
11 December 2013

1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 4

Data-Level Parallelism in
Vector, SIMD, and GPU
Architectures

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 SIMD architectures can exploit significant data-
level parallelism for:
 matrix-oriented scientific computing
 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation
 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

Introduction

11 December 2013

2

3Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

 Vector architectures
 SIMD extensions
 Graphics Processor Units (GPUs)

 For x86 processors:
 Expect two additional cores per chip per year
 SIMD width to double every four years
 Potential speedup from SIMD to be twice that from

MIMD!

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

 Basic idea:
 Read sets of data elements into “vector registers”
 Operate on those registers
 Disperse the results back into memory

 Registers are controlled by compiler
 Used to hide memory latency
 Leverage memory bandwidth

V
ector A

rchitectures

11 December 2013

3

5Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS

 Example architecture: VMIPS
 Loosely based on Cray-1
 Vector registers

 Each register holds a 64-element, 64 bits/element vector
 Register file has 16 read ports and 8 write ports

 Vector functional units
 Fully pipelined
 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined
 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers
 32 floating-point registers

V
ector A

rchitectures

6

VMIPS

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

4

7Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions

 ADDVV.D V1,V2,V3 add two vectors
 ADDVS.D V1,V2,F0 add vector to a scalar
 LV V1,R1 vector load from address
 SV R1,V1 Vector store at R1
 MULVV.D V1,V2,V3 vector multiply
 DIVVV.D V1,V2,V3 Vector div (element by element)
 LVWS V1,(R1,R2) Load vector from R1, stride=R2
 LVI V1,(R1+V2) Load V1 with elements at R1+V2(i)
 CVI V1,R1 load in V1 0,R1,2R1,3R1,…(index

vector)
 SEQVV.D V1,V2 Compare elements V1,V2 0 or 1in VM
 MVTM VM,F0 Move contents of F0 to vec. mask reg.
 MTCI VLR,R1 Move r1 to vector length register

V
ector A

rchitectures

8

VMIPS Instructions

 Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

 Requires 6 instructions vs. almost 600 for MIPS
(instruction bandwidth).

 Also, in MIPS must wait after LD and MUL (unless we do
loop unrolling to avoid stalls).

 In vector architecture, we use chaining (what is the
difference between chaining and forwarding?)

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

5

9Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time

 Execution time depends on three factors:
 Length of operand vectors
 Structural hazards
 Data dependencies

 VMIPS functional units consume one element
per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially

execute together (could be more than one instruction)

V
ector A

rchitectures

10Copyright © 2012, Elsevier Inc. All rights reserved.

Chimes

 Sequences with read-after-write dependency
hazards can be in the same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

 Chime
 Unit of time to execute one convey
 m conveys executes in m chimes
 For vector length of n, requires m x n clock cycles

V
ector A

rchitectures

11 December 2013

6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Example

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D

2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 = 192 clock cycles

V
ector A

rchitectures

12Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges

 Start up time
 Latency of vector functional unit

 Assume the same as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

 Improvements:
 > 1 element per clock cycle

 Non-64 wide vectors

 IF statements in vector code

 Memory system optimizations to support vector processors

 Multiple dimensional matrices

 Sparse matrices

 Programming a vector computer

V
ector A

rchitectures

11 December 2013

7

13Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Lanes

 Element n of vector register A is “hardwired” to element
n of vector register B
 Allows for multiple hardware lanes

V
ector A

rchitectures

14Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Length Register

 Vector length not known at compile time?

 Use Vector Length Register (VLR)

 Use strip mining for vectors over the maximum length:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

V
ector A

rchitectures

11 December 2013

8

15Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers
 What if we have a conditional IF statement inside the

loop?

 Using scalar architecture, that introduces control
dependence.

 The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

 When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

 The rest of the elements are unaffected.

 Clearing the vector mask register, sets to all 1’s and
operations are performed on all the elements.

 Does not save execution time for masked elements

V
ector A

rchitectures

16Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Mask Registers

 Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

 Use vector mask register to “disable” elements:
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

 GFLOPS rate decreases!

V
ector A

rchitectures

11 December 2013

9

17Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Banks

 Load/store unit is more complicated than FU’s

 Start-up time, is the time for the first word into a register

 Memory system must be designed to support high
bandwidth for vector loads and stores

 Spread accesses across multiple banks
 Control bank addresses independently

 Load or store non sequential words

 Support multiple vector processors sharing the same memory

 Example:
 32 processors, each generating 4 loads and 2 stores/cycle

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

 How many memory banks needed?

V
ector A

rchitectures

18Copyright © 2012, Elsevier Inc. All rights reserved.

Stride

 Consider:

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

 Must vectorize multiplication of rows of B with columns of D

 Use non-unit stride

 Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
 #banks / LCM(stride,#banks) < bank busy time

V
ector A

rchitectures

11 December 2013

10

19

Strides

Copyright © 2012, Elsevier Inc. All rights reserved.

Add in
a bank SE Q M O D

0 1 2 3 0 1 2 0 1 2
0 0 1 2 3 0 1 2 0 16 8

1 4 5 6 7 3 4 5 9 1 17

2 8 9 10 11 6 7 8 18 10 2

3 12 13 14 15 9 10 11 3 19 11

4 16 17 18 19 12 13 14 12 4 20

5 20 21 22 23 15 16 17 21 13 5

6 24 25 26 27 18 19 20 6 22 14

7 28 29 30 31 21 22 23 15 7 23

20

Strides

 MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

 Division still a problem

 But if we change the mapping such that

 Address in a bank = address MOD number of words in a
bank.

 Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.

 Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential interleaving
and modulo interleaving and notice the conflict free
access to rows and columns of a 4 by 4 matrix

Copyright © 2012, Elsevier Inc. All rights reserved.

11 December 2013

11

21Copyright © 2012, Elsevier Inc. All rights reserved.

Scatter-Gather

 Consider:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

 Use index vector:

LV Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]]

V
ector A

rchitectures

22Copyright © 2012, Elsevier Inc. All rights reserved.

Programming Vec. Architectures

 Compilers can provide feedback to programmers

 Programmers can provide hints to compiler

V
ector A

rchitectures

11 December 2013

12

23Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Extensions

 Media applications operate on data types narrower than
the native word size

 Example: disconnect carry chains to “partition” adder

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No sophisticated addressing modes (strided, scatter-
gather)

 No mask registers

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

24Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Implementations

 Implementations:
 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)
 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)
 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory
locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

11 December 2013

13

25

SIMD Implementation

 Easier to implement than Vector machines
 Little cost to add registers and instructions

 Require little extra state compared to vector machines
(context switching).

 Does not require the high memory bandwidth the
vector machines do.

 Does not have to deal with issues like a page fault in
the middle of accessing 64 memory access.

Copyright © 2012, Elsevier Inc. All rights reserved.

