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Outline

• MIPS and instruction set

• Simple pipeline in MIPS

• Structural and data hazards

• Forwarding

• Branching

• Exception and interrupts

• Multicycle operations
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MIPS Instruction set

• 32-bit fixed format instruction (3 formats)

• 32 32-bit GPR (R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction

• Single address mode for load/store: 
base + displacement
– no indirection

• Simple branch conditions

• Delayed branch
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Instruction Set
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported data 
types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by RTL on architected 
registers and memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MDR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition diagram 

(STD)
• Lower symbolic STD to control points
• Implement controller
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MIPS Instruction Set
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MIPS Instruction Set

Op
31 26 01516202125

Rs1 Rs2 Rd Opx

Register-Register
561011

Op
31 26 01516202125

Rs1 Rd immediate

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Op
31 26 025

target

Jump / Call
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MIPS 5-Stage Pipeline
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IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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MIPS 5-Stage Pipeline
IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR

JR
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.2, Page A-8
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Pipelining is not quite that 
easy!

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle
– Structural hazards: HW cannot support this 

combination of instructions

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the 
fetching of instructions and decisions about changes in 
control flow (branches and jumps).
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One Memory Port/Structural 
Hazards

Figure A.4, Page A-14
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One Memory Port/Structural 
Hazards
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Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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Speed Up Equation for 
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup 





pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup 




Instper  cycles Stall Average  CPI Ideal  CPIpipelined 

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. 
Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)

• Machine B: Single ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x  1.05

= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data 
Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and 

– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data 
Hazards
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Three Generic Data 
Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 

– All instructions take 5 stages, and 

– Writes are always in stage 5
• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)
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HW Change for 
Forwarding
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What circuit detects and resolves this hazard?



12

Fall 09 CSE4201

Time (clock cycles)
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Time (clock cycles)
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Data Hazard Even with 
Forwarding

Time (clock cycles)

or   r8,r1,r9
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sub r4,r1,r6
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How is this detected?
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Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or  0

• MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3
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Four Branch Hazard 
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS
• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome
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Four Branch Hazard 
Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address 
in 5 stage pipeline

– MIPS uses this

Branch delay of length n
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Scheduling Branch Delay Slots

• A is the best choice, fills delay slot 
• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3
if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Delayed Branch
• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots 
useful in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to deeper 
pipelines and multiple issue, the branch delay grows 
and need more than one delay slot
– Delayed branching has lost popularity compared to more 

expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches 
relatively cheaper
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Evaluating Branch 
Alternatives

Assume 4% unconditional branch, 6% 
conditional branch- untaken, 10% conditional 
branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency Branch penalty
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Problems with Pipelining

• Exception:  An unusual event happens to an instruction 
during its execution  
– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the processor to a 
new instruction stream  
– Example: a sound card interrupts when it needs more audio 

output samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt 
must appear between 2 instructions (Ii and Ii+1)
– The effect of all instructions up to and including Ii is totally 

complete
– No effect of any instruction after Ii can take place 

• The interrupt (exception) handler either aborts program 
or restarts at instruction Ii+1
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And In Conclusion:  Control 
and Pipelining

• Quantify and summarize performance
– Ratios, Geometric Mean, Multiplicative Standard Deviation

• F&P: Benchmarks age, disks fail,1 point fail danger
• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up  Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup 
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Multicycle operations
More than one function 
unit, each require a 
variable number of 
cycles.

IF ID MEM WB

EX

INT

EX

FP/*

EX

FP+

EX

FP/ /
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Multi cycles operations

• Assuming the following
Function             Unit latency initiation period

Integer ALU 0 1

Data Memory 1 1

FP add 3 1

FP Multiply 6 1

FP Divide 24 24

Notice that FP add and multiply are pipelined (4 and 7 
stages pipeline respectively).

Latency is the number of cycles between an instruction 
that produces a result and another one that uses the 
result.
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Multicycle operations

MULTD IF    ID    M1 M2    M3    M4    M5    M6    M7 MEM   WB

ADDD IF    ID    A1 A2    A3    A4 MEM   WB

LD IF    ID    EX MEM WB

SD IF    ID    EX    MEM WB

Stages in red indicates when data are needed, in 
blue indicates when data are produced

Need to introduce more pipeline registers A1/A2, ..
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Hazards and Forwarding

• Because the divide unit is not pipelined, 
structural hazards may arise

• Because of different running times. We 
may need to do more than one register 
write in a single cycle

• WAW hazard is now possible, WAR is not 
since they all read in one stage

• Instructions can complete in different order, 
more complicated exception handling

• Because of the longer latency, more RAW 
hazard
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Hazards and Forwarding

Instruction 1    2    3    4    5    6    7    8    9    10   11   12   13   14   15

LD F4,0(R2) IF   ID   EX   MEM  WB

MUL F0,F4,F6 IF   ID   S M1   M2   M3   M4   M5   M6   M7   MEM  WB

ADDD F2,F0,F8 IF   ID   S    S    S    S    S    S    S A1    A2  A3   A4

SD F2,0(R2) IF   ID   S    S    S     S    S    S   S     S    S   S MEM

Substantially longer stall and forwarding
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Hazard and Forwarding
Instruction 1    2    3    4    5    6    7    8    9    10    11

MULTD F0,F4,F6 IF   ID   M1   M2   M3   M4   M5   M6   M7   MEM   WB

….

….

ADDD F2,F4,F6 IF   ID   A1   A2   A3   A4   MEM   WB

…

…

LD F8,0(R2) IF   ID   EX   MEM   WB

Three different instruction writing in the same cycle, IF LD is issued 
one cycle earlier, with destination of F2, that will lead to WAW hazard
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Hazards and Forwarding

• One way to deal with multiple writes is to 
have multiple write ports, but it may be 
rarely used.

• Another way is to detect the structural 
hazard by using an interlock

1. We can track the use of the write port before it is 
issued (ID stage) and stall

2. Or, we can detect this hazard at entering the 
MEM stage, it is easier to detect, and we can 
choose which instruction to proceed (the one 
with the longest latency?)



23

Fall 09 CSE4201

Maintaining Precise Exception

DIVF F0,F2,F4

ADDF F10,F10,F8

SUBF F12,F12,F14

• This is known as out of order completion

• What if DIVF causes an Exception after ADDF 
is completed but before DIVF is, or if DIVF 
caused an exception after both ADDF and 
SUBF completed, there is no way to maintain 
a precise exception since ADDF destroys one 
of its operands
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Maintaining Precise Exception 
(sol 1)

• Early solution is to ignore the problem

• More recent ones, are to introduce two 
modes of operations, fast but with 
imprecise exception, and slow with 
precise exception.

• DEC Alpha 2104, Power1 and Power-2, 
MIPS R8000
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Maintaining Precise Exception 
(sol 2)

• Buffer the results of an operation until all 
the operations before it are completed.

• Costly, especially with long pipes.

• One variation is called history file, old 
values are stored in the history file and 
can be restored in case of exception

• Or, we an use future file, where new 
values are stored until all proceeding 
instructions are completed.
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Maintaining Precise Exception 
(sol 3)

• Allow the exception to become 
imprecise, but we have to keep enough 
information so that the exception 
handling routine can recover.

• These information are usually the PC 
addresses of the instructions that were 
in the pipe during the exception, who 
finished, and who didn’t.
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Maintaining Precise Exception 
(sol 4)

• A hybrid technique, Allow the 
instructions to be issued only if we are 
certain that all the instructions before the 
issuing instruction will complete without 
causing an exception

• That guarantees that no instruction after 
the interrupting one will be completed, 
and all instructions before it will 
complete.

• Must check for exception early in the EX 
stage.
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MIPS4000
• 8 Stage Pipeline:

– IF–first half of fetching of instruction; PC selection happens here as 
well as initiation of instruction cache access.

– IS–second half of access to instruction cache.

– RF–instruction decode and register fetch, hazard checking and also 
instruction cache hit detection.

– EX–execution, which includes effective address calculation, ALU 
operation, and branch target computation and condition evaluation.

– DF–data fetch, first half of access to data cache.

– DS–second half of access to data cache.

– TC–tag check, determine whether the data cache access hit.

– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch delay? Why?
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MIPS4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

3 cycles branch delay, 
MIPS4000 has a singly 
cycle branch delay 
scheduling with a predict 
taken for the remaining 2

2 cycle load delay 
(data is ready after DS)
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MIPS4000 FP Pipeline

• FP Adder, FP Multiplier, FP Divider

• Last step of FP Multiplier/Divider uses FP Adder HW

• 8 kinds of stages in FP units:
Stage Functional unit Description

A FP adder Mantissa ADD stage 

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers
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MIPS4000 F P Pipeline
FP Instr Pipeline stages

Add, Subtract U,S+A,A+R,R+S

Multiply U,E+M,M,M,M,N,N+A,R

Divide U,A,R,D28,D+A,D+R, D+R, D+A, D+R, A, R

Square root U,E,(A+R)108,A,R

Negate U,S

Absolute value U,S

FP compare U,A,R

OP Latency Initiation interval

ADD,SUB 4 3

MUL 8 4

DIV 36 35

SQRT 112 111

NEG,ABS 2 1

COMP 3 2
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EXAMPLE
• MUL ISSUE   0 1   2   3    4    5    6     7    8    9  10

• MUL Issue U  M   M   M    M    N    N,A R

• ADD Issue     U   S,A  A,R  R,S

• ADD Issue          U   S,A  A,R  R,S 

• ADD Stall              U    S,A  A,R  R,S

• ADD Stall                   U    S,A  A,R R,S

• ADD Issue                        U    S,A A,R R,S

• ADD Issue                             U    S,A A,R   R,S

• ADD Issue                                  U   S,A   A,R R,S

The interaction between a multiply issued at time 0, and add issued 
between 1 and 7, in all except 2 we can proceed without stalls, in these 
two we have to stall


