
1

Fall 09 CSE4201

CSE 4201
Computer Architecture

Prof. Mokhtar Aboelaze
Parts of these slides are taken from
Notes by Prof. David Patterson at UCB

Fall 09 CSE4201

Outline

• MIPS and instruction set

• Simple pipeline in MIPS

• Structural and data hazards

• Forwarding

• Branching

• Exception and interrupts

• Multicycle operations

2

Fall 09 CSE4201

MIPS Instruction set

• 32-bit fixed format instruction (3 formats)

• 32 32-bit GPR (R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction

• Single address mode for load/store:
base + displacement
– no indirection

• Simple branch conditions

• Delayed branch

Fall 09 CSE4201

Instruction Set
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported data
types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by RTL on architected
registers and memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MDR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition diagram

(STD)
• Lower symbolic STD to control points
• Implement controller

3

Fall 09 CSE4201

MIPS Instruction Set

Fall 09 CSE4201

MIPS Instruction Set

Op
31 26 01516202125

Rs1 Rs2 Rd Opx

Register-Register
561011

Op
31 26 01516202125

Rs1 Rd immediate

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Op
31 26 025

target

Jump / Call

4

Fall 09 CSE4201

MIPS 5-Stage Pipeline
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

Fall 09 CSE4201

5-stage Pipeline
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

5

Fall 09 CSE4201

MIPS 5-Stage Pipeline
IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR

JR

Fall 09 CSE4201

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

6

Fall 09 CSE4201

Visualizing Pipelining
Figure A.2, Page A-8

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Fall 09 CSE4201

Pipelining is not quite that
easy!

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
– Structural hazards: HW cannot support this

combination of instructions

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the
fetching of instructions and decisions about changes in
control flow (branches and jumps).

7

Fall 09 CSE4201

One Memory Port/Structural
Hazards

Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Fall 09 CSE4201

One Memory Port/Structural
Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

8

Fall 09 CSE4201

Speed Up Equation for
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup

Instper cycles Stall Average CPI Ideal CPIpipelined

For simple RISC pipeline, CPI = 1:

Fall 09 CSE4201

Example: Dual-port vs.
Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)

• Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x 1.05

= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

9

Fall 09 CSE4201

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

Fall 09 CSE4201

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data
Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

10

Fall 09 CSE4201

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data
Hazards

Fall 09 CSE4201

Three Generic Data
Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Writes are always in stage 5
• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

11

Fall 09 CSE4201

Time (clock cycles)

Forwarding to Avoid Data
Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Fall 09 CSE4201

HW Change for
Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?

12

Fall 09 CSE4201

Time (clock cycles)

Forwarding to Avoid LW-SW
Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

?

?

Fall 09 CSE4201

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with
Forwarding

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

?

?

?

13

Fall 09 CSE4201

Data Hazard Even with
Forwarding

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

How is this detected?

Fall 09 CSE4201

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

14

Fall 09 CSE4201

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?

Fall 09 CSE4201

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or 0

• MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

15

Fall 09 CSE4201
A
dder

IF/ID

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

• Interplay of instruction set design and cycle time.

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

ID
/EX

Fall 09 CSE4201

Four Branch Hazard
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS
• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

16

Fall 09 CSE4201

Four Branch Hazard
Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address
in 5 stage pipeline

– MIPS uses this

Branch delay of length n

Fall 09 CSE4201

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot
• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

17

Fall 09 CSE4201

Delayed Branch
• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots
useful in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows
and need more than one delay slot
– Delayed branching has lost popularity compared to more

expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper

Fall 09 CSE4201

Evaluating Branch
Alternatives

Assume 4% unconditional branch, 6%
conditional branch- untaken, 10% conditional
branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency Branch penalty

18

Fall 09 CSE4201

Problems with Pipelining

• Exception: An unusual event happens to an instruction
during its execution
– Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a
new instruction stream
– Example: a sound card interrupts when it needs more audio

output samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt
must appear between 2 instructions (Ii and Ii+1)
– The effect of all instructions up to and including Ii is totally

complete
– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program
or restarts at instruction Ii+1

Fall 09 CSE4201

And In Conclusion: Control
and Pipelining

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

• F&P: Benchmarks age, disks fail,1 point fail danger
• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup

19

Fall 09 CSE4201

Multicycle operations
More than one function
unit, each require a
variable number of
cycles.

IF ID MEM WB

EX

INT

EX

FP/*

EX

FP+

EX

FP/ /

Fall 09 CSE4201

Multi cycles operations

• Assuming the following
Function Unit latency initiation period

Integer ALU 0 1

Data Memory 1 1

FP add 3 1

FP Multiply 6 1

FP Divide 24 24

Notice that FP add and multiply are pipelined (4 and 7
stages pipeline respectively).

Latency is the number of cycles between an instruction
that produces a result and another one that uses the
result.

20

Fall 09 CSE4201

Fall 09 CSE4201

Multicycle operations

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB

Stages in red indicates when data are needed, in
blue indicates when data are produced

Need to introduce more pipeline registers A1/A2, ..

21

Fall 09 CSE4201

Hazards and Forwarding

• Because the divide unit is not pipelined,
structural hazards may arise

• Because of different running times. We
may need to do more than one register
write in a single cycle

• WAW hazard is now possible, WAR is not
since they all read in one stage

• Instructions can complete in different order,
more complicated exception handling

• Because of the longer latency, more RAW
hazard

Fall 09 CSE4201

Hazards and Forwarding

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LD F4,0(R2) IF ID EX MEM WB

MUL F0,F4,F6 IF ID S M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2,F0,F8 IF ID S S S S S S S A1 A2 A3 A4

SD F2,0(R2) IF ID S S S S S S S S S S MEM

Substantially longer stall and forwarding

22

Fall 09 CSE4201

Hazard and Forwarding
Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

….

….

ADDD F2,F4,F6 IF ID A1 A2 A3 A4 MEM WB

…

…

LD F8,0(R2) IF ID EX MEM WB

Three different instruction writing in the same cycle, IF LD is issued
one cycle earlier, with destination of F2, that will lead to WAW hazard

Fall 09 CSE4201

Hazards and Forwarding

• One way to deal with multiple writes is to
have multiple write ports, but it may be
rarely used.

• Another way is to detect the structural
hazard by using an interlock

1. We can track the use of the write port before it is
issued (ID stage) and stall

2. Or, we can detect this hazard at entering the
MEM stage, it is easier to detect, and we can
choose which instruction to proceed (the one
with the longest latency?)

23

Fall 09 CSE4201

Maintaining Precise Exception

DIVF F0,F2,F4

ADDF F10,F10,F8

SUBF F12,F12,F14

• This is known as out of order completion

• What if DIVF causes an Exception after ADDF
is completed but before DIVF is, or if DIVF
caused an exception after both ADDF and
SUBF completed, there is no way to maintain
a precise exception since ADDF destroys one
of its operands

Fall 09 CSE4201

Maintaining Precise Exception
(sol 1)

• Early solution is to ignore the problem

• More recent ones, are to introduce two
modes of operations, fast but with
imprecise exception, and slow with
precise exception.

• DEC Alpha 2104, Power1 and Power-2,
MIPS R8000

24

Fall 09 CSE4201

Maintaining Precise Exception
(sol 2)

• Buffer the results of an operation until all
the operations before it are completed.

• Costly, especially with long pipes.

• One variation is called history file, old
values are stored in the history file and
can be restored in case of exception

• Or, we an use future file, where new
values are stored until all proceeding
instructions are completed.

Fall 09 CSE4201

Maintaining Precise Exception
(sol 3)

• Allow the exception to become
imprecise, but we have to keep enough
information so that the exception
handling routine can recover.

• These information are usually the PC
addresses of the instructions that were
in the pipe during the exception, who
finished, and who didn’t.

25

Fall 09 CSE4201

Maintaining Precise Exception
(sol 4)

• A hybrid technique, Allow the
instructions to be issued only if we are
certain that all the instructions before the
issuing instruction will complete without
causing an exception

• That guarantees that no instruction after
the interrupting one will be completed,
and all instructions before it will
complete.

• Must check for exception early in the EX
stage.

Fall 09 CSE4201

MIPS4000
• 8 Stage Pipeline:

– IF–first half of fetching of instruction; PC selection happens here as
well as initiation of instruction cache access.

– IS–second half of access to instruction cache.

– RF–instruction decode and register fetch, hazard checking and also
instruction cache hit detection.

– EX–execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.

– DF–data fetch, first half of access to data cache.

– DS–second half of access to data cache.

– TC–tag check, determine whether the data cache access hit.

– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch delay? Why?

26

Fall 09 CSE4201

MIPS4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

3 cycles branch delay,
MIPS4000 has a singly
cycle branch delay
scheduling with a predict
taken for the remaining 2

2 cycle load delay
(data is ready after DS)

Fall 09 CSE4201

MIPS4000 FP Pipeline

• FP Adder, FP Multiplier, FP Divider

• Last step of FP Multiplier/Divider uses FP Adder HW

• 8 kinds of stages in FP units:
Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

27

Fall 09 CSE4201

MIPS4000 F P Pipeline
FP Instr Pipeline stages

Add, Subtract U,S+A,A+R,R+S

Multiply U,E+M,M,M,M,N,N+A,R

Divide U,A,R,D28,D+A,D+R, D+R, D+A, D+R, A, R

Square root U,E,(A+R)108,A,R

Negate U,S

Absolute value U,S

FP compare U,A,R

OP Latency Initiation interval

ADD,SUB 4 3

MUL 8 4

DIV 36 35

SQRT 112 111

NEG,ABS 2 1

COMP 3 2

Fall 09 CSE4201

EXAMPLE
• MUL ISSUE 0 1 2 3 4 5 6 7 8 9 10

• MUL Issue U M M M M N N,A R

• ADD Issue U S,A A,R R,S

• ADD Issue U S,A A,R R,S

• ADD Stall U S,A A,R R,S

• ADD Stall U S,A A,R R,S

• ADD Issue U S,A A,R R,S

• ADD Issue U S,A A,R R,S

• ADD Issue U S,A A,R R,S

The interaction between a multiply issued at time 0, and add issued
between 1 and 7, in all except 2 we can proceed without stalls, in these
two we have to stall

