
1Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation
 Execute instructions along predicted execution

paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

 Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

B
ranch P

rediction

2Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Reorder buffer – holds the result of instruction
between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number or memory address
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit (results are tagged with ROB entry #)

B
ranch P

rediction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit

B
ranch P

rediction

4

Reorder Buffer

 Issue
 If empty RS and ROB entry Issue; else stall

 Send operands to RS if available in registers or ROB

 The number of ROB entry allocated to instruction is
sent to RS to tag the results with

 If operands are not available yet, the ROB entry is
sent to the RS to wait for results on the CDB

Copyright © 2012, Elsevier Inc. All rights reserved.

5

Reorder Buffer

 Execute
 If one or more operands are not available, monitor the

CDB.

 When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

 When all operands are ready, start execution

 Write Result
 When execution is completed, broadcast the result on

the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS

Copyright © 2012, Elsevier Inc. All rights reserved.

6

Reorder buffer

 When an instruction reaches the head of the
ROB and the result is ready in the buffer, write it
to the register file and remove instruction from
ROB

 If the instruction is a store, write it to the memory
and remove the instruction from the ROB

 If the instruction is a branch, if prediction is
correct, remove it from the ROB. If misprediction
flush the ROB and start from the correct
successor.

Copyright © 2012, Elsevier Inc. All rights reserved.

7Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

8Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

9Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

10Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

11

VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

12

VLIW Example

 Assume that w can schedule 2 memory
operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

13Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

14Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Overview of Design

15Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. on FP, one integer, one load, one store

 Examine all the dependencies amoung the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

16Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

17Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (No Speculation)

18Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

19Copyright © 2012, Elsevier Inc. All rights reserved.

 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch-Target Buffer

20Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer
decoding time required by larger buffer

 “Branch folding”

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch Folding

21Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from
function returns

 The same procedure can be called from
multiple sites
 Causes the buffer to potentially forget about the

return address from previous calls

 Create return address buffer organized as a
stack

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

22Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:
 Branch prediction

 Instruction prefetch
 Fetch ahead

 Instruction memory access and buffering
 Deal with crossing cache lines

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Instruction Fetch Unit

23Copyright © 2012, Elsevier Inc. All rights reserved.

 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:
 Record that mapping between architectural register and physical register

is no longer speculative

 Free up physical register used to hold older value

 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
dv. Techniques for Instruction D

elivery and S
peculation

Register Renaming

24Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register
renaming:
 Issue logic pre-reserves enough physical registers

for the bundle (fixed number?)

 Issue logic finds dependencies within bundle, maps
registers as necessary

 Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers
as necessary

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Issue and Renaming

25Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate
 Mis-speculation degrades performance and power

relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher
costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery

 No processor can resolve multiple branches per
cycle

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?

26Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency
 Note: speculation is only energy efficient when it

significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors

 Similar idea--address aliasing prediction--is used on
some processors

A
dv. Techniques for Instruction D

elivery and S
peculation

Energy Efficiency

