
11 December 2013

1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 4

Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 SIMD architectures can exploit significant data-
level parallelism for:
 matrix-oriented scientific computing
 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation
 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

Introduction

11 December 2013

2

3Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

 Vector architectures
 SIMD extensions
 Graphics Processor Units (GPUs)

 For x86 processors:
 Expect two additional cores per chip per year
 SIMD width to double every four years
 Potential speedup from SIMD to be twice that from

MIMD!

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

 Basic idea:
 Read sets of data elements into “vector registers”
 Operate on those registers
 Disperse the results back into memory

 Registers are controlled by compiler
 Used to hide memory latency
 Leverage memory bandwidth

V
ector A

rchitectures

11 December 2013

3

5Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS

 Example architecture: VMIPS
 Loosely based on Cray-1
 Vector registers

 Each register holds a 64-element, 64 bits/element vector
 Register file has 16 read ports and 8 write ports

 Vector functional units
 Fully pipelined
 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined
 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers
 32 floating-point registers

V
ector A

rchitectures

6

VMIPS

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

4

7Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions

 ADDVV.D V1,V2,V3 add two vectors
 ADDVS.D V1,V2,F0 add vector to a scalar
 LV V1,R1 vector load from address
 SV R1,V1 Vector store at R1
 MULVV.D V1,V2,V3 vector multiply
 DIVVV.D V1,V2,V3 Vector div (element by element)
 LVWS V1,(R1,R2) Load vector from R1, stride=R2
 LVI V1,(R1+V2) Load V1 with elements at R1+V2(i)
 CVI V1,R1 load in V1 0,R1,2R1,3R1,…(index

vector)
 SEQVV.D V1,V2 Compare elements V1,V2 0 or 1in VM
 MVTM VM,F0 Move contents of F0 to vec. mask reg.
 MTCI VLR,R1 Move r1 to vector length register

V
ector A

rchitectures

8

VMIPS Instructions

 Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

 Requires 6 instructions vs. almost 600 for MIPS
(instruction bandwidth).

 Also, in MIPS must wait after LD and MUL (unless we do
loop unrolling to avoid stalls).

 In vector architecture, we use chaining (what is the
difference between chaining and forwarding?)

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

5

9Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time

 Execution time depends on three factors:
 Length of operand vectors
 Structural hazards
 Data dependencies

 VMIPS functional units consume one element
per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially

execute together (could be more than one instruction)

V
ector A

rchitectures

10Copyright © 2012, Elsevier Inc. All rights reserved.

Chimes

 Sequences with read-after-write dependency
hazards can be in the same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

 Chime
 Unit of time to execute one convey
 m conveys executes in m chimes
 For vector length of n, requires m x n clock cycles

V
ector A

rchitectures

11 December 2013

6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Example

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D

2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 = 192 clock cycles

V
ector A

rchitectures

12Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges

 Start up time
 Latency of vector functional unit

 Assume the same as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

 Improvements:
 > 1 element per clock cycle

 Non-64 wide vectors

 IF statements in vector code

 Memory system optimizations to support vector processors

 Multiple dimensional matrices

 Sparse matrices

 Programming a vector computer

V
ector A

rchitectures

11 December 2013

7

13Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Lanes

 Element n of vector register A is “hardwired” to element
n of vector register B
 Allows for multiple hardware lanes

V
ector A

rchitectures

14Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Length Register

 Vector length not known at compile time?

 Use Vector Length Register (VLR)

 Use strip mining for vectors over the maximum length:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

V
ector A

rchitectures

11 December 2013

8

15Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers
 What if we have a conditional IF statement inside the

loop?

 Using scalar architecture, that introduces control
dependence.

 The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

 When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

 The rest of the elements are unaffected.

 Clearing the vector mask register, sets to all 1’s and
operations are performed on all the elements.

 Does not save execution time for masked elements

V
ector A

rchitectures

16Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers

 Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

 Use vector mask register to “disable” elements:
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

 GFLOPS rate decreases!

V
ector A

rchitectures

11 December 2013

9

17Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Banks

 Load/store unit is more complicated than FU’s

 Start-up time, is the time for the first word into a register

 Memory system must be designed to support high
bandwidth for vector loads and stores

 Spread accesses across multiple banks
 Control bank addresses independently

 Load or store non sequential words

 Support multiple vector processors sharing the same memory

 Example:
 32 processors, each generating 4 loads and 2 stores/cycle

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

 How many memory banks needed?

V
ector A

rchitectures

18Copyright © 2012, Elsevier Inc. All rights reserved.

Stride

 Consider:

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

 Must vectorize multiplication of rows of B with columns of D

 Use non-unit stride

 Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
 #banks / LCM(stride,#banks) < bank busy time

V
ector A

rchitectures

11 December 2013

10

19

Strides

Copyright © 2012, Elsevier Inc. All rights reserved.

Add in
a bank SE Q M O D

0 1 2 3 0 1 2 0 1 2
0 0 1 2 3 0 1 2 0 16 8

1 4 5 6 7 3 4 5 9 1 17

2 8 9 10 11 6 7 8 18 10 2

3 12 13 14 15 9 10 11 3 19 11

4 16 17 18 19 12 13 14 12 4 20

5 20 21 22 23 15 16 17 21 13 5

6 24 25 26 27 18 19 20 6 22 14

7 28 29 30 31 21 22 23 15 7 23

20

Strides

 MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

 Division still a problem

 But if we change the mapping such that

 Address in a bank = address MOD number of words in a
bank.

 Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.

 Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential interleaving
and modulo interleaving and notice the conflict free
access to rows and columns of a 4 by 4 matrix

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

11

21Copyright © 2012, Elsevier Inc. All rights reserved.

Scatter-Gather

 Consider:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

 Use index vector:

LV Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]]

V
ector A

rchitectures

22Copyright © 2012, Elsevier Inc. All rights reserved.

Programming Vec. Architectures

 Compilers can provide feedback to programmers

 Programmers can provide hints to compiler

V
ector A

rchitectures

11 December 2013

12

23Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions

 Media applications operate on data types narrower than
the native word size

 Example: disconnect carry chains to “partition” adder

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No sophisticated addressing modes (strided, scatter-
gather)

 No mask registers

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

24Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations

 Implementations:
 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)
 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)
 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory
locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

11 December 2013

13

25

SIMD Implementation

 Easier to implement than Vector machines
 Little cost to add registers and instructions

 Require little extra state compared to vector machines
(context switching).

 Does not require the high memory bandwidth the
vector machines do.

 Does not have to deal with issues like a page fault in
the middle of accessing 64 memory access.

Copyright © 2012, Elsevier Inc. All rights reserved.

