
CloudInsight: Shedding Light on the Cloud

Ahsan Arefin
University of Illinois at Urbana-Champaign

Urbana, IL, USA
marefin2@illinois.edu

Guofei Jiang
NEC Laboratories America, Inc.

Princeton, NJ, USA
gfj@nec-labs.com

Abstract—Cloud computing provides a revolutionary new
computing paradigm for deploying enterprise applications
and Internet services. Rather than operating their own data
centers, today cloud users run their applications on the
remote cloud infrastructures that are owned and managed by
cloud providers. However, the cloud computing paradigm also
introduces some new challenges in system management. Cloud
users create virtual machine instances to run their specific
application logic without knowing the underlying physical
infrastructure. On the other side, cloud providers manage
and operate their cloud infrastructures without knowing their
customers’ applications. Due to the decoupled ownership of
applications and infrastructures, if a problem occurs, there is
no visibility for either cloud users or providers to understand
the whole context of the incident and solve it quickly. To
this end, we propose a software solution, CloudInsight, to
provide some visibility through the middle virtualization layer
for both cloud users and providers to address their problems
quickly. CloudInsight automatically tracks each VM instance’s
configuration status and maintains their life-cycle configuration
records in a configuration management database (CMDB).
When a user reports a problem, our algorithms automatically
analyze CMDB to probabilistically determine the root cause
and invoke a recovery process by interacting with the cloud
user. Experimental results over data from Amazon EC2 online
support forum and NEC Labs’ research cloud infrastructures
demonstrate that our approach can effectively automate the
problem troubleshooting process in cloud environments.

Keywords-VM; cloud computing; troubleshooting; configu-
ration management; data analysis

I. INTRODUCTION

The emergence and growing popularity of cloud com-
puting signals a revolution on how IT infrastructures and
services are delivered and consumed. There are many evolv-
ing cloud computing models, including Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS), which provide IT infrastructures, plat-
forms and solution stacks, and software applications from
the cloud respectively [1]. Cloud infrastructures often em-
ploy a virtualization layer to ensure resource isolation and
abstraction. They are designed to provide restricted visibility
to both users and IaaS providers. Users of Virtual Machine
(VM) instances are blocked from looking down into the
infrastructure layer since multiple tenants might share the
same physical machine. Similarly IaaS providers such as
Amazon’s Elastic Computing Cloud (EC2) [2] are not al-

lowed to look inside the running VM instances because of
tenants’ business confidentiality and privacy.

In a local data center, operators usually need the con-
text information from both applications and infrastructures
for effective problem determination. In commercial cloud
environments, the decoupled ownership of applications and
infrastructures introduces new challenges in system man-
agement. When users encounter problems in their VMs,
they have little visibility on the infrastructure layer for root
cause determination except trial-and-error troubleshooting.
As discussed later, it is not even clear who is responsible for
fixing such problems. To support end users, IaaS providers
often run an online support forum (e.g., Amazon EC2 online
forum [3]) where users can report their problems and seek
solutions. Cloud operators often try to solve those problems
by manually investigating the system settings of users’ VMs.
Since operators do not know tenants’ specific applications,
it is even hard for them to solve problems only based on
users’ problem reports. Such an approach may eventually
take several hours or days to resolve problems [1].

Most of VM problems in a cloud infrastructure (except
those problems caused by applications running inside VM
instances) can be correlated to their configuration events.
Examples of such configuration events include incorrect
update of Access Control List (ACL) in hypervisors, blocking
of access ports inside running VM instances, connection of
virtual devices to unsupported OSes, migration of instances
to a slow machine, incorrect allocation of memory size,
connection loss with underlying block storage and so on.
For example, on average 28 problems were reported daily
to Amazon EC2 online forum in July 2010, complaining
about VM unavailability, VM hang, Elastic Block Storage
(EBS) [2] crash or loose connectivity, performance prob-
lem and so on. Problems can occur at the time when an
instance is first created from its source image or during
running time if its configurations are changed by some
events. For example, if a running VM instance is migrated
to a slow physical machine (PM), a performance problem
could emerge. In this case, the “PM-address” configuration
of the running VM is changed by the “migration” event
which causes the performance problem. Even with restricted
visibility, it is possible for the infrastructure layer to track
such configuration changes of VMs and correlate them with

2011 30th IEEE International Symposium on Reliable Distributed Systems

1060-9857/11 $26.00 © 2011 IEEE

DOI 10.1109/SRDS.2011.34

219

problem reports.
We make two intuitive observations about cloud envi-

ronments. First, multiple VM instances created from the
same image source are likely to have similar characteris-
tics in configurations. Second, some configuration attributes
have higher cardinality than others and hence they are
less sensitive to configuration changes. Based on those we
present a solution (called CloudInsight) for cloud providers
to automate reasoning and troubleshooting on user reported
problems under the restricted visibility. CloudInsight runs
in the infrastructure layer and tracks each VM instance as a
standard object running in that infrastructure. In summary,
we have made the following contributions:

Representation: CloudInsight develops a monitoring mech-
anism at the infrastructure layer to automatically capture the
event history of all running VM instances in cloud environ-
ments. Each event is a change or update of the configurations
of VMs as well as their underlying infrastructures. Such
event data is further structured and stored in a Configuration
Management Database (CMDB).

Problem Reasoning: When users report a problem, our
solution fetches the related information from the CMDB
and further identifies a list of suspect events. We then
apply statistical analysis to rank these events based on their
sensitivity to configuration changes.

Interactive Troubleshooting: Following the list of ranked
events, CloudInsight takes predefined actions to check and
solve problems. For each specific event, operators define the
predicates to check whether this event is the root cause as
well as the actions to remediate the problem. As shown
in our results, CloudInsight can solve a large portion of
reported problems (nearly 80% of which are within the scope
of cloud providers) from Amazon EC2 forum.

Experimental Evaluation: We have implemented CloudIn-
sight and evaluated the solution with NEC Labs’ research
cloud infrastructures. In a two-month evaluation period,
CloudInsight analyzed and diagnosed a list of user problems.
We correlate these problems with user reported problems at
Amazon EC2 online forum and demonstrate that CloudIn-
sight can effectively identify the root cause in most cases
and only take seconds to fix user problems, compared to
hours or days taken in today’s manual operation.

II. MOTIVATION

In a typical cloud environment, the cloud provider is
mainly responsible for the problems from its own infras-
tructure layer [1]. Operators of the cloud provider monitor
their infrastructure stacks from the hardware layer such as
servers and network devices and up to the hypervisor layer.
While the cloud provider ensures a highly available cloud
infrastructure, it typically does not guarantee the availability
of individual VM instances since it is not even aware of what
is running inside those VM instances. Therefore, cloud users

will occasionally encounter various problems with their VM
instances, which include VM disconnectivity, performance
isolation among instances, resource disconnectivity and mis-
configuration of instances.

Cloud providers offer several options to address cloud
users’ problems including a free best effort service with no
Service Level Agreement (SLA) guarantee and a premium
commercial grade support with SLA guarantees [1]. Both
support models require cloud users to report their problems
to operators, who manually investigate the problems to
provide solutions. The premium support model guarantees
a bounded problem resolution time with service charges
while the best effort model is free but might take 8 to 10
days to solve user problems [1]. Hence, our objective is to
provide automated solutions for cloud providers to address
users’ problem quickly and also reduce the cost of manual
operations. Our experimental results show that CloudInsight
can effectively reduce the solution time to seconds.

Many problems may manifest themselves in a similar
phenomenon and it is not easy to determine the root cause
based on user reports. When an instance is unreachable,
there could be many reasons behind that, such as instance
crash, incorrect ACL, hardware issues and so on. Benson et
al. [1] categorized user reported problems of Amazon EC2
into five different classes. As reported in their analyses on
3-year operation data, application and image maintenance
related problem reports are decreasing over time due to
the increased user familiarity with cloud infrastructure. The
percentage of connectivity problem reports (due to firewall
or IP issues etc.) is nearly constant, and problem reports
related to virtual infrastructure and performance are in-
creasing over time. Therefore, CloudInsight aims to provide
automated solutions to resolve connectivity, performance
and virtual infrastructure related problems in the cloud. Our
analysis on Amazon EC2 forum over the month of July 2010
shows that CloudInsight covers nearly 80% of the reported
problems which are within the management responsibility of
IaaS cloud providers. However, many problems reported in
Amazon EC2 request to restart/shutdown of hanged/crashed
instances, which have to be confirmed by users. CloudInsight
addresses this by communicating with end users through an
interactive troubleshooting process.

III. CloudInsight MODELS AND ARCHITECTURE

A. System Models

Problem Models: CloudInsight aims to solve connectivity,
infrastructure and performance related problems by automat-
ing the problem reasoning process. We classify these prob-
lems into six classes according to their root causes.Table I
shows the name and definition of these problem classes.
They can be combined to characterize real problems. For
example, an instance can crash (a VM Availability prob-
lem) because of errors in connected virtual devices (a VD

220

Misconfiguration problem). Our analysis on Amazon EC2
user forum (in Section V) concludes that these problem
models cover approximately 66% of all reported problems
and 80% of the problems that are within the management
responsibility of cloud providers.

Table I
PROBLEM MODELS.

Problem class Problem definition
PM Performance Related to PM performance
PM Connectivity Related to PM failures
VM Connectivity Related to instance reachability
VM Availability Related to VM instance crash
VD Misconfiguration Related to virtual devices
VI Misconfiguration Related to virtual interfaces

Data Models: CloudInsight stores all the configuration
parameters of running VM instances as well as those of
physical machines in a database. Table II shows the ex-
amples of the configuration attributes of VMs and PMs,
which can be monitored and tracked at the hypervisor
layer. Different cloud infrastructures may add their own set
of specific attributes. At time t, the set of configuration
attributes of a running VM α is a vector [x0, x1, ..., x(N−1)],
where xi is the ith (0 ≤ i < N) attribute. α is the unique
identification of a running VM instance. When a VM is
created, it is assigned with a 128 bit unique identifier called
uuid and a VM maintains this uuid even after its migration.
CloudInsight uses this uuid to track VM instances during
their life-cycle. Similarly we define the configuration set of
a PM with ID defined by its IP address.

Table II
DATA MODELS (*=MULTIPLE ENTRY FIELD).

Configuration type Attributes
VM configuration uuid, mac, ip, instance-name, source-

img, source-img-size, OS, port,
memory, vcpu, virtual-device(vd)*,
virtual-interface(vi)*, PM-address,
uptime, instance-status, etc.

PM configuration hostname, ip, OS, cpu*, memory,
number-vms, etc.

Event Models: Any change in the configuration set is
considered as an event in this paper. For example, the
creation and termination of VM instances are such events
which change the number of running instances (number-
vms attribute in Table II) on the host PM; A VM migration
is another event that not only changes the number of running
instances on their host PMs but also changes the “PM-
address” attribute of the migrated VM instance.

B. System Architecture

The system architecture of CloudInsight is shown in Fig-
ure 1 and it consists of three major components: Monitoring
Agent, Cloud CMDB and Analysis Engine.

Monitoring Agent: The Monitoring Agent monitors and
tracks the configuration attributes of VM instances and

Search
& Fetch

Statistical
Analyzer

Troubleshooter

Cloud
CMDB

Web
Interface

user

authentication

1

2

Hypervisor

Host OS

HW

Guest OS

App.

M
on

ito
rin

g A
ge

nt

Analysis
Engine

Virtualized Cloud

Events

e.g. IP change,
memory size change

VM
Problem
Reports

3

Figure 1. CloudInsight architecture.

infrastructures continuously. We assume that all PM clocks
are loosely synchronized. The agent sits in the hypervisor
layer so that it can be rolled out through the cloud infrastruc-
tures as a standard management component. Section IV-A
discusses the details of data collection.

Cloud CMDB: CMDB Manager structures and stores
configuration data sent by the monitoring agent into
a database called Configuration Management Database
(CMDB). CMDB is often used for asset and configuration
management in large data centers.In this paper, we use a
CMDB to track the life-cycle configuration information of
VM instances. It is a relational database and each row
includes a configuration change along with its timestamp and
health status (sick or healthy). Initially all rows are marked as
healthy. If a configuration change is found to be the cause
of a reported problem, the row containing this change is
marked as sick in the database during the troubleshooting
step. In Section IV-B, we discuss how CMDB is designed
and populated in cloud infrastructures.

Analysis Engine: After users encounter a problem with
their VM instances, they report the problem to CloudInsight
via a web interface. The Analysis Engine fetches the data
related to the reported VM from the CMDB and compares
its current configuration set with its historical records to
determine a list of suspect events. Then the engine employs
statistical analysis to rank the list of suspect events and uses
predefined predicates and actions to check these events and
resolve the problem. Not all problems can be automatically
resolved by CloudInsight since some problems are beyond
the management responsibility of cloud providers. However,
the suspected events are reported to end users with an
interactive troubleshooting process and its design details are
given in Section IV-C.

IV. DESIGN AND IMPLEMENTATION

A. Data Collection

CloudInsight runs an event-based monitoring agent
(ci agent) at the hypervisor layer of each physical machine.
The agent is a JAVA program that collects system configu-
ration data using Linux shell scripts. The shell scripts use
virsh management interface libraryto collect values of con-
figuration attributes of running VM instances such as uuid,

221

mac, vcpu, memory, OS, uptime, virtual interfaces,
and virtual devices. ci agent also collects IP addresses
of running guests by looking into the system arp-cache.
Other information about hypervisor, physical machine and
open ports in the running instances are collected using Linux
standard shell commands.

Collected information are represented using an XML
format. Configuration data is collected periodically at an
interval of τ , but it is not sent to the CMDB Manager unless
there is a change in the configuration data compared to the
previous one, which indicates new events. Hence the data
collection is event-based to reduce network overhead. τ is
defined by infrastructure operators. τ bounds the difference
between the occurring time and logging time of an event. A
large value of τ may result in missing events. Conversely
a small value of τ would increase the number of repeated
polling, which may lead to higher overhead in the hypervi-
sor. However, our experimental results show that ci agent
introduces very little overhead on the hypervisor even with
a very small τ=1sec.

B. Populate CMDB

The central CMDB Manager node runs a ci manager, a
JAVA program that collects event-based configuration data
from monitoring agents. It parses collected XML messages
and uses a relational database to structure and store all con-
figuration data (shown in Table II) along with the reported
timestamp. Each row in the database indicates at least a
single change in the set of configuration attributes. As we
mentioned before, the number of attributes may vary with
various cloud infrastructures. Each row in the database is
also associated with a status tag that defines whether the
configuration is sick or healthy. Initially all entries are set
to be healthy and a configuration is changed to be sick only
if it is proved to be faulty during the troubleshooting process.

An example of the configuration records of a VM instance
(α = VM0) is given in Table III, which shows 6 attributes
(uuid, source-img, PM -address, memory, vd and port)
along with their timestamp. The first row indicates an event
when the VM is restarted at physical node x.x.164.148.
The configuration changes over time are shown in bold
at the subsequent rows. The second row corresponds to a
migration that migrates the instance to x.x.164.150. The
third row indicates a change in the memory size as well as
the addition of a new virtual devices EBS-1235246. The
last row shows the change in the list of opened ports (this
information is necessary as EC2 requires specific ports to
keep open). CMDB stores similar tables for PMs and their
attributes are shown in Table II.

C. CMDB Analysis

When a problem is reported, the analysis engine analyzes
the related CMDB records of the reported VM instance to
determine the suspect events and then tries to check the root

cause and solve the problem. The whole process is divided
into three steps: Identifying Suspect Events, Event Ranking
and finally Interactive Troubleshooting.

1) Identifying Suspect Events: As discussed earlier, when
a problem of a VM instance occurs, it is most likely
caused by the recent events of that VM instance. As the
CMDB maintains the complete event history of VM in-
stances, the analysis engine can determine the list of suspect
events from the CMDB. Each event is associated with a
change in the configuration attribute called suspect attribute.
CloudInsight identifies the changes of the reported instance
by comparing its current configuration to the latest known
stable configuration. Any configuration that persists longer
than a specific duration of time (∆T) is considered as a
stable configuration. Unstable configurations may arise when
users try to fix problems by trial and error so that every
configuration change only lasts for a very short period of
time (< ∆T).

recent changes

problem reportsON

OFF

VM history

t1 t2 t3 t4

Time

Recent changes are <memory, vd, port>

t5

Figure 2. Identifying suspect events from CMDB.

Let’s consider the previous example in Table III. We draw
the event history of VM0 as shown in Figure 2. Each cross
represents a single event and 13 different events are shown in
the figure when VM0 is in ON state. Assume that a problem
is reported at time t5. The current configuration is the one
updated at time t4. We assume t4 − t3 < ∆T and t3 −
t2 ≥ ∆T . Hence configuration updated at time t3 is unstable
and we consider t2 as the time point with the latest stable
configuration. CloudInsight then identifies the set of suspect
events by comparing the configuration changes between time
t5 and t2. In this example the suspect events are the changes
of attributes port, vd and memory. If we use χ to define
the list of suspect events, then χ = [port, vd,memory]. For
cloud infrastructures, this set can be quite large.

2) Event Ranking: After determining the set of suspect
events, CloudInsight ranks them based on how likely an
event could be the problem root cause. As the set of suspect
events can be large, we reduce the problem resolution time
by checking the events in their ranked order. An event is
highly suspected if it is very rare to occur. To measure this,
we define a sensitivity metric and rank the set of suspect
events according to their sensitivity, i.e., the sensitivity of
an attribute to change.

We define two types of event sensitivity: local sensi-
tivity and global sensitivity. The local sensitivity defines
the probability of an event’s occurrence using the event

222

Table III
AN EXAMPLE OF VM CONFIGURATION RECORDS.

timestamp uuid source-img PM-address memory vd port
2010-08-09
04:39:50 (t1)

1813b7d4-c49f-831d-
6b5c-98988733e824

/var/lib/xen/images/
as217.img

x.x.164.148 524288 CD-2051473282 22,80

2010-08-09
05:29:10 (t2)

1813b7d4-c49f-831d-
6b5c-98988733e824

/var/lib/xen/images/
as217.img

x.x.164.150 524288 CD-2051473282 22,80

2010-08-09
05:43:23 (t3)

1813b7d4-c49f-831d-
6b5c-98988733e824

/var/lib/xen/images/
as217.img

x.x.164.150 524000 CD-2051473282,
EBS-1235246

22, 80

2010-08-09
05:45:23 (t4)

1813b7d4-c49f-831d-
6b5c-98988733e824

/var/lib/xen/images/
as217.img

x.x.164.150 524000 CD-2051473282,
EBS-1235246

22

history of the instances originated from the same image
source. All instances originated from the same image source
should have very similar characteristics because they have
the same application logic, guest OS and so on. If Src(α)
represents the image source of the instance α, the local
sensitivity of an attribute is calculated using the records of
all instances originating from Src(α). Meantime the global
sensitivity defines the probability of an event’s occurrence
using the event history of all VM instances regardless of
their image sources. The characteristics of some attributes
are not dependent on specific image types and hence we
can use the data from the larger global VM population to
calculate the sensitivity of an attribute.

To calculate two types of sensitivity, we extract two data
sets from the CMDB: 1) local configuration data set (cmdbl)
that includes the event history of all instances originated
from the same source Src(α) of the problematic instance
α, 2) global configuration data set (cmdbg) that includes
the event history of all instances. Note that for both data
sets, we only extract the records of suspect attributes in χ.

The sensitivity of events should be considered locally
and/or globally. An event may not be allowed for a specific
image while it is very common for other images. Therefore it
is misleading to rank this event using only global sensitivity.
Conversely, an event is very common for a specific image
while it is not allowed for many other images. To this end,
we introduce a weighted variable θ to define how closely
the statistics of an attribute from cmdbl matches that from
cmdbg . The value of θ ranges from 0 to 1. Given an attribute,
if its statistics from cmdbl is very similar to that from
cmdbg , we have θ = 1 and use the global sensitivity for
its ranking. On the other side, if its statistics from cmdbl is
very different with that from cmdbg , we have θ = 0 and use
local sensitivity for its ranking. Both cases are the extreme
cases. Later in this section we discuss how to calculate θ
for common cases which need the weighted combination of
global and local sensitivity for its ranking.

The sensitivity of an attribute can be defined by P (S|M),
the probability that an attribute’s modification (M) causes
the problem (S). We estimate this probability for all suspect
attributes in χ based on the local data set (cmdbl) and
global data set (cmdbg). For simplicity, let us derive the
probability P (S|M) for the ith suspect attribute and all
the following parameters should be implicitly indexed by i.
The probability P (S|M) can be defined with the following

equation:

P (S|M) = (1− θ)P (S|M)cmdbl + θP (S|M)cmdbg (1)

The conditional probabilities for local data set (de-
fined by P (S|M)cmdbl) and global dataset (defined by
P (S|M)cmdbg) can be derived with the following equation
by Bayes rule [4] (where X = P (M |S)cmdbP (S)cmdb):

P (S|M)cmdb =
X

X + P (M |S̄)cmdbP (S̄)cmdb
(2)

S̄ represents that the suspect attribute does not cause the
reported problem. We need to estimate each of the terms on
the right side of Equation (2). We assume that a problem is
only caused by one attribute change at a time. We skip the
subscript here since we need to calculate the probabilities
for both local and global data sets. The prior probability on
whether an attribute in the suspect set χ causes the problem
or not can be defined as P (S) = 1

n and P (S̄) = 1 − 1
n ,

where n is the number of suspect attributes in χ.
In practice, since most VM instances are healthy, we do

not have much historical data about the sick configurations
of a specific VM instance, especially when it encounters a
problem for the first time. Therefore we assume all attributes
have the equal probability to change when a problem occurs
and hence P (M |S) = 1

|C| , where |C| is the cardinality of
the configuration attribute set in CMDB.

Given a set of suspect events, we have the same P (S) =
1
n , P (S̄) = 1 − 1

n and P (M |S) = 1
|C| for all of these

attributes while the value of P (M |S̄) varies for different
attributes. Therefore Equation (2) can be reformulated as

P (S|Mcmdb) =
1

1 + |C|(n− 1)P (M |S̄)cmdb
(3)

In the following subsections, we discuss how to calculate
P (M |S̄) with local and global data sets respectively.

Calculating P (S|M)cmdbl : To calculate P (S|M)cmdbl , we
define a local vector L of size n (the number of suspect
events). Each element L[ν] represents the number of unique
values that the νth suspect attribute (in χ) takes in all
instances originated from Src(α). In other words, each
element in L represents the number of unique values that
a suspect attribute takes in the local data set. Continuing
the previous example shown in Table III, let’s assume
that we have L = [8, 7, 5], where n = 3 and χ =
[memory, vd, port]. The element L[0] = 8 refers that all
instances originated from the source image Src(VM0) take

223

8 different values of memory configuration during their
life cycle. Meantime L[3] = 5 means that these instances
take 5 different values in port configuration. Note that these
instances may not be alive at current time and the vector L is
also calculated only from the healthy configuration records
of the CMDB.

For the suspect attribute zi (the ith attribute in χ), the
local cardinality of zi is |zi|l = L[i]. The total number of
different values that all suspect attributes in χ take in the
local data set is Lχ =

∑n
ν=1 L[ν]. Thus, P (M |S̄) can be

computed with the equation:

P (M |S̄) =
|zi|l
Lχ

(4)

Calculating P (S|M)cmdbg : Similarly to calculate the prob-
ability P (S|M)cmdbg , we define a global vector G of size
n. G is also calculated only with the healthy configuration
records from the global data set. Each element G[ν] in
vector G represents the number of unique values that the
νth suspect attribute (in χ) takes in all instances of the
global data set. In the previous example, the G vector can
be represented as G = [32, 37, 18], where n = 3 and
χ = [memory, vd, port]. The element G[0] = 32 refers
that all instances (even from different source images) in
the global data set take 32 different values of memory
configuration during their life cycle.

In a similar way, the global cardinality of zi is |zi|g =
G[i] and the total number of unique values that all suspect
attributes take in the global data set is Gχ =

∑n
ν=1G[ν].

Thus we can define equation:

P (M |S̄) =
|zi|g
Gχ

(5)

Calculating θ: To calculate θ, we define a (p X q) dimen-
sional matrix D, where p is the number of images in the
global data set and q is the number of suspect attributes.
Assume that the set of all source images in the CMDB is
I . Thus each element D[µ][ν] in the matrix D represents
the cardinality of the νth suspect attribute in all instances
from the µth image, 0 ≤ ν < q and 0 ≤ µ < p. Table IV
shows the corresponding D matrix in the previous example,
where I=[as213.img, as214.img, as215.img, as216.img],
p = 4 and q = n = 3. Thus D[1][0] = 10 means that
all instances originated from the image as214.img take 10
different memory configurations. The CMDB may only
hold the most recent records in a month or a quarter (rather
than a much longer time period) to reduce the database size.
Meantime D can be updated only once per day since the
distribution of all historical records does not change much
everyday.

As we discussed earlier, we define θ to measure how
closely cmdbl matches cmdbg for a specific event. In other
words, it is defined as the probability on how the statistics
of an event in the local data set (cmdbl) follows that in the
global data set (cmdbg). To compute θ for a suspect attribute,

Table IV
AN EXAMPLE OF THE MATRIX D.

image-id memory vd port
as213.img 8 7 5
as214.img 10 12 2
as215.img 10 15 3
as216.img 4 5 8

we build a distribution from D by taking the column values
of that suspect attribute across all VM images. Then θ is the
probability on how the L value (from a specific VM image)
of a suspect attribute falls in its distribution constructed by
the corresponding column values (across all VM images) in
D matrix.

Table V
AN EXAMPLE OF PROBABILITY CALCULATION.

Attribute P (S|M)cmdbl P (S|M)cmdbg θ P (S|M)

memory 0.073 0.076 0.75 0.075
vd 0.082 0.067 0.75 0.071
port 0.11 0.128 0.5 0.119

With Equation (4), (5) and θ, we can further follow
Equation (3) and (1) to calculate the probability P (S|M)
and rank all suspect attributes. Let’s consider the previous
example: We have χ=[memory, vd, port] for the instance
VM0. The value of L, G and D are shown in the above
tables respectively. The conditional probabilities and the θ
values are shown in Table V. Following Equation (3) and
Equation (1), we can calculate the exact value of P (S|M)
respectively. If we compare the P (S|M) values of these
suspect attributes, we can rank them with the following
sensitivity order (from high to low): χr=[port, memory,
vd].

3) Troubleshooting: After determining and ranking sus-
pect events, CloudInsight performs troubleshooting actions,
which include two major steps:Check and Solve. For each
suspect event, the check step checks whether it is the true
root cause (or culprit event) of the problem. The solve step
tries to solve the problem automatically if the solution is
within the management responsibility of the cloud provider,
otherwise CloudInsight recommends the solutions to the
cloud users.

To identify the root cause, CloudInsight uses a series of
predefined predicates to check each suspect event, starting
from the top of the ranked suspect events. Predicate based
probings are getting popular for troubleshooting in the
recent literature [5]. The suspect events are first classified
into one or more problem classes. Actions are defined for
each individual problem class and also include a series
of predicates to check the existence of the corresponding
problem. In fact it is very convenient to run check and
solve steps in cloud infrastructure due to the availability
of temporary “tested”. For example, cloud infrastructure
has elastic virtualized resources, which enables us to start,
migrate and remove VM instances quickly. This allows us
to build a temporary testbed for problem verification using
the existing virtualized cloud resources. The check step also

224

uses PM configurations to validate the current configuration
of reported VM instances. If the check fails, then the event is
not the root cause and it is removed from the list of suspect
events, otherwise CloudInsight moves into the corresponding
solve step.

The solve step uses predefined solutions for the problem
validated at the check step. Sometimes the solution is not
within the scope and management responsibility of the cloud
provider. In that case, the solution is reported to the users so
that they can apply them inside their VM instances. As the
check step removes the non-culprit events, it reduces the set
of suspect events so that eventually users get a small list of
events containing the true root cause.

check: use predicates to check
existence of a problem class

solve: use predefined remedies
to solve problem

positive and
within scope

feedback: ask for user feedback
problem solved

done

Input: get problem classes by classifying events
in the suspect list. If suspect list is empty, then
get remaining unchecked problem classes

problem can not be
Classified in our model

perform interactive responses
defined by the users such as
restart/ shutdown/ terminate

negative

positive and
outside scope

ask users to solve
Inside instances

problem exists

update: update the corresponding
entry as the sick entry in CMDB

Figure 3. Check-and-solve flow chart.

The whole check-and-solve troubleshooting process is
done interactively with users. After each solve step, users
are asked to provide feedbacks. If the problem is solved,
the troubleshooting process ends; otherwise the check-and-
solve steps continue for the next suspected event. This
process is very similar to the troubleshooting support for
desktop printing or networking in Windows OS. Sometimes
the check-and-solve steps need to shutdown or restart a
instances to solve the problem, which has to get user’s
confirmation. If some users want to run their instances
without any interruption, CloudInsight sends the solution
back to the users for their own decision. After a problem
is reported, CloudInsight automatically invokes problem
reasoning and uses the same web interface to interact with
users and acquire their confirmation and permission for
actions. In some cases, our check and solve approach might
not be able to solve user reported problems. After several
rounds of check and solve steps, the list of suspect events
becomes empty and the problem is still not solved. For such
cases, based on users’ preference, CloudInsight can notify
operators to follow up a manual investigation or continue to
check other problem classes. Figure 3 shows the complete
flow chart of our check-and-solve troubleshooting algorithm.

Here we use the previous example to illustrate the trou-
bleshooting process. The output of suspect event ranking
is χr=[port, memory, vd]. At first, CloudInsight classifies

these suspect events into problem classes. Changing port
event is classified into VM Connectivity, changing memory
event is classified into PM Performance and VM Availability,
and changing vd event is classified into VD Misconfigura-
tion and VM Availability. As an example, Table VI shows
the series of predicates for the check-and-solve steps of PM
Performance. Similarly, we define check-and-solve steps for
other problem classes.

Table VI
Check-and-solve ACTIONS FOR PM PERFORMANCE.

Actions

• Get the current PM of the reported VM using PM -
address

• Get cpu-usage and memory-usage using SNMP
• IF cpu-usage > threshold or memory-usage >
threshold THEN there is a performance problem

• Migrate VM to different PM
• IF migration fails THEN re-create/shutdown the VM in

different PM with current configuration (depending on
users choice)

As we see in the Table VI, for measuring the performance
of physical machines, CloudInsight requires each physical
machine to run a lightweight SNMPclient in the hypervisor.
During the check step, an SNMP request is issued to collect
CPU and memory information of a physical machine to
check for its performance. The performance is considered
good if CPU and memory usages are below a defined
threshold. If a performance problem is detected, the solve
step migrates the user instance out of the busy machine to a
different physical machine. Note that we only use Table VI
as a simple example to illustrate the check and solve process.
In practice, operators can define much more sophisticated
predicates and actions to check and solve common problems.

V. SYSTEM EVALUATION

A. Experimental Setup

We have implemented the CloudInsight troubleshooting
system. The CMDB manager uses a MySQL database and
runs on a server with Intel Xeon 2.4GHz CPU and 2GB
RAM. We use 29 physical machines of NEC Labs’ research
cloud infrastructures to collect data. Each machine is vir-
tualized with Fedora Xen. Five research projects are using
these machines for cloud and virtualization related research
experiments. Researchers have frequently created, changed,
and migrated their VM instances for their experiments. We
collected data from 1st July 2010 to 15th Aug 2010. The
number of VMs varies since researchers create and stop
VM instances frequently for their experiments. In total,
we collected 358 events for 138 distinct VM instances
originated from 32 distinct image sources. We use τ = 1sec
during our experiments unless specified. Communication
between ci agent and ci manager is done using TCP to
avoid message loss and the synchronization of PM clocks is
done using NTP [6].

225

Table VII
RELATED PROBLEM REPORTS AT AMAZON EC2.

Problem reports in our infrastructure Similar reports in Amazon EC2
Low Performance • “Instance not responding to SSH” [07/24/10]

• “Instance cant access instance metadata by HTTP protocol” [07/13/10]
• “EBS bad performance” [01/01/10]

Instance not accessible (PM crash) • “EC2 instance wont respond over SSH, system log not updating” [07/22/10]
• “Instance not responding” [12/24/09]

Instance not accessible (VM crash) • “Instance and EBS crash” [07/17/10]
• “Cannot stop, force stop or reboot i-635d0108” [07/27/10]

Instance not accessible (storage volume
hang)

• “Cannot detach a volume” [02/11/10]
• “Cant connect to instance, connection timeout” [07/21/10]

Instance not accessible (misconfigured
firewall)

• “I cant SSH to my instance i-obo7d960” [07/10/10]
• “I cant connect to my EC2 instance, whats the matter?” [07/27/10]

Instance not accessible (misconfigured
DNS)

• “Need support to change internal IP” [07/27/10]
• “Cannot remote connect after change to remote IP” [05/04/09]

Table VIII
ROOT-CAUSES OF USER REPORTED PROBLEMS (FOR OUR INFRASTRUCTURE AND CORRELATED EC2 FORUM MESSAGE).

Problem report Root-cause Culprit event
Low Performance • Instance migration to a slow machine (1)

• Creation/migration of other instances to the current ma-
chine to overload

• Increasing memory size of current instance

• change of PM -address
• change of PM -address
• change of memory

PM crash • Hardware failure (not related to any configurations) (2) • H/W failure
VM crash • VM crash by changing OS kernel (3)

• Application related (not related to any configurations)
• change of os
• crash by applications inside

Storage volume hang • Attaching/detaching EBS (we use virtual CD-rom) (4) • change of vd
Misconfigured
firewall

• Application blocked ports (5a)
• Migration blocked ports due to non-updated ACL (5b)

• change of port
• change of PM -address

Misconfigured DNS • Change IP (6)
• Change MAC

• change of ip
• change of mac

B. Problem Characteristics

During our evaluation period, researchers reported their
VM related problems from time to time. When a problem
was reported, we first analyzed our cloud environment man-
ually to identify the root-cause. This information is used as
the “ground truth” to verify the correctness of CloudInsight
problem reasoning. To correlate these problems with those
from commercial clouds, we analyzed problem threads from
Amazon EC2 online support forum using a JAVA-based
crawler. The crawler collects the posted threads by following
the “subject line” of messages. The root-causes of these
threads are manually identified by analyzing the follow-up
conversations in the message threads. Table VII summarizes
the list of problems from our research infrastructure as well
as their correlated problems from Amazon EC2. The second
column shows the “subject line” of the related EC2 problem
threads along with their report date. The root causes and
corresponding culprit events of these problems are shown in
Table VIII. We assign a ID for each problem (inside “()” of
the second column in Table VIII) and use the problem IDs
in the following discussion.

C. CloudInsight Performance

1) Root Cause Ranking: After a problem is reported
by researchers, CloudInsight determines a list of suspect

events and each suspect event changes a single suspect
attribute. For each problem, the list of suspect attributes
determined by CloudInsight is shown in Table IX. Note
that the problem IDs are labeled in the second column of
Table VIII. The third column shows the culprit attribute that
originated the problem. After determining the list of suspect
events, CloudInsight pulls the related data from the CMDB
and calculates a local vector (L) and a global vector (G).
A global matrix D is also created to compute θ. The size
of D in our experiments is shown in the forth column of
Table IX.

Table IX
IDENTIFYING AND RANKING OF SUSPECT EVENTS.

Problem Suspect attributes Culprit attribute D
1 memory, vcpu,

vd, PM -address
PM -address (32X4)

2 memory, vcpu,
device, OS, ip

None (H/W fail) (32X5)

3 OS, memory,
vcpu, vd, ip

OS (32X5)

4 vd, memory vd (32X2)
5a port, memory,

device, OS, ip
port (32X5)

5b PM -address PM -address (32X1)
6 ip, vcpu, port ip (32X3)

Finally Equation (1) is used to calculate and rank the
sensitivity of the suspect events. Table X shows the rank of

226

the culprit event in each problem. In most of the 7 problems,
CloudInsight accurately identified the culprit event as the
first in ranking. Only in the case of problem no. 2, CloudIn-
sight can not find any suspect events since the H/W failure
is not detected.

2) Troubleshooting: An interactive troubleshooting is in-
voked for each problem. We use 2 extra machines from
the research cloud infrastructure to support problem trou-
bleshooting. Therefore we can migrate/clone the problematic
instances to these extra machines for check and solve. In
our experiments, most problems are solved in seconds while
Amazon EC2 requires hours or days to resolve similar
problems, as shown in Table X.

Table X
TROUBLESHOOTING WITH CloudInsight.

Problem Rank of culprit
attribute

Amazon sol.
time

CloudInsight
sol. time

1 2 7 days 9.965 sec
2 X 13 hrs 12.873 sec
3 1 16 hrs 12.223 sec
4 1 1 day 19.245 sec
5a 1 3 day 0.423 sec
5b 1 1 day 0.582 sec
6 3 15 hrs 0.865 sec

In most of the cases (except for case 2), the suspect
events are found to be the cause of the problems. In case 1,
4 and 5b, the reported problems are solved automatically
by CloudInsight. For the problems in case 3, 5a and 6,
CloudInsight provides the solutions to the users for their
own decision. CloudInsight recommends the users to change
guest OS kernel to avoid incompatibility issues in case 3,
open ports in case 5a and fix IP address in case 6. For the
case of H/W failure, as the problem persists even after all
suspect events are checked, CloudInsight further checks the
predicates of the remaining problem classes. The predicates
in PM Availability problem class eventually find the problem
and CloudInsight resolves it by re-creating the instance at
a different PM. Such check-and-solve based troubleshooting
steps are quite simple and do not lead to much computation
and communication overhead.

3) CloudInsight Overhead: As a management tool,
CloudInsight only has very light computation and commu-
nication overhead. In CloudInsight, each physical machine
runs only one monitoring agent ci agent at the hypervisor.
As data is only sent out for new events, its overhead mainly
comes from the polling of monitored attributes periodically.
As we can see in Figure 4(a), the CPU overhead is very low
even with 1sec of polling interval (τ) and it is nearly zero for
τ=10sec. The overhead increases with the number of VM
instances on the host machine due to the increase of querying
time to capture configuration data. However, the number of
VMs hosted by a single host machine is very limited by
its hardware resource so that the monitoring overhead of
CloudInsight remains very small.

Data is sent to the central CMDB manager only if
ci agent detects a new event. The XML message only
contains the configuration changes of that event along with
the identities of related PMs and VMs, which results in
very low communication overhead. We measure the average
number of bytes per message during our data collection
period. As monitoring agents poll at the interval of τ , the
number of events can vary during this interval. The average
communication overhead for different number of events is
shown in Figure 4(b). For a commercial cloud, this amount
of network traffic is fairly low. The overhead also increases
with the larger number of events enclosed in the message.
For 10, 000 physical machines, even with 6 events (i.e.
configuration changes) per machine during τ=10sec, the
total network traffic will be around 429KBps. Note that the
total traffic overhead of CloudInsight is simply linear with
the number of physical machines and the number of events
per machine per sampling time.

D. Problem coverage of CloudInsight

CloudInsight provides automated solutions for all prob-
lems that belong to our six problem classes. One question
is how many real user problems belong to these six classes
(hence the coverage of CloudInsight).

To address this, we collected and analyzed all online
message threads posted in the month of July 2010 from
Amazon EC2 support forum. 816 separate message threads
are collected and clustered into 32 categories. We use an
information retrieval tool called Carrot2 [7] with Lingo [8]
clustering algorithm to cluster the message threads. To
interpret these 32 clusters, we generate a summary of each
cluster, which consists of the top 20 words (in terms of
frequency counts) from each cluster. Using this summary,
we define five disjoint groups out of these 32 clusters.
All clusters with application related problems are grouped
into “Application” group, which is about 13% of total
problem reports. Similarly all clusters related to our six
problem classes are grouped into “CloudInsight” group. It is
nearly 66% of the total problem reports. About 2% online
messages posted questions or comments about the man-
agement software such as CloudWatch, which are grouped
into “Management” group. 33 messages are related to non-
technical questions including billing queries, future releases
and feature requests. We group them into “Question and
Help” category. CloudInsight still does not provide solu-
tions for network QoS, password or load balancing related
issues. About 120 problems were reported in this category
and they are grouped into “Net/ELB/Image/PW” group.
Our classification is shown in Figure 4(c). Note that only
“CloudInsight”, “Net/ELB/Image/PW”, and “Management”
groups are within the scope and responsibility of cloud
providers and CloudInsight can solve nearly 80% of these
problems automatically.

227

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1 2 3

C
P

U
 O

v
e

rh
e

a
d

 (
%

)

Number of VMs Running

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6

Tr
a

ff
ic

 O
v

e
rh

e
a

d
 (

b
y

te
s)

Number of Changes in VM instance

107

33

120

20
536

Application (107)

Question & Help (33)

Net/ELB/Image/PW (120)

Management (20)

CloudInsight (536)

Figure 4. (a) CPU overhead of CloudInsight, (b) Traffic overhead of CloudInsight, and (c) Problem coverage of CloudInsight.

VI. RELATED WORK

Much work has applied statistical learning methods to de-
tect and diagnose problems in large-scale computer systems.
Cohen et al. [9], [10] used a tree-augmented naive (TAN)
bayesian network to learn the probabilistic relationship be-
tween SLA violations and system resource usages. They
used this learned bayesian network to identify performance
bottlenecks. Bodik et al. [11] proposed a “Fingerprint”
approach, which identifies the problem with performance
fingerprinting. The authors proposed a method to correlate
key performance indicators (KPIs) with system SLA. Several
other works [12], [13] took similar statistical analysis ap-
proach to diagnose problems from system monitoring data.
Jiang et al. [14] developed an invariant-based approach
to profile large systems for management purpose. These
approaches seem to work well for performance related
problems in local data centers. However, such performance
problems only contribute to 11% of user reported problems
in Amazon EC2 [1]. Also due to the highly dynamic nature
of cloud environments, learning based methods are less
effective. Unlike others, CloudInsight monitors a set of
VM configuration attributes, and addresses a wider class of
problems realted to virtual instances such as virtual device
incompatibility, blocking ports or OS incompatibility etc..

There also exist some literature on configuration man-
agement. Whitaker et al. [15] developed a tool named
Chrouns to automatically search for a configuration state
change indicating a failure. It stores local system config-
urations at each checkpoint along time. When a problem
occurs, Chronus takes user-provided probes to identify the
working and non-working configuration state. This approach
is quite similar to our check and solve step. However,
CloudInsight works for troubleshooting VM instances in
cloud infrastructure while Choruns is only designed for trou-
bleshooting a single machine. Su et al. [5] also proposed an
approach called “autobash” for troubleshooting applications
on a single machine. Wang et al. [16] proposed a method
called “PeerPressure” to support automatic troubleshooting
of misconfiguration in Windows registry file. Their problem
domain is different from ours because they use healthy win-
dows registry files to determine the misconfiguration though
both of our approaches use Bayesian rules. CloudInsight
collects the attribute records from running VM instances and
cloud infrastructure, and the problem reasoning is based on
these event records.

VII. CONCLUSION

In this paper, we present CloudInsight, a novel solution for
automated problem troubleshooting in cloud environments.
CloudInsight monitors and tracks the configuration attributes
of VM instances and infrastructure, and uses the historical
event records to determine the root cause of problem-
atic VM instances, and further provides a check-and-solve
troubleshooting process to resolve user reported problems
automatically. In our future work, we plan to monitor more
configuration attributes from cloud infrastructure and design
new predicates and actions to cover more problem classes.

REFERENCES

[1] T. Benson, S. Sahu, A. Akella, and A. Shaikh, “A first look
at problems in the cloud,” in Proc. of HotCloud, 2010.

[2] Amazon EC2, “http://aws.amazon.com/ec2/.”
[3] Amazon EC2 Forum, “http://developer. amazonwebservices.

com/connect/forum.jspa?forumid=30.”
[4] A. Gelman, J. Carlin, H. Stern, and D. Rubin, “Bayesian data

analysis,” Chapman, 1995.
[5] Y. Su, M. Attariyan, and J. Flinn, “Autobash: Improving

configuration management with operating system causality
analysis,” in Proc. of SOSP, 2007.

[6] D. Mills, “Network time protocol (version 3) specification,
implementation,” in IETF Draft Standard RFC-1305, 1992.

[7] Carrot2, http://project.carrot2.org/.
[8] S. Osinski, J. Stefanowski, and D. Weiss, “Lingo: Search

results clustering algorithm based on singular value decom-
position,” in Proc. of IIPWM, 2004.

[9] I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons, “Corre-
lating instrumentation data to system states: A building block
for automated diagnosis and control,” in Proc. of OSDI, 2004.

[10] M. Goldszmidt, A. Fox, I. Cohen, J. Symons, S. Zhang,
and T. Kelly, “Capturing, indexing, clustering, and retrieving
system history,” in Proc. of SOSP’05, 2005.

[11] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen, “Fingerprinting the datacenter: automated clas-
sification of performance crises,” in Proc. of EuroSys, 2010.

[12] B. Cook, S. Babu, G. Candea, and D. Songyun, “Toward self-
healing multitier services,” in Proc. of ICDEW, 2007.

[13] S. Duan and S. Babu, “Guided problem diagnosis through
active learning,” in Proc. of ICAC, 2008.

[14] G. Jiang, H. Chen, K. Yoshihira, and A. Saxena, “Ranking
the importance of alerts for problem determination in large
computer systems,” in Proc. of ICAC, 2009.

[15] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration
debugging as search: Finding the needle in the haystack,” in
Proc. of OSDI, 2004.

[16] H. Wang, C. Platt, Y. Chen, R. Zhang, and Y. Wang, “Au-
tomatic misconfiguration troubleshooting with peerpressure,”
in Proc. of OSDI, 2004.

228

