11 December 2013

Computer Architecture

A Quantitative Approach, Fifth Edition

| Chapter 4

| Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

Introduction

uononpo.u|

= SIMD architectures can exploit significant data-
level parallelism for:
= Mmatrix-oriented scientific computing
= media-oriented image and sound processors

= SIMD is more energy efficient than MIMD
= Only needs to fetch one instruction per data operation
= Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think
sequentially

SIMD Parallelism

s Vector architectures
s SIMD extensions
Graphics Processor Units (GPUS)

s For x86 processors:
= Expect two additional cores per chip per year
= SIMD width to double every four years

= Potential speedup from SIMD to be twice that from
MIMD!

uononponuy|

Vector Architectures

» Basic idea:
= Read sets of data elements into “vector registers”
= Operate on those registers
= Disperse the results back into memory

» Registers are controlled by compiler
= Used to hide memory latency
= Leverage memory bandwidth

S8IN103Y2IY 10108\

11 December 2013

VMIPS

» Example architecture: VMIPS
= Loosely based on Cray-1

= Vector registers
= Each register holds a 64-element, 64 bits/element vector
= Register file has 16 read ports and 8 write ports
= Vector functional units
« Fully pipelined
« Data and control hazards are detected
= Vector load-store unit
« Fully pipelined
=« One word per clock cycle after initial latency
= Scalar registers
= 32 general-purpose registers
« 32 floating-point registers

S31N)23)YdJY J0103A

11 December 2013

11 December 2013

VMIPS Instructions

=| ADDVV.D V1,v2,v3 add two vectors

=, ADDVS.D V1,V2,FO add vector to a scalar

s LV V1,R1 vector load from address

= SV R1,V1 Vector store at R1

= MULVV.D V1,V2,V3 vector multiply

= DIVVVW.D V1,v2V3 Vector div (element by element)
»n LVWS V1,(R1,R2) Load vector from R1, stride=R2

S31N)23)YdJY J0103A

s LVI V1,(R1+V2) Load V1 with elements at R1+V2(i)

s CVI V1,R1 load in V1 0,R1,2R1,3R1,...(index
vector)

= SEQVV.D V1,v2 Compare elements V1,V2 0 or 1in VM

= MVTM VM,FO Move contents of FO to vec. mask reg.

= MTCI VLR,R1 Move rl to vector length register

VMIPS Instructions

Example: DAXPY

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X
MULVS.D V2,V1,FO ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4 Vv2V3 ;add

SV Ry,Vv4 ; store the result

= Requires 6 instructions vs. almost 600 for MIPS
(instruction bandwidth).

= Also, in MIPS must wait after LD and MUL (unless we do
loop unrolling to avoid stalls).

= In vector architecture, we use chaining (what is the
difference between chaining and forwarding?)

Vector Execution Time

= Execution time depends on three factors:
= Length of operand vectors
» Structural hazards
» Data dependencies

S31N)23)YdJY J0103A

s VMIPS functional units consume one element
per clock cycle
= Execution time is approximately the vector length

= Convey

= Set of vector instructions that could potentially
execute together (could be more than one instruction)

Chimes

= Sequences with read-after-write dependency
hazards can be in the same convey via chaining

S81N103NYJIY 10108\

= Chaining

= Allows a vector operation to start as soon as the
individual elements of its vector source operand
become available

= Chime
= Unit of time to execute one convey
= M conveys executes in m chimes
= For vector length of n, requires m x n clock cycles

11 December 2013

Example

LV
MULVS.D
LV
ADDVV.D
SV
Convoys:

1 LV
2 LV
3 SV

V1,Rx
V2,V1,FO
V3,Ry
V4,V2,V3
Ry,V4

MULVS.D
ADDVV.D

;load vector X
;vector-scalar multiply
;load vector Y

;add two vectors
;store the sum

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

S31N)23)YdJY J0103A

Challenges

= Start up time
= Latency of vector functional unit

= Assume the same as Cray-1
« Floating-point add => 6 clock cycles
» Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
» Vector load => 12 clock cycles

= Improvements:

= > 1 element per clock cycle

= Non-64 wide vectors

= |F statements in vector code

= Memory system optimizations to support vector processors

= Multiple dimensional matrices

= Sparse matrices

= Programming a vector computer

S8IN103Y2IY 10108\

11 December 2013

11 December 2013

Multiple Lanes 2

>

= Element n of vector register A is “hardwired” to element '3

n of vector register B %

= Allows for multiple hardware lanes @
— Lane 0 Lane 1 Lane 2 Lane 3
E E FP add FP add FP add FP add
E ﬂ pipe 0 pipe 1 pipe 2 pipe 3
mym [Tl |1l |1l |1t

YRS I ETE mie)| [Brel| [ars) M l l l l i l l l
EYRS] IR ETES] mia)| |Bra) m H nie]| |ar7) ﬂ EP mul FP mul. £P mul FP mul.
pipe 0 pipe 1 pipe 2 pipe 3

o

_______________________ ‘ Vector load-store unit ‘

Vector Length Register

= Vector length not known at compile time?
= Use Vector Length Register (VLR)
= Use strip mining for vectors over the maximum length:

low =0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/IMVL); j=j+1) { /*outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
YI[i] = a* X[i] + Y[i] ; /*main operation*/
low = low + VL; /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

S8IN103Y2IY 10108\

Value of | 0 1 2 3 cen . nMvL
Range of i 0 m (ma+MVL) (m+2xMVL) ... (n-MVL)
[m"-1) cm'-1J [m'-w (rri (nI-WJ

) -1)
+MVL +2xMVL +3xMVL

Vector Mask Registers

What if we have a conditional IF statement inside the
loop?

Using scalar architecture, that introduces control
dependence.

The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

The rest of the elements are unaffected.

S31N)23)YdJY J0103A

Clearing the vector mask register, sets to all 1's and
operations are performed on all the elements.

Does not save execution time for masked elements

<
. (0]
Vector Mask Registers 2
>
. .
Consider: g
for (i=0; i< 64;i=i+1) §
if (X[i]!=0)
Xl = X[l - Y[
Use vector mask register to “disable” elements:
LV V1,Rx :load vector X into V1
LV V2,Ry ;load vector Y
L.D FO,#0 :load FP zero into FO
SNEVS.D V1,FO :sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1i,\Vv1i,Vv2 :subtract under vector mask
SV Rx,V1 :store the result in X
GFLOPS rate decreases!

11 December 2013

11 December 2013

Memory Banks

= Load/store unit is more complicated than FU’s
= Start-up time, is the time for the first word into a register

= Memory system must be designed to support high
bandwidth for vector loads and stores

m Spread accesses across multiple banks

= Control bank addresses independently

= Load or store non sequential words

= Support multiple vector processors sharing the same memory
= Example:

= 32 processors, each generating 4 loads and 2 stores/cycle

= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

= How many memory banks needed?

S31N)23)YdJY J0103A

Stride

= Consider:
for (i=0;i<100; i=i+1)
for (j = 0;j < 100; j=j+1) {
Alilil] = 0.0;
for (k = 0; k < 100; k=k+1)
A0 = AliI0] + BiIK] * DIK]L;

S8IN103Y2IY 10108\

= Must vectorize multiplication of rows of B with columns of D
= Use non-unit stride

= Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

= #banks / LCM(stride,#banks) < bank busy time

Strides
ek

o |1 (2 |3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 |11
3 12 |13 |14 |15
4 16 |17 |18 |19
5 20 |21 (22 |23
6 24 |25 |26 |27
7 28 |29 (30 |31

Strides

= MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

= Division still a problem
= But if we change the mapping such that

s Address in a bank = address MOD number of words in a
bank.

= Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.

= Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential interleaving
and modulo interleaving and notice the conflict free
access to rows and columns of a 4 by 4 matrix

11 December 2013

10

Scatter-

Gather

s Consider:

LV
LVI
LV
LVI

Svi

for (i=0;i<n;i=i+l)
AIKIi]] = AIKTi]] + C[M[];

s Use index vector:

VK, Rk
Va, (Ra+Vk)
Vm, Rm

Ve, (Rc+Vm)

ADDVV.D Va, Va, Vc
(Ra+Vk), Va

load K

;load A[K[]]

load M

;load C[M[]]
;add them
;store A[K]]]

S31N)23)YdJY J0103A

Programming Vec. Architectures

» Compilers can provide feedback to programmers
= Programmers can provide hints to compiler

Operations executed

Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 02.0% 1.01
SPECT7 90.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCDh 4.2% 75.1% 2.15

S8IN103Y2IY 10108\

11 December 2013

11

SIMD Extensions

= Media applications operate on data types narrower than
the native word size

= Example: disconnect carry chains to “partition” adder

= Limitations, compared to vector instructions:
= Number of data operands encoded into op code

= No sophisticated addressing modes (strided, scatter-
gather)

= No mask registers

RIPSWININA 10} SUOISUBIXT 18S UoNANISU| AINIS

SIMD Implementations

= Implementations:

= Intel MMX (1996)

= Eight 8-bit integer ops or four 16-bit integer ops
» Streaming SIMD Extensions (SSE) (1999)

= Eight 16-bit integer ops

= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector Extensions (2010)

= Four 64-bit integer/fp ops

= Operands must be consecutive and aligned memory
locations

eIPSWNINIA 10} SUOISUBIXT 18S UoNANASU| AINIS

11 December 2013

12

SIMD Implementation

» Easier to implement than Vector machines
= Little cost to add registers and instructions
= Require little extra state compared to vector machines
(context switching).
= Does not require the high memory bandwidth the
vector machines do.

= Does not have to deal with issues like a page fault in
the middle of accessing 64 memory access.

11 December 2013

13

