
1Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation
 Execute instructions along predicted execution 

paths but only commit the results if prediction 
was correct

 Instruction commit:  allowing an instruction to 
update the register file when instruction is no 
longer speculative

 Need an additional piece of hardware to prevent 
any irrevocable action until an instruction 
commits

 Need to separate executing the instruction to 
pass data to other instructions from completing 
(performing operations that can not be undone)
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Reorder Buffer

 Reorder buffer – holds the result of instruction 
between completion and commit (and supply 
them to any instruction who needs them just like 
the RS in Tomasulo’s)

 Four fields:
 Instruction type:  branch/store/register
 Destination field:  register number or memory address
 Value field:  output value
 Ready field:  completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of 

functional unit (results are tagged with ROB entry #)
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Reorder Buffer

 Register values and memory values are not 
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit
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Reorder Buffer

 Issue
 If empty RS and ROB entry  Issue; else stall

 Send operands to RS if available in registers or ROB

 The number of ROB entry allocated to instruction is 
sent to RS to tag the results with

 If operands are not available yet, the ROB entry is 
sent to the RS to wait for results on the CDB
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Reorder Buffer

 Execute
 If one or more operands are not available, monitor the 

CDB.

 When the result is broadcast on the CDB (we know 
that from the ROB entry tag) copy it

 When all operands are ready, start execution

 Write Result
 When execution is completed, broadcast the result on 

the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS
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Reorder buffer

 When an instruction reaches the head of the 
ROB and the result is ready in the buffer, write it 
to the register file and remove instruction from 
ROB

 If the instruction is a store, write it to the memory 
and remove the instruction from the ROB

 If the instruction is a branch, if prediction is 
correct, remove it from the ROB. If misprediction
flush the ROB and start from the correct 
successor.
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Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple 
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors
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Multiple Issue
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VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the 
available slots
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VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility
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VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0
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For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2 
S.D 0(R1),F4 
DADDUI R1,R1,#-8 
BNE R 1,R2,Loop

12

VLIW Example

 Assume that w can schedule 2 memory 
operations, 2 FP operations, and one integer or 
branch
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Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9
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Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline 

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies 
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck
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 Limit the number of instructions of a given class 
that can be issued in a “bundle”
 I.e. on FP, one integer, one load, one store

 Examine all the dependencies amoung the 
instructions in the bundle

 If dependencies exist in bundle, encode them in 
reservation stations

 Also need multiple completion/commit
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Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element
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 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC
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 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer 
decoding time required by larger buffer

 “Branch folding”
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 Most unconditional branches come from 
function returns

 The same procedure can be called from 
multiple sites
 Causes the buffer to potentially forget about the 

return address from previous calls

 Create return address buffer organized as a 
stack
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 Design monolithic unit that performs:
 Branch prediction

 Instruction prefetch
 Fetch ahead

 Instruction memory access and buffering
 Deal with crossing cache lines
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 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and 

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:
 Record that mapping between architectural register and physical register 

is no longer speculative

 Free up physical register used to hold older value

 In other words:  SWAP physical registers on commit

 Physical register de-allocation is more difficult
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 Combining instruction issue with register 
renaming:
 Issue logic pre-reserves enough physical registers 

for the bundle (fixed number?)

 Issue logic finds dependencies within bundle, maps 
registers as necessary

 Issue logic finds dependencies between current 
bundle and already in-flight bundles, maps registers 
as necessary
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 How much to speculate
 Mis-speculation degrades performance and power 

relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher 
costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery

 No processor can resolve multiple branches per 
cycle
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 Speculation and energy efficiency
 Note:  speculation is only energy efficient when it 

significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors

 Similar idea--address aliasing prediction--is used on 
some processors
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