Hardware-Based Speculation

= EXxecute instructions along predicted execution
paths but only commit the results if prediction
was correct

= Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

= Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

uonalpald youelig

= Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

Reorder Buffer

= Reorder buffer — holds the result of instruction
between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

n Four fields:
= Instruction type: branch/store/register
= Destination field: register number or memory address
= Value field: output value
= Ready field: completed execution?
= Modify reservation stations:

= Operand source is now reorder buffer instead of
functional unit (results are tagged with ROB entry #)

uonalpald youeig

Reorder Buffer

= Register values and memory values are not
written until an instruction commits

= On misprediction:
= Speculated entries in ROB are cleared

uonalpald youelig

» Exceptions:

= Not recognized until it is ready to commit
= 4 stages

= ISSUE

= Execute

= Write Result

= Commit

Reorder Buffer

= [SsSue

= If empty RS and ROB entry - Issue; else stall
= Send operands to RS if available in registers or ROB

= The number of ROB entry allocated to instruction is
sent to RS to tag the results with

= If operands are not available yet, the ROB entry is
sent to the RS to wait for results on the CDB

Reorder Buffer

s EXxecute

= If one or more operands are not available, monitor the
CDB.

= When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

= When all operands are ready, start execution
= Write Result

= When execution is completed, broadcast the result on
the CDB tagged with ROB entry #

= Results are copied to ROB entry and all waiting RS

Reorder buffer

= When an instruction reaches the head of the
ROB and the result is ready in the buffer, write it
to the register file and remove instruction from
ROB

» If the instruction is a store, write it to the memory
and remove the instruction from the ROB

» If the instruction is a branch, if prediction is
correct, remove it from the ROB. If misprediction
flush the ROB and start from the correct

SuUccessor.

= Solutions:
» Statically scheduled superscalar processors
= VLIW (very long instruction word) processors
= dynamically scheduled superscalar processors

Multiple Issue and Static Scheduling

= To achieve CPI < 1, need to complete multiple
instructions per clock

Buinpayds aneis pue anss| ajdniniA

Multiple Issue

by the compiler

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM,
including the ARM
Coretex A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with ~ Out-of-order execution Intel Core i3, 15, i7;
(speculative) speculation with speculation AMD Phenom: IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler signal processing.
(often implicitly) such as the TI C6x
EPIC Primarilystatic Primarily Mostly static All hazards determined Ttanium
software and indicated explicitly

Buinpayos aness pue anss| ajdnni

VLIW Processors

» Package multiple operations into one instruction

s Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

Buinpayds aneis pue anss| ajdniniA

= Must be enough parallelism in the code to fill the
available slots

VLIW Processors

» Disadvantages:
» Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility

Buinpayos aness pue anss| ajdnni

VLIW Example

= Source instruction Instruction using result

= FP ALU OP FP ALU OP
= FP ALU OP Store double
= Load double FP ALU OP
= Load Double Store double
Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

3

2
1
0

For (1=1000;1>0;1++)

X[]=x[I]+s;

Latency

VLIW Example

= Assume that w can schedule 2 memory

operations, 2 FP operations, and one integer or

branch

Memory Memory FP
reference 1 reference 2 operation 1

LD FQ.0(R1) LD F6,-8(R1)
LD F10,-16(R1) . L
LD F18,-32(R1) LD F22,-40(R1) . ADDD P4,FO,F2

LD F26,-48(R1) ADDD F12,F10,F2
ADDD F20,F18,F2
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2

SD -16(R1),F12 SD -24(R1),F16
SD 24(R1),F20 SD 16(R1),F24
SD 8(R1),F28

FP Int. op/ Clock

op. 2 branch

ADDD F8,F6,F2
ADDD F16,F14,F2
ADDD F24,F22,F2

DADD R1,R1,#-56

BNEZ R1,LOOP

Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock
= Design logic to handle any possible dependencies
between the instructions

= Hybrid approaches

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

= Issue logic can become bottleneck

Overview of Design

Reorder butfer

From instruction unit

Integer and FP registers

Load/store

operations
Operand
Address unit Floating-point buses
operations

1 Load buffers

E Operation bus
Store LI T

3
H I L2

by
address F{eservat\on‘ f 1
Store 1 stations
data Address
Memory unit FP adders. FP multipliers
Load
data Common data bus (CDB)

. Reg # Data
Instruction
queus I
|

uoire|noads pue ‘enss| ajdnny ‘Bulinpayas olwreuiq

Multiple Issue

Limit the number of instructions of a given class
that can be issued in a “bundle”
= |l.e. on FP, one integer, one load, one store

Examine all the dependencies amoung the
instructions in the bundle

If dependencies exist in bundle, encode them in
reservation stations

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

Also need multiple completion/commit

Example

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP :branch if not last element

uoire|noads pue ‘enss| ajdnny ‘Bulinpayas olwreuiq

W)

- <

=)

Example (No Speculation) 5

3

o

Memory g)

Issuesat Executesat accessat Write CDB at g

Iteration clock cycle clockcycle clock cycle clock cycle o

number Instructions number number number number Comment c

1 LD RZ,0(R1) 1 2 3 4 First issue 8

1 DADDIU R2,R2,#1 1 5 6 Wait for LW =

1 sD R2,0(R1) 2 3 7 Wait for DADDIU %

1 DADDIU R1,R1,#8 2 3 4 Execute directly i

1 BNE RZ,R3,LO0P 3 7 Wait for DADDIU 2

2 LD R2,0(R1) 4 8 9 10 Wait for BNE %

2 DADDIU RZ,R2,#1 4 11 12 Wait for LW _{%

2 SD R2,0(R1) 5 9 13 Wait for DADDIU %

2 DADDIU R1,R1,#8 5 8 9 Wait for BNE o

2 BNE R2,R3,L00P 6 13 Wait for DADDIU %

3 LD R2,0(R1) 7 14 15 16 Wait for BNE g

3 DADDIU RZ,R2Z,#1 7 17 18 Wait for LW E_)

3 sD RZ,0(R1) 8 15 19 Wait for DADDIU g

3 DADDIU R1,R1,#8 8 14 15 Wait for BNE S
3 BNE R2,R3,L00P 9 19 Wait for DADDIU

O

<

=)

Example 5

3

(9]

Write ((/3.)

Issues Executes Readaccess CDBat Commits g

Iteration atclock atclock at clock clock at clock o

number Instructions number number number number number Comment c

1 LD R2,0(R1) 1 2 3 4 5 First issue 8

1 DADDIVU R2,R2,#1 1 5 6 7 Wait for LW =

1 SD R2,0(R1) 2 3 7 Wait for DADDIU %

1 DADDIU R1,R1,#8 2 3 4 8 Commit in order 'C__S

1 BNE R2,R3,L0O0OP 3 7 8 Wait for DADDIU 2

2 LD R2,0(R1) 4 5 6 7 9 No execute delay %

=

2 DADDIU Rz,R2,#1 4 8 9 10 Wait for LW [

2 SD R2,0(R1) 5 6 10 Wait for DADDIU %

2 DADDIU R1,R1,#8 5 6 7 11 Commit in order o

2 BNE R2,R3,L00P 6 10 11 Wait for DADDIU _g)

3 LD R2,0(R1) 7 8 9 10 12 Earliest possible g

3 DADDIU Rz,R2,#1 7 11 12 13 Wait for LW E_,

3 SD R2,0(R1) 8 9 3 Wait for DADDIU g

3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier =)
3 BNE R2,R3,L00P 9 13 14 Wait for DADDIU

Branch-Target Buffer

= Need high instruction bandwidth!

= Branch-Target buffers
= Next PC prediction buffer, indexed by current PC

Mumbsrol |
ontfes
inbranch- |

buffar

No: instruction is
- tobe Brarch
beanch: procesd normaly preclicted
takan or
n

Yas: then istruction s beanch and predkcled
PC shoud ba used a5 the next PC

uonenoads pue A1aAlleg uononisuj 1oy sanbiuydal ApY

Branch Folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

= “Branch folding”

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Return Address Predictor

= Most unconditional branches come from
function returns

= The same procedure can be called from
multiple sites

= Causes the buffer to potentially forget about the
return address from previous calls

» Create return address buffer organized as a
stack

uonenoads pue A1aAlleg uononisuj 1oy sanbiuydal ApY

Integrated Instruction Fetch Unit

= Design monolithic unit that performs:
= Branch prediction

= Instruction prefetch
= Fetch ahead

= Instruction memory access and buffering
= Deal with crossing cache lines

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Register Renaming

= Register renaming vs. reorder buffers
= Instead of virtual registers from reservation stations and
reorder buffer, create a single register pool
= Contains visible registers and virtual registers
= Use hardware-based map to rename registers during issue
= WAW and WAR hazards are avoided
= Speculation recovery occurs by copying during commit
= Still need a ROB-like queue to update table in order

= Simplifies commit:
= Record that mapping between architectural register and physical register
is no longer speculative
= Free up physical register used to hold older value
= In other words: SWAP physical registers on commit

= Physical register de-allocation is more difficult

uonenoads pue A1aAllag uononasu| 1oy sanbiuydal “ApY

Integrated Issue and Renaming

= Combining instruction issue with register

renaming:

= Issue logic pre-reserves enough physical registers
for the bundle (fixed number?)

= Issue logic finds dependencies within bundle, maps
registers as necessary

= Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers

as necessary

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

How Much?

= How much to speculate
= Mis-speculation degrades performance and power
relative to no speculation
= May cause additional misses (cache, TLB)
= Prevent speculative code from causing higher
costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= NoO processor can resolve multiple branches per
cycle

uonenoads pue A1aAllag uononasu| 1oy sanbiuydal “ApY

Energy Efficiency

= Speculation and energy efficiency

= Note: speculation is only energy efficient when it
significantly improves performance

= Value prediction

= Uses:
= Loads that load from a constant pool
= Instruction that produces a value from a small set of values
= Not been incorporated into modern processors
= Similar idea--address aliasing prediction--is used on
some processors

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

