 September 2013

Correlating Predictors

The previous predictor is called (1,1) predictor.

It uses one bit for history (last branch), to choose
among two (21) 1-bit branch predictors.

In general a predictor could me (m,n) predictor.

It uses the last m branch to choose among 2™
branch predictors each is n-bit predictor.

(2,2) Correlating Predictors

(2,2) predictor Branch address

— Behavior of recent 4
branches selects 2-bits per branch predictor
between four
predictions of next
branch, updating just
that prediction

= Prediction

2-bit global branch history

Chapter 2 — Instructions: Language of the Computer 21

The University of Adelaide, School of Computer Science

Comparison

M 1024 entrirs (2,2)

m unlimited entries 2-bit

4096 entries 2-bit

li eqntott espresso gee fppp spice doduc tomcatv matrix300 nasa7

Branch Prediction

= Basic 2-bit predictor:
= For each branch:
= Predict taken or not taken
= If the prediction is wrong two consecutive times, change prediction
» Correlating predictor:
= Multiple 2-bit predictors for each branch

= One for each possible combination of outcomes of preceding n
branches

uonalpaid youelig

= Local predictor:
= Multiple 2-bit predictors for each branch

= One for each possible combination of outcomes for the last n
occurrences of this branch

Chapter 2 — Instructions: Language of the Computer

24 September 2013

22

The University of Adelaide, School of Computer Science 24 September 2013

Tournament Predictor

= Tournament predictor:
= Combine correlating predictor with local predictor
= A selector is sued to decide which one of these to use

= The selector could be similar to a 2-bit predictor

= A saturating 2-bit binary counter with 2 outcomes
P1/P2

A

Branch Prediction Performance

8%

3
ks

uonalpald youeig

Local 2-bit predictors 1

%
a8

3
3¢

Correlating predictors-

el
a8

A
Tournament predictors

"
s

Conditional branch misprediction rate
s
82

-
o
&~

3
2

T T T T T T T T T T T T T T T 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Total predictor size

Branch predictor performance

Chapter 2 — Instructions: Language of the Computer 23

The University of Adelaide, School of Computer Science

24 September 2013

Alpha 21264 Branch Predictor

= Tournament predictor using, 4K 2-bit counters
indexed by local branch address.

= Global predictor
. jﬁ)entries index by history of last 12 branches (212~
» Each entry is a standard 2-bit predictor

= Local predictor
» Local history table: 1024 10-bit entries recording last
10 branches, index by branch address
= The pattern of the last 10 occurrences of that
particular branch used to index table of 1K entries
with 3-bit saturating counters

Intel Core i7 Branch Predictor

Chapter 2 — Instructions: Language of the Computer

24

The University of Adelaide, School of Computer Science 24 September 2013

Dynamic Scheduling

» Rearrange order of instructions to reduce stalls
while maintaining data flow

uonalpald youelig

» Advantages:

= Compiler doesn’t need to have knowledge of
microarchitecture

= Handles cases where dependencies are unknown at
compile time

» Disadvantage:
= Substantial increase in hardware complexity
= Complicates exceptions

Dynamic Scheduling

Dynamic scheduling implies:
= Out-of-order execution
= Out-of-order completion

uonalpald youeig

Creates the possibility for WAR and WAW
hazards

Tomasulo’s Approach
= Tracks when operands are available

= Introduces register renaming in hardware
= Minimizes WAW and WAR hazards

Chapter 2 — Instructions: Language of the Computer 25

The University of Adelaide, School of Computer Science

24 September 2013

Register Renaming

= Example:
DIV.D FO,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)

MUL.D F6,F10,F8

+ name dependence with F6

antidependence

SUB.D F8,F10,F14 antidependence

uonalpald youelig

Register Renaming

s Example:

DIV.D FO,F2,F4
ADD.D S,FO,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

= Now only RAW hazards remain, which can be strictly
ordered

uonalpald youeig

Chapter 2 — Instructions: Language of the Computer

26

The University of Adelaide, School of Computer Science

24 September 2013

Register Renaming

= Register renaming is provided by reservation stations
(RS)
= Contains:
= The instruction
= Buffered operand values (when available)
= Reservation station number of instruction providing the
operand values
= RS fetches and buffers an operand as soon as it becomes
available (not necessarily involving register file)
= Pending instructions designate the RS to which they will send
their output

= Result values broadcast on a result bus, called the common data bus (CDB)

= Only the last output updates the register file

= As instructions are issued, the register specifiers are renamed
with the reservation station

= May be more reservation stations than registers

Chapter 2 — Instructions: Language of the Computer

uonalpald youelig

27

