
A Framework for Cloud Embedded Web Services Utilized by Cloud Applications

Mohamed Wahib and Asim Munawar

Graduate School of Information

Science and Technology

Hokkaido University

Sapporo, Japan

{wahib,asim}@ist.hokudai.ac.jp

Masaharu Munetomo and Kiyoshi Akama

Information Systems Design Laboratory

Information Initiative Center

Hokkaido University

Sapporo, Japan

{munetomo,akama}@iic.hokudai.ac.jp

Abstract—Cloud computing is impacting the modern Inter-
net computing and businesses in every aspect. One feature
of clouds is the convenience of using the services offered by
the cloud. Consequently, most cloud service providers use WS
for users and developers to interface with the cloud. However,
the current cloud WS are focused into core and fundamental
modern computing functionalities. We anticipate as cloud
developments tools mature and cloud applications become
more popular, there will be an opportunity for designing and
implementing applications/services to be embedded in the cloud
for use by applications in the cloud. We propose a framework
for WS deployment in the cloud to be usable by applications
residing in the same cloud. The framework capitalizes on the
cloud strong points to offer a higher value to the service
consumer inside the cloud. The authoritative nature of clouds
would enable more efficient models for WS publishing, indexing
and description. Moreover, being hosted in the cloud, WS
can build on the high scalability offered by the cloud with
a much higher reliability. Finally, scheduling the instances
using the WS in bundle with the WS instances could offer
a LAN-like connectivity performance driving down the latency
to the magnitude of lower microseconds. In this paper, we
highlight the challenges and opportunities of cloud applications
using cloud embedded Web services. We give a description of
the different aspects by illustrating the different components,
together with an end-to-end use case to show the applicability
of the proposed system.

Keywords-Web services; Cloud applications;

I. INTRODUCTION

Cloud computing technologies are evolving in a high pace

in analogy to how the Web1.0 and Web2.0 technologies

changed the Internet from a primitive distributed file share

and transfer platform to a complicated stack offering high

level services. However, the current effort in cloud services

is mainly focused on building high level abstractions to the

cloud users enabling them to adopt the cloud technologies

smoothly. The focus of this paper is on a business logic layer

embedded in the cloud to offer an added semantic value to

cloud applications. The new business logic layer builds on

the WS standards as is the normal practice in cloud context.

This paper proposes a framework for hosting CES (Cloud

Embedded Services) in the cloud. To the best of the authors’

knowledge, this has been no attempts for an open framework

providing embedded services to applications in the cloud.

The following is the motivation behind offering a service

through CES rather than a traditional WS residing outside

the cloud explained through an example. An example of a

simple WS (we name it WS-Temp) receiving a city name and

returning the temperature is used. For an application residing

in the cloud, the first option is to use WS-Temp which is

hosted in some other place in the Internet (or even on the

same cloud but without the application and WS-Temp being

aware). The cons in this scenario are the normal cons of WS

accessed over the Internet in the current practice (latency,

poor registry and description, uncertainty of reliability and

availability). The second option would be hosting WS-

Temp in the cloud and exposing it to applications running

inside the cloud. A cloud application seeking to use WS-

Temp in this case will have a unique opportunity for an

efficient use of WS-Temp. This is tangible by examining the

conventional WS, which in practice, suffer from problems in

the reliability, scalability, high latency, indexing, registry and

querying. This is logic as WS were designed to be hosted

over a an open, decentralized and highly latent with low

reliability platform; namely the Internet. This lead to loose

WS technologies that relay heavily on the interpretation

of the service provider. On the other side, with CES, as

compared to conventional WS, a different set of challenges

and opportunities come along from with the use in a cloud.

This situation calls for harnessing the cloud strong points

to elevate the mechanics of service computing into a new

level. The main class of services that would be beneficial

to the cloud applications and the cloud itself as an added

value are services expected to be repeatedly used on a large

scale by the cloud applications. For example, as the cloud

applications involve a lot of data handling, a CES for data

validation and checksum would be virtually used by data-

oriented cloud applications.

The rest of the paper is as follows. The next section

is a discussion of the significance of CESs and the op-

portunities and challenges of the concept. The following

section discusses the architecture of the framework. Section

IV illustrates a use case of the framework along with

preliminary results. Finally section V concludes and adds

insight to future work.

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.56

265

Figure 1. Service layers definition in clouds

II. CHALLENGES AND OPPORTUNITIES OF CLOUD

EMBEDDED SERVICES

Before explaining the mechanics of CESs and how can

CESs contribute in enriching the cloud environments, an

insight of how services are utilized and incorporated in

production clouds is essential. As shown in figure 1, WS

are used mainly to interface the cloud offerings to the cloud

users. These services cover all the spectrum of SaaS, PaaS

and IaaS. These WS have the following characteristics: a)

Limited in number, fast learning curve and fully docu-

mented. b) Do not need the traditional registering, querying

and indexing. c) Accessible from outside the cloud. Also

accessible from other WS interfaces in the same cloud (e.g.

Amazon’s EC2[1] can use simpleDB as part of the same

solution).

CES, proposed in this paper, differ from the current

WS used by clouds in the following: a) Accessible only

from within the cloud, with a point-to-point connection (i.e.

framework manager is aware of the binding). b) More CES

would mean more functional services beneficial to cloud

users, thus the framework allows for ease of adding CES

by independent developers. c) Unconventional registering,

indexing and querying of CES is essential. In short, CES

are close from the functional aspect to the WS used over

the Internet, while the current cloud WS are more into core

and fundamental modern computing functionalities.

The proposed is to split the upper application layer into an

end user layer at which cloud applications (see an example

of the applications in the figure) and a lower layer of service

entities providing semantic value to the upper layer.

Challenges and opportunities: Identifying the challenges

and opportunities for the cloud provider, cloud user, end user

is a essential to harness the potential power of CES over

conventional WS to the cloud applications.

Opportunities :
1) Cloud provider: From the perspective of the cloud

provider, offering a framework to host CES would offer the

following benefits:

i) Give an added semantic value for the cloud user.

As basic cloud WS are more oriented into core cloud

functions, CES would give a higher level business logic

layer to the cloud user. Some current cloud services can

somehow be viewed in this regard (e.g. AWS MPI and

MapReduce services), yet they still are not a high level

semantic layer, they are still core cloud computing functions

for the particular class of users they were designed to (High

Performance Computing community in this example). An

analogy here to the early days of the Internet is clear. Early

Internet offered primitive data and files hosting+transfer for

users (in correspondence of how clouds offer core computing

services and infrastructure to cloud users). The Internet then

evolved to a large stack of application and semantic layers

over the initial primitive services.

ii) CES hosted in the cloud and cloud applications using

CES would mean more computing done in the cloud and

consequently more use of cloud resources. One scenario

of CES designed to be offered by the cloud provider and

another of offering a cloud WS interface to allow cloud

users (a more accurate name would be producer cloud

user) to add CES to the cloud. Both scenarios would mean

more computing done in the clouds and more use of cloud

applications to cloud resources.

2) Cloud user: The cloud user would be the most benefi-

cial for CES, the following are the opportunities:

i) WS over the Internet suffered from an inherit problem

of reliability and availability. Clouds, necessarily offering

higher levels of reliability and availability, would refrain the

cloud user from inconvenient failures and reducing the WS

redundancy cost shifted to the cloud user.

ii) A main pillar in clouds, scalability, would also elimi-

nate many problems for the WS provider in having to handle

such problem. The evident model for scaling in the cloud

would be highly beneficial to automate the scaling process

of the WS in the highest efficient manner. Of course this

advantage would be also the case for WS (not CES) hosted

in clouds.

iii) The centralization of clouds compared to that of

the Internet would be useful in designing a strict indexing

and registry system for CES and consequently an efficient

querying system. On the other hand, registry and indexing

have always been a major problem in WS. To the extent that

the major registry services have been shutdown and WS in

266266266266266266266

practice do not rely on registry. One other benefit would

be using a strict description method for CES. The problem

with description of WS is that the entire process is left to the

service provider without any revision authority. For example

WS-Temp can or cannot include in the description if the

temperature forecasted is using a simulation or relying on

actual data from a third party (another WS for example or

live reports from meteorology monitoring in airports). To

sum it up, the idealistic process of providing a WS over

Internet would have less chances of failure over the clouds

considering the centralization of clouds.

iv) The harder constraints of hosting a CES over the cloud

would lead to a natural selection resulting in low redundancy

CES(s) with high quality. For example, querying for a WS-

Temp like service in WS available of the Internet would

return a high number of hits without any quantitive measures

to decide. Concern here is with the functional QoS attributes.

On the other hand, CES would have to go through the

following to be available to cloud applications: a) be strictly

adhering to the cloud rules in comprehensive description. b)

Be of higher functional level than redundant CES to insure

survival.

v) The previous point plus the authenticity of cloud users

would enable for building a highly reliable reputation system

to rank CES(s) depending on the functionality and not

traditional non-functional QoS attributes in WS. vi) A major

opportunity, the most relevant, is the ability to achieve LAN-

like latency provided that CES(s) and the cloud applications

utilizing them are allocated to the same data center. Latency

have always been an issue in WS considering the millisecond

range of Internet speed. However, scheduling in bundle

(by associating CES instances and instances using them)

and providing point-to-point connection between the CES

instances and the instances using them would change the

latency from the millisecond range to the lower microsecond

range of high speed connections in data centers. Such a

concept is already in use in AWS; instances of SimpleDB

running over EC2 are claimed to have LAN-like latency.

In other words, the cloud manager would consider both

instances as a single solution. Note the difference here is

that in AWS’s case, the bundle is between two predefined

core cloud services. While in the proposed, the bundle is

between an application and a user defined entity.

3) End users: the benefit for the end user is passed along

from the cloud user. Any added functional value, lower cost,

less latency would be essentially tangible by the end user.

Challenges :
1- Cloud provider: Starting by the technical first:

i) The choice of the openness of the CES framework is a

challenging issue. One side, the cloud provider could make

it an closed framework with CES designed and hosted by the

cloud provider just like current cloud WS. This would add a

huge burden over the cloud provider and also be unfavorable

by a significant class of cloud users skeptical about the off-

the-shelf model the clouds are following just as it was in PC

applications. On the other end of the spectrum, the cloud

provider could have an open framework allowing for adding

CES following a strict cloud protocol for CES quality and

description. This would consequently bring along the defects

of open systems. A model in between would be allowing

developers to write CES, yet host them in the cloud after

some form of cloud provider arbitration. A similar model is

the one used by Apple’s App Store which allows developers

to develop Apps and upload them to the App store after

arbitration from an Apple management entity. This challenge

is a large topic to be discussed independently in a following

publication. However, for the current paper, adding a new

CES through the framework is unspecified whether it is

directly by a cloud user, cloud provider or cloud provider

on behalf of the cloud user.

ii) Security in hosting CES in the cloud is not more

or less different from the normal security challenge of the

cloud. The only additional challenge here is the point-to-

point connection between instances of CES and instances

using CES to cut down the latency. Such a communication

level between two user defined entities inside a cloud can

raise concern. This critical issue is outside the scope of this

paper, yet is to be throughly studied independently.

iii) Scheduling instances over physical machines has an

added challenge in this framework. Namely the bundled

scheduling of CES instances with the instances using them.

The complication is further aggravated when heavy use of

a CES from cloud applications scattered would need some

replication strategy.

iv) In a more complex scenario, cloud applications could

need to utilize CES(s) in a workflow fashion. This would be

challenging whether an existing message queuing service is

used or a nouvelle module is built for that.

2- Cloud user: In comparison to using WS from outside

the cloud, the challenges are as follows:

i) Obviously the security aspect comes again to the

picture. The point-to-point connection with the CES needs

to be securely designed.

ii) The legacy of using WS for around a decade accus-

tomed the developers to the loose relation of their codes

and the WS. In contradiction, cloud applications would be

more integral with the CES. To achieve the best out of CES,

applications’ assignment and migration would be affected by

the load and invocation patterns for the associated CES(s).

3- End user: Same as opportunities, and challenges for

the cloud user will have an implicit effect on the service

provided to the end user.

III. ARCHITECTURE OF CES FRAMEWORK

The architectural overview of CES framework is shown in

figure 2. The core services are running in one or more VM

instances. The core services are provided as Web services

that can be accessed either directly using SOAP or by

267267267267267267267

Figure 2. CES framework overview architecture

using the Client Library that provides a simple API. The

framework in this paper was designed and implemented to

run in an Eucalyptus[2] cloud. Eucalyptus Open Source is

an open cloud software stack compatible with Amazon’s

AWS[1]. Two important points to clarify; a) The framework

in this phase is designed for independent CESs. Due to space

limitation, composite CESs are not addressed in this paper.

b) Security in such a framework is complicated due to the

inherit security challenges of clouds. The security aspect

is covered in a subsequent publication while assuming a

no access control policy in this paper. The modules of the

framework function as follows:

Figure 3. CES ontology for description of QoS parameters of CESs

CES registration: This section refers to the manner by

which the framework handle newly registered CESs. The

CESs registry (i.e. using UDDI and similar technologies in

WS context is discussed later in the indexing and ranking

section). CESs and associated metadata are stored in the

Registry Database. The registry service accepts requests for

adding CESs, process them according to cloud rules, register

and index the CES, launch test instances hosting the new

CES, and finally set the new CES to active status in the

cloud. The authorized nature of clouds versus the openness

of Internet gives an exceptional chance to improve the qual-

ity of the CES description compared to conventional WS.

In this context, a registry WS was implemented (accessible

from inside and outside the cloud) listening to requests.

The request includes an EC2 image with the CES deployed

inside it , OWL description file and an OWL extension

file with the QoS thresholds and scaling triggers (i.e. a

threshold level to be used for up scaling). An ontology

extending onQos[3], an ontology developed using OWL for

QoS description, advertising and query of Web services,

was defined using OWL to describe the QoS parameters,

see figure 3. The CES ontology is used for advertising and

query of CESs, designed in order to ensure simplicity while

maintaining flexibility and extendibility features. It is tied

to the OWL-S ontology, which permits to connect a QoS

description to the corresponding functional one. Following

the classical approach for ontology definition, CES ontology

is organized into three extensible complementary levels. The

upper ontology defines the ontological language, which is

the basic concepts to model CES QoS, such as the main

properties and restrictions of QoS metrics. In this ontology,

a QoS description of a CES is represented by a set of QoS

metrics. For the QoS description of a service it is necessary

to define a new entity of QoSMetric concept for each QoS

parameter, which means to define: the measured parameter,

the measurement scale, the measurement process, one or

more measured values belonging to the measurement scale.

The middle ontology is a specialization of the first one

and is domain independent. The low ontology can contain

domain-dependent specializations of the ontology in a spe-

cific domain. At this level some framework-specific concepts

for QoS definition are introduced. The QoS parameters

defined (e.g. CES:UnitResponseTime for query: maximum

interval time within which the CES has to be executed;

for advertising: interval time required to execute the CES

invocation, It is expressed in seconds as float values.) are

classified as Simple Value Metric, a specialization of generic

QoS metric that permits to define queries adopting relation

operators to be used on scale thresholding (such as better or

equal, tightly less of a certain value, etc.).

Next the WS description is to be reviewed (possibly man-

ually), then initially rated depending on description quality

and accuracy. The following step would be generating an

instance hosting the CES and run a throughput test for the

CES in order to a) validation and integrity check b) test

accuracy of description c) make a test run a test to ensure the

CES is valid. Finally the CES would be indexed according

to a rating and stated as active.

CES Monitoring: The monitoring service is split between

monitoring the VM instances of the CESs and the applica-

tions invoking CESs from one side and monitoring the CESs

non-functional QoS by regularly measuring the current QoS

values from the other side. A central monitoring service

orchestrates the entire monitoring. The instance system

monitoring is based on GroundWork Monitor[4], which is an

open source cloud monitoring tool supporting the Eucalyptus

cloud stack. For the QoS parameter monitoring, conventional

methods (i.e. with access to the CES implementation) are not

possible as the CES comes in a black box fashion (i.e. em-

bedded in an EC2 instance). Therefore, the method proposed

in [5], a three-phase WS independent invocation based QoS

268268268268268268268

measurement, is used for QoS periodic evaluation.

Dynamic proxy invocation: A highly challenging aspect

of the framework is the CES invocation scheme. The con-

ventional precompiled client-stub tightly-coupled invocation

scheme of WS (whether it uses SOAP or REST) is not

adequate to be used in a highly dynamic system requiring

the decoupling of the CESs and applications invoking them.

Applying auto scaling and dynamic binding (i.e. both CES

instances and the application instances invoking them are

dynamically created) would require an invocation scheme

that is a) dynamic b) message-driven and c) asynchronous.

DAIOS[6] is web invocation framework which solves this

problem through a message-driven invocation system which

translates invocation messages to SOAP/REST invocations

dynamically. The scheme proposed in DAIOS solves par-

tially the issues in CES invocation requirements; namely

dynamic asynchronous decoupled invocation. The limitation

of adopting DAIOS in the CES framework is the scaling

factor. In the CES framework, the message translation can be

a bottleneck for high orders of magnitude of concurrent in-

vocations. Possible solutions could be a) introducing batch-

invocation; invocations are processed in batches if a high

magnitude of invocations occur simultaneously. b) adopting

a distributed invocation scheme where each CES instance

would process it’s own message in the front end (without

the CES awareness). In this paper, the scaling factor is left

out to be studied independently and the DAIOS invocation

framework extension of Apache Axis 2 was used as it is.

Scaling service : An integral part of the framework is

the scaling of CECs in the cloud. Scaling the CESs is as

follows:

i) The monitoring service triggers an alert if any of the

QoS parameters value fall outside the scaling threshold de-

fined by the CES developer in the OWL extension provided

with in the registration phase.

ii)v) As an EC2 instance provisioning may require a long

time (in case of a large image), the triggering alert from

the monitor service is given well ahead to have the new

instances up and ready for new invocations and avoid any

latencies.

iii) The manager signals scaling service which demands

the provisioning service to provision a new CES EC2

instance(s). The number of instances provisioned depends

on the regression of the QoS parameters degradation (i.e.

the faster the drop in throughput was, the more number of

newer instances required).

iv) The manager assigns the new incoming invocations

for the instances with the highest QoS utility function value

(the equally-weighed sum of all QoS parameters). Further

improvements by using a load balancing mechanism and

replica scheme is certainly to be considered in the future

work.

v) CES instances without any invocations are terminated.

Indexing and ranking service : First and foremost,

service registries such as UDDI did not grow as expected.

Even the major public UDDI registers were shut down

several years ago. This setback was due to registries assum-

ing voluntary registration by service providers (registry is

passive, as opposed to actively crawling the Web looking for

WSDL definitions of services). One more reason, Registries

did not provide any value-added service, such as checking

the quality of the registered services. As a result, service

registries are often missing in service-centric systems (i.e.,

no publish and find primitives). This leads to point-to-point

solutions, where service endpoints are exchanged at design

time (e.g., using e-mail) and service consumers statically

bind to them. Several solutions in the literature tackle this

problem. [7] identify the limitations in registration and

assume a new approach to SOA not relying on registry.

The situation here is obviously different for CES. The

authoritive nature of clouds allows for an affirmative action

from the CES developer to load his CES into the cloud.

An important design aspect in the proposed framework is

to utilize an efficient description model and past usage for

pre-registration validation. By that we target to allow the

service developers (and not just the service consumers as

in convention) to make use of other registered services.

Back to the example of WS-Temp, a CES developer seeking

to add a new CES named WS-Temperature that provides

some meteorological data would first query two things;

a)if any CES having similar functionality is active in the

cloud, notice here that the strict description system should

offer comprehensive information about WS-Temp. b) for

comparison’s sake, the developer can retrieve logs of WS-

Temp performance both from the cloud side and the CES

side. Also the rank of WS-Temp in the cloud can be retrieved

(CES ranking system will be mentioned later). The indexing

service in this framework builds on a UDDI registry with the

following added functions: While a comprehensive semantic

query system would be ideal, for the time being the query

not only returns the keyword-based matching CES. It also

returns performance reports of the CES. The performance

reports include QoS parameters stack graph, normalized

number of hits and reputation ranking.

As for the ranking, in traditional WS, it is occasionally

mentioned in literature in the process of selecting Web

services from a large number of potential services in Web

service composition. Several ranking techniques were uti-

lized, most notably based on the semantic annotations of a

service’s inputs, outputs and functionality, as well as pre-

conditions and effects, if available. We refer the reader to

[8] for more details. Hosting CES in the cloud with the

applications using them would create two potential oppor-

tunities in ranking CES; a) ranking systems in literature

are working on-demand bases, so the ranking is calculated

upon user request. In CES case, having the CES running

inside the cloud would allow for a dynamically updated

ranking system based on the usage pattern. b) having direct

269269269269269269269

Table I
CES IMAGES AND TIME PORTIONS FOR DIFFERENT FRAMEWORK MODULES.

access to the entire cloud, new factors for ranking can

be taken into consideration. Mainly the factors based on

the performance of the CES independently from underlying

structure. c) ranking information collected entirely inside the

cloud would give more reliability to the ranking system.

The ranking system currently implemented is based on the

QoS evaluation system mentioned earlier. Another factor

is the normalized number of invocations. Lastly, a CES

survival rate (i.e. the percentage of CES life time it was

under invocation). The equally-weighed sum is used to

dynamically rank the CESs and not on-demand base.

Scheduling the CES instances : scheduling in the frame-

work is left entirely to the cloud manager. One important

point here is to assure that the CES instances and the

instances of the applications invoking them are allocated to

the same geographic location (assuming multiple sites to the

cloud). This can benefit from the expected LAN-like com-

munication speeds inside a geographic location of a cloud.

This would drive down the latency, which is a main weak

point of WS over the Internet. An important note here, the

entire framework does not affect the lower cloud middleware

layer except for scheduling as explained here. To benefit

from high communication speed and drive down the latency,

some level of control over the scheduling process by the CES

framework would be assumed. For the current version, the

test bed used is located in one geographic location, so LAN-

like latency is achieved without need to intervene as will be

shown in next section. Future improvements will handle the

scheduling over multiple geographic locations.

Manager : is a service orchestrating the interaction

between the services in the framework.

IV. USE CASE AND PRELIMINARY RESULTS

Experiments for registering CESs and then generating

invocations were conducted. The experiments were run on

a 18 node cluster with 2 x AMD Opteron 2.6 GHz Dual

Core 64 bit processors and 2GB RAM for each node.

Eucalyptus 2.0 is used as a cloud stack, the communication

Figure 4. End-to-end performance of the framework

used is a 1GB Ethernet. We have created different sets of

test CESs and QoS configurations (with varying response

times) using the Web service generation tool GENESIS[9].

A Gaussian distribution is used for specifying the response

time of all CESs. The number of invocations is increased

while decreasing the number of CESs to show the effect

of scaling on the overall performance (i.e. an increasing

number of replicate instances required for CESs with high

invocation rate.). Table I shows the settings of the test runs

with different overheads. Two important points to note. First,

the total number of images invoked increase significantly

with the increase of number of invocations despite the

lower number of active CESs. Second, the binding overhead

tend to increase significantly with the increase number of

invocations handled by framework (in the test run of 300

CESs and 50 invocations per each). In figure 4, we show

the average process duration study based on 300 active CES

and average of 50 concurrent CES running one images under

the scaling threshold. Each CES continuously executes the

incoming requests until finished. The incoming requests use

270270270270270270270

a Gaussian distribution with short intervals to emphasize on

the scaling factor.

V. CONCLUSION

This paper proposed an open framework running in the

cloud to host WS consumed by applications residing in

the cloud. The main motive is to offer a highly dynamic

and efficient environment for delivering high level semantic

value to cloud applications. The proposed framework, CES

framework, meets several challenges considering that WS we

originally designed to a highly latent non-authoritive envi-

ronment (i.e. the Internet). The challenges of the invocation

scheme, QoS parameter description, indexing and monitor-

ing were investigated. Opportunities as well appear when

capitalizing on the cloud strong points for the framework.

The high availability, ability to auto scale and driving the

latency down to LAN scale can show a high improvement in

CESs compared to conventional WS. A test case showing,

using the Eucalyptus cloud stack, the applicability of the

framework is illustrated to give a complete view of all

aspects.

As for future work, many points can be improved to

better adapt CESs in the cloud domain. An ontology based

query scheme which takes into consideration the QoS pa-

rameters and history of the CESs in the framework is one

point. Another point is to handle the scenario of multiple

geographical-sites cloud in the scheduling process. An im-

portant point also would be improving the message-based

invocation scheme considering the scaling factor.

REFERENCES

[1] [Online]. Available: http://aws.amazon.com/

[2] [Online]. Available: http://open.eucalyptus.com/

[3] E. Giallonardo and E. Zimeo, “More semantics in qos match-
ing,” in IEEE International Conference on Service-Oriented
Computing and Applications, 2007.

[4] [Online]. Available: http://www.groundworkopensource.com/

[5] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
performance and dependability attributes of web services,”
in IEEE International Conference on Web Services (ICWS06,
2006, pp. 205–212.

[6] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios: Efficient
dynamic web service invocation,” IEEE Internet Computing,
vol. 13, pp. 72–80, 2009.

[7] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-
to-end support for qos-aware service selection, binding, and
mediation in vresco,” IEEE Trans. Serv. Comput., vol. 3, July
2010.

[8] R. Wang, S. Ganjoo, J. A. Miller, and E. T. Kraemer, “Ranking-
based suggestion algorithms for semantic web service compo-
sition,” in Proceedings of the 2010 6th World Congress on
Services, ser. SERVICES ’10, 2010.

[9] L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a
framework for automatic generation and steering of testbeds
of complexweb services,” Engineering of Complex Computer
Systems, IEEE International Conference on, 2008.

271271271271271271271

