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| Chapter 4

| Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

Introduction
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= SIMD architectures can exploit significant data-
level parallelism for:
= Mmatrix-oriented scientific computing
= media-oriented image and sound processors

= SIMD is more energy efficient than MIMD
= Only needs to fetch one instruction per data operation
= Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think
sequentially




SIMD Parallelism

s Vector architectures
s SIMD extensions
Graphics Processor Units (GPUS)

s For x86 processors:
= Expect two additional cores per chip per year
= SIMD width to double every four years

= Potential speedup from SIMD to be twice that from
MIMD!
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Vector Architectures

» Basic idea:
= Read sets of data elements into “vector registers”
= Operate on those registers
= Disperse the results back into memory

» Registers are controlled by compiler
= Used to hide memory latency
= Leverage memory bandwidth
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VMIPS

» Example architecture: VMIPS
= Loosely based on Cray-1

= Vector registers
= Each register holds a 64-element, 64 bits/element vector
= Register file has 16 read ports and 8 write ports
= Vector functional units
« Fully pipelined
« Data and control hazards are detected
= Vector load-store unit
« Fully pipelined
=« One word per clock cycle after initial latency
= Scalar registers
= 32 general-purpose registers
« 32 floating-point registers
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VMIPS Instructions

=| ADDVV.D V1,v2,v3 add two vectors

=, ADDVS.D V1,V2,FO add vector to a scalar

s LV V1,R1 vector load from address

= SV R1,V1 Vector store at R1

= MULVV.D V1,V2,V3  vector multiply

= DIVVVW.D V1,v2V3  Vector div (element by element)
»n LVWS V1,(R1,R2) Load vector from R1, stride=R2
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s LVI V1,(R1+V2) Load V1 with elements at R1+V2(i)

s CVI V1,R1 load in V1 0,R1,2R1,3R1,...(index
vector)

= SEQVV.D V1,v2 Compare elements V1,V2 0 or 1in VM

= MVTM VM,FO Move contents of FO to vec. mask reg.

= MTCI VLR,R1 Move rl to vector length register

VMIPS Instructions

Example: DAXPY

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X
MULVS.D V2,V1,FO ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4 Vv2V3 ;add

SV Ry,Vv4 ; store the result

= Requires 6 instructions vs. almost 600 for MIPS
(instruction bandwidth).

= Also, in MIPS must wait after LD and MUL (unless we do
loop unrolling to avoid stalls).

= In vector architecture, we use chaining (what is the
difference between chaining and forwarding?)




Vector Execution Time

= Execution time depends on three factors:
= Length of operand vectors
» Structural hazards
» Data dependencies
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s VMIPS functional units consume one element
per clock cycle
= Execution time is approximately the vector length

= Convey

= Set of vector instructions that could potentially
execute together (could be more than one instruction)

Chimes

= Sequences with read-after-write dependency
hazards can be in the same convey via chaining
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= Chaining

= Allows a vector operation to start as soon as the
individual elements of its vector source operand
become available

= Chime
= Unit of time to execute one convey
= M conveys executes in m chimes
= For vector length of n, requires m x n clock cycles
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Example

LV
MULVS.D
LV
ADDVV.D
SV
Convoys:

1 LV
2 LV
3 SV

V1,Rx
V2,V1,FO
V3,Ry
V4,V2,V3
Ry,V4

MULVS.D
ADDVV.D

;load vector X
;vector-scalar multiply
;load vector Y

;add two vectors
;store the sum

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles
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Challenges

= Start up time
= Latency of vector functional unit

= Assume the same as Cray-1
« Floating-point add => 6 clock cycles
» Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
» Vector load => 12 clock cycles

= Improvements:

= > 1 element per clock cycle

= Non-64 wide vectors

= |F statements in vector code

= Memory system optimizations to support vector processors

= Multiple dimensional matrices

= Sparse matrices

= Programming a vector computer
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Multiple Lanes 2

>

= Element n of vector register A is “hardwired” to element '3

n of vector register B %

= Allows for multiple hardware lanes @
— Lane 0 Lane 1 Lane 2 Lane 3
E E FP add FP add FP add FP add
E ﬂ pipe 0 pipe 1 pipe 2 pipe 3
mym [Tl |1l |1l |1t

YRS I ETE mie)| [Brel| [ars) M l l l l i l l l
EYRS] IR ETES] mia)| |Bra) m H nie]| |ar7) ﬂ EP mul FP mul. £P mul FP mul.
pipe 0 pipe 1 pipe 2 pipe 3

o

_______________________ ‘ Vector load-store unit ‘

Vector Length Register

= Vector length not known at compile time?
= Use Vector Length Register (VLR)
= Use strip mining for vectors over the maximum length:

low =0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/IMVL); j=j+1) { /*outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
YI[i] = a* X[i] + Y[i] ; /*main operation*/
low = low + VL; /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

S8IN103Y2IY 10108\

Value of | 0 1 2 3 cen . nMvL
Range of i 0 m (ma+MVL) (m+2xMVL) ... (n-MVL)
[m"-1) cm'-1J [m'-w (rri (nI-WJ

) -1)
+MVL  +2xMVL  +3xMVL




Vector Mask Registers

What if we have a conditional IF statement inside the
loop?

Using scalar architecture, that introduces control
dependence.

The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

The rest of the elements are unaffected.
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Clearing the vector mask register, sets to all 1's and
operations are performed on all the elements.

Does not save execution time for masked elements

<
. (0]
Vector Mask Registers 2
>
. .
Consider: g
for (i=0; i< 64;i=i+1) §
if (X[i]!=0)
Xl = X[l - Y[
Use vector mask register to “disable” elements:
LV V1,Rx :load vector X into V1
LV V2,Ry ;load vector Y
L.D FO,#0 :load FP zero into FO
SNEVS.D  V1,FO :sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1i,\Vv1i,Vv2 :subtract under vector mask
SV Rx,V1 :store the result in X
GFLOPS rate decreases!
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Memory Banks

= Load/store unit is more complicated than FU’s
= Start-up time, is the time for the first word into a register

= Memory system must be designed to support high
bandwidth for vector loads and stores

m Spread accesses across multiple banks

= Control bank addresses independently

= Load or store non sequential words

= Support multiple vector processors sharing the same memory
= Example:

= 32 processors, each generating 4 loads and 2 stores/cycle

= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

= How many memory banks needed?
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Stride

= Consider:
for (i=0;i<100; i=i+1)
for (j = 0;j < 100; j=j+1) {
Alilil] = 0.0;
for (k = 0; k < 100; k=k+1)
A0 = AliI0] + BiIK] * DIK]L;

S8IN103Y2IY 10108\

= Must vectorize multiplication of rows of B with columns of D
= Use non-unit stride

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

= #banks / LCM(stride,#banks) < bank busy time




Strides
ek

o |1 (2 |3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 |11
3 12 |13 |14 |15
4 16 |17 |18 |19
5 20 |21 (22 |23
6 24 |25 |26 |27
7 28 |29 (30 |31

Strides

= MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

= Division still a problem
= But if we change the mapping such that

s Address in a bank = address MOD number of words in a
bank.

= Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.

= Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential interleaving
and modulo interleaving and notice the conflict free
access to rows and columns of a 4 by 4 matrix
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Scatter-

Gather

s Consider:

LV
LVI
LV
LVI

Svi

for (i=0;i<n;i=i+l)
AIKIi]] = AIKTi]] + C[M[];

s Use index vector:

VK, Rk
Va, (Ra+Vk)
Vm, Rm

Ve, (Rc+Vm)

ADDVV.D Va, Va, Vc
(Ra+Vk), Va

load K

;load A[K[]]

load M

;load C[M[]]
;add them
;store A[K]]]
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Programming Vec. Architectures

» Compilers can provide feedback to programmers
= Programmers can provide hints to compiler

Operations executed

Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized  with programmer aid  hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 02.0% 1.01
SPECT7 90.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCDh 4.2% 75.1% 2.15
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SIMD Extensions

= Media applications operate on data types narrower than
the native word size

= Example: disconnect carry chains to “partition” adder

= Limitations, compared to vector instructions:
= Number of data operands encoded into op code

= No sophisticated addressing modes (strided, scatter-
gather)

= No mask registers
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SIMD Implementations

= Implementations:

= Intel MMX (1996)

= Eight 8-bit integer ops or four 16-bit integer ops
» Streaming SIMD Extensions (SSE) (1999)

= Eight 16-bit integer ops

= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector Extensions (2010)

= Four 64-bit integer/fp ops

= Operands must be consecutive and aligned memory
locations
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SIMD Implementation

» Easier to implement than Vector machines
= Little cost to add registers and instructions
= Require little extra state compared to vector machines
(context switching).
= Does not require the high memory bandwidth the
vector machines do.

= Does not have to deal with issues like a page fault in
the middle of accessing 64 memory access.
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