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ABSTRACT 
.Annealing is the process of slowly cooling  a  physical  System  in 

order  to  obtain  states  with  globally  minimum  energy.  By  simulating 
such  a  process,  near  globally-minimum-cost  solutions  can be found  for 
very  large  optimization  problems.  The  purpose of this  paper is to 
review  the basic theory of simulated  annealing,  to  survey  its  recent 
applications,  and  to  survey  the  theoretical  approaches  that  have been 
used  to  study  the  technique. 

The  applications  include  image  restoration,  combinatorial  optimi- 
zation (eg  VLSI  routing  and  placement),  code  design  for  communica- 
tlon  systems  and  certain  aspects of artificial  intelligence.  The  theoreti- 
cal tools for  analysis  include  the  theory of nonstationary  Markov 
chains,  statistical  physics  analysis  techniques,  large  deviation  theory 
and  singular  perturbation  theory. 

1. THE ANNEALING ALGORITHMS 
1.1. Finite  State-Space.  Discrete  Time 

Suppose  that  a  function V defined  on some  finite  set S 1s to 
minimized.  We  assume  that  for each state s in S that  there is a  set 
ii(s), with S ( s )  C S,  which  we  call  rhe  set of neighbors of s. Typically 
the  sets S ( s )  are  small  subsets of S.  In addition.  we  suppose  that  there 
is a  transition  probability  matrix R over S such  that R(s.s') > 0 if and 
only if s' IS in 3:s). 

Let  Ti , T2, . . . . be a  sequence  (called  a  temperature  schedule) of 
strictly  positive  numbers  such  that 

T ~ > T * >  . . (1.1) 

and 

k-cx  
limTk=O (1.2) 

Consider  the  follow-ing  sequential  algorithm  for  constructing  a 
sequence of states Xo.X1,. . . An  initial  state X0 is  chosen.  Given  that 
X, = s. a  potential  next  state Y; is chosen from S(s) with  probability 
distribution 

P[Yi = s'/X:=s] = R(s,s'). 

Then  we  set 

', with  probability pi 

where 

This specifies how  the  sequence  Xi.X2, . . . is chosen.  The  random  pro- 
cess X=(X,:kaO) produced  by  the  algorithm is a  discrete  time  hlarkov 
chain. 

We  will give  an  explanation  for  this  algorithm.  Let S* denote  the 
set of states in S at  which V attains  its  minimum  value.  We  are 
interested  in  determining  whether  or  not 

We  say  that  state i is reachable  from  state j if there is a  sequence of 
states j= i , ,  i'. , . , , i,=i such  that  R(ik,ik*l)>O  for  O<k<p  We  will 
assume  that (S, V ,  R) has  the  following  property: 

Property SI  (Strong  irreducibility): Given  any t w o  states i and j .  i 
is reachable  from j .  
Consider  the  annealing  algorithm in the special  case that  the  tempera- 
ture  is identically  equal  to  a  constant  T.  Then  the  chain X has station- 
ary  transition  probabilities,  and  a  unique (if 0 < T < + a) equili- 
brium  probability  distribution T T .  It  is easv to check that TT for  
O < T < m  is related  to T, by 

where 

( 1.4) 

By the  assumption  that R is strongly  irreducible  (and  the  fact 
that  P is aperiodic if S # S* since P(i,i) > 0 for  some i in that  case), 
the  llarkov  ergodic  convergence  theorem [Sen611 implies  that 

(1.5) 

Examination of (1.4) soon yields  that  the  right  hand  side of (1.5) can 
be made  arbitrarily close to  one  by choosing T small.  Thus, 

lim [ lim P[X, ES*I = I .  

The idea of the  simulated  annealing  algorithm is to t ry  to  achieve  (1.3) 
by  letting Ti: tend  to zero  as k tends to  Infinit>-.  The  annealing  algo- 
rithm  with  T  constant  was first  suggested in [\IRRTT53],  and  recent 
interest in  it was  Sparked  by  the  articles  [KlG\-b3]  and  [CerbZ]. 

T-Q k--,T,=T I 

1.2.  Finite  State-Space,  Continuous  Time 
1X-e assume  that  a  coollng  schedule  (T,:t>/O) is given such  that 

T, is strictly  positive  and  nonincreaslng in  t , (1.6) 

and 

(1.7) 

and  we  assume  that 6 V,  R )  is given as  before. S o w  let 

Q,(s,s') = R(s.s')exp(-[\.'(s')-\.'(s)]~~,) (1.8) 
for s.  s' with sfs' .  \Ve consider  the  pure  jump  llarkov process (Xl) 
with  transition  rate  matrix (Q,). Thus, 

P[X:-, = s'lX: = s] = Q,(s,s')h+o(h) . 
If we  denote  a,(i) = P[X, = i], then a satisfies the  differential  equation 

a, = a,Qt 

The  explanation  we  gave  for  the  discrete  time  annealing  algorithm -- 
including  Eq. (1 .4)  -- remains  valid  for  this  continuous  time algo- 
ri thm. 
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1.3. Continuous  State -Space. Small  Jumps 
Consider  a  function V on E" to be minimized  and  let  (Tl:t20) 

denote  a  temperature  schedule  as in  Section 1.2. The  Langevin  Algo- 
rithm  (notation  suggested  in  [Gid85]) is to  generate  the  solution of the 
following  stochastic  differential  equation: 

.. 

dX, = -VV(X,)dt t f i d w , ;  Xn = x. 

where  iw, : t>O) is a  standard  n-dimensional  Wiener  process. In the 
special  case that  T,EO,  this is the  (deterministic)  negative  gradient 
algorithm,  which  cannot escape from local minima of V. The  stochas- 
tic term  dw, is added in order  to  allow  the process X to  escape  local 
minima of V. 

2. CONVERGENCE IN PROBABILITY TO THE GLOBAL 
MINIMUM 

We  will give  a  convergence result  for  the finite  state-space 
annealing  algorithms.  We  say  that  state i is reachable  at  height  E  from 
state j if there is a  sequence of states j = io ,  i, , . . . , i, = i such  that 

R(ik,ik+l)>O  for 0 < k  < p 

and 

V( ik )<E   fo r   O<k<p  

We  will  assume  that (S ,  V, R) has the  following  two  property: 

Property WR (Weak  reversibility):  For  any  real  number  E  and 
any  two  states i and j ,  i is reachable  at  height E from  j if and  only if j 
1s reachable  at  height E from i. 

State s is said  to be a local minimum if no state s' with \'(s') < 
V(s) is reachable  from s at  height V(s). We define the depth of a  local 
minimum s to be plus  infinity if s is a  global  minimum.  Otherwise, 
the  depth of s is  the  smallest  number E, E>O, such  that some state s' 
with V(s')<V(s) can be reached from s at  height V(s) +E. 

We  define  a cup for (S ,  V ,  R) to be a  set  C of states  such  that  for 
some  number E, the  following is true:  For  every s in C, 

C = {s' : s' can  be  reached at  height E from s). 

Given  a  cup C, define v ( C )  = min{V(s) : sEC}  and 

o ( C )  = min(V(s) : sBC  and R(s', s)>O for  some s' in C)  . 

\Ve call  the  subset B of C defined by B = {s€C : V(s) = v(C))   the  bot- 
tom of the  cup.  and  we  call  the  number  d(C) defined by 
d(C) = v(C)- i (C)   the depth of the  cup.  Note  that  a local minimum 
of depth  d is an  element of the  bottom of some  cup of depth  d.  

Theoreml.  [HajS5]  Assume  that  SI,  WR, (1.1) and (1.2) hold. 
(a)  For  any  state s that  is not  a  local  minimum. 

k-m 
lim  P [ Xk = s 3 = 0. 

(b)  Suppose  that  the  set of states B is the  bottom of a  cup of 
depth  d  and  that  the  states in B are local minima of depth  d.  Then 

k - c o  
l imp [ X k E B ]  = 0 

if and  only if  
m 2 exp(-d/Tk) = +a. 

k = 1  

(c)  (Consequence of (a)  and  (b))  Let d* be the  maximum of the 
depths of all  states  which  are local but  not global minima.  Let S' 
denote  the  set of global  minima.  Then 

if m d  only if 
m, 

exp(-d*/Tk) = tco 
k=I 

Remarks. If  Ti: assumes  the  parametric  form 

then  condition (2.21, and  hence  also  condition (2.11, is true if and  only 
if cad'.   This  result is consistent  with  the  work of Geman  and  Geman 
[GeGe84]. They  considered  a  model  which is nearly  a special  case of 
the  model  used  here.  and  they  proved  that  condition (2 .1)  holds if 
(T,)  satisfies  equation (2.3) for  a  suficiently  large  constant c. Tsit- 
siklis  [Tsi85]  recently  proved  a  result  more  general  than  Theorem 1 in 
which  weak  reversibility  is  not  assumed. 

Gidas  [Gid84]  also  addressed  the  convergence  properties of the 
annealing  algorithm. He  gave  a  value of c  (actually,  c  here 
corresponds to 1/c, in  Gidas'  notation)  which  he  conjectured is the 
smallest  such  that  Eq. (2.3) leads  to  Eq. (2.1). His  constant is 
different  from  the  constant d' defined  here.  Gidas  also  considered 
interesting  convergence  questions  for  functionals of the  Markov 
chains. 

Geman  and  Hwang  [GeHw841  showed  for  the  Langevin  Algo- 
rithm  that  a  schedule of the  form (2.3) is sufficient for convergence to 
the global minima if c  is  no  smaller  than  the  difference  between  the 
maximum  and  minimum  value of V. We  conjecture  that  the  smallest 
Constant is given  by  the  obvious  analogue of the  constant d* that   we 
defined here.  (Also, see Subsection 3.3). 

3. THE  CASE OF CONSTANT  TEMPERATURE 
3.1. Discussion 

>'lost of the  theoretical  results on simulated  annealing  published 
to  date can  be  better  understood, if not  even  proved.  by  considering 
the  annealing  algorithm  at  a fixed temperature.  The idea  is that  if the 
temperature  varies  with  time  like  c/log(t),  then  the  annealing  process 
tends  to reach quasi-equilibrium  or escape  local  minima  at  a  much  fas- 
ter  rate  than  the  temperature is varying.  In  particular, [GeGe84]. 
[GeHw&4].  [Gid85]  and  [MiRS85]  use  this idea working  with  equili- 
brium  distributions,  where  rate of convergence  estimates  such  as  those 
found in  [Sen811 are used quite  naturally.  The  recent  papers  [Kus85], 
[ChHSSS] and  [Tsi85]  clearly  point  out  this idea by  working  with 
escape  time  estimates.  Here  either  large  deviation  theory  such  as  that 
in [FrWe84]  or  the  theory of Markov  chains  with  a  small  parameter  is 
applied.  In  this  section  we  review  some  known  escape-time  estimates, 
and  point  out  their significance for  simulated  annealing. 

3.2. Escape Time Estimates--Discrete State  Space 
Consider  the  (discrete  or  continuous  time)  annealing  algorithm 

run  at  a fixed temperature  T.  Suppose  the  underlying  system (S.V.R) 
is strongly  irreducible  and  weakly  reversible.  Let  C be a  cup  with 
depth  d(C),  and  let 

T~ = rnin( t2O : X,@C) 

Then  the  following  in  true  (consequence of [Haj&5,  Thms. 3 and 41) 

limT log E , T ~  = d(C)  iEC, 
1-0 

(3.1) 

where  the  subscript i on E, denotes  that X, = i .  Results of this  sort 
can be found in the  literature  on  singular  perturbation of Markov 
chains (see [DeMQ85, CoWrS83]) which  is  based  on  the  theory of 
singular  pertubation of linear  operators  [Kat76]. 1 suspect  that  much 
more is true  and  can be proved  in  a  straight-forward  way  using  singu- 
lar  perturbation  techniques.  For  example, I conjecture  that 
rC exp(-d/T)  converges  in  distribution  to  an  exponentially  distributed 
random  variable  with  parameter 

where B denotes  the  set of states  at  the  "bottom" of cup C. F denotes 
the  set of states of smallest  cost  reachable  directly  from  some  states of 
C. and  q is a  positive  solution  to 

qj = c q i R ( i . j )   j € C  
>E c 

(2,2) An  even  stronger  conjecture is that  

1-0 t 
l i m - - l n P [ T ~ ~ t t e ~ ' ~ ]  1 = rc uniformly in t 2 O .  

(2'3) algorithms  with  time  varying  temperature of the  form 
Now,  let us examine  a  consequence of (3 .1)  for  the  annealing 
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T , =  t> / l  
log t 

We  will  also  use  the  change of variable A, = exp(-l/T,) 

Suppose  that XID = i for  somc  time  to  and  some  state i in a  cup C 
with  depth  d(C).  Suppose  that  the  annealing  algorithm is then  run  for 
tat, at  the  constant  temperature ' T I C .  Then,  by (3.1). a  typical  time t' 
that  the  process  will escape from C has  the  form 

t '  = to + L  exp(-d/T,o), 

where  L 1s typically O(1). A t  time t '  the  actual  time-karylng  anneal- 
ing  schedule (3.1) gives  a  temperarure 

Writing A,. = exp(-l/Tl),   we see that 

A,;/h, = [ l+LA:c-d]l'c 

S o w .  if c > d,  this  sh0u.s  that 

Hence, A. is kery  near]>-  equal  to AIc  so that  approximating  the 
schedule  by  a  constant  during  the  interval  [tost']  should be accurate, 
and  the  process  should  escape C as  predicted  by  the  constant- 
temperature escape time  result. 

On the  other  hand. if c < d  then (3.1) shows  that 

For  moderate  L  and  very  small A this  ratio is very  large.  Thus.  by  the 
time  the  process  could  typically  escape  the CUP (assuming  constant 
temperature  TIC),  the  actual  temperature  will be much  smaller.  This  is 
strong  evidence  that if c < d.  then  the CUP will, with positive  proba- 
bility,  never be exited. 

3.3. EscaDe Time  Estimates  for  the  Langevin  Algorithm 

Consider  the  Langevin  Algorithm  run  at  a fixed temperature  T. 
Suppose  that V is thrice  continuously  differentiable  and  that  a  subset 
D of R' has  the  form 

D = {xER":V(x)<k)  

and is bcunded.  connected  and  has  a  smooth  boundary (jD. i1-e define 
d(D),  the  "depth" of D,  by 

d ( D j  = k-min{Y(x) : XED)  

Proposition  Suppose  the  set D contains  at  most  finitely  many 
zeros of VI- (or  more  generally,  at  most  finitely  many  critical  sets of 
VV in the  sense of .Assumption A .  p.  169 of [FrWe85].) Let 

7,, = inf't>O:X;,E(jD] 

Then  for  any x in D 

lim T l o g E , ~ ~  = diD) 
I-G (3 .2)  

Proof This is a  special  case '2f Theorem 5.3. pp. 196 of [FrI\-eS4] 
wi th  E = f i .  which  allows  nsn-gradient  type  vector fields  (see 
[FrWeSS.  Th. 3.1, p .  l l S ]  to  help in the  specialization). 

In  \,iew of the  similarity of (3.1) and (3.21, the  discussion  at  the 
end of subsection 3.2 also  applies  to  the  Langevln  .Algorithm,  giving 
strong  evidence  that  the  natural  analogue of Theorem 1 is true. 

Remark  We  suspect  that  .issumption A in  the  proposition is 
unnecessary  and  that,  moreover  the  following  convergence  result is 
also  true  Cniformly  over  initial  states x in compact  subsets of D, 

r,expl:-d(D)/T) 

converges  in  distribution to an  exponentially  distributed  random  vari- 
able  (not  necessarily  with  mean  one)  as  T+O.  Assumption A can 
likely be lifted  through  the  use of PDE methods (see  [GidSS]). 

4. MEAN TIME TO FINISH VS. PROBLEM SIZE - TWO EXAM- 
PLES 

4.1. Annealing  for  a  Decouuied  System 

In this  section  we  consider  an  annealing  system  which is a  "direct 
product" of independent  systems.  Our  motivation  is  that,  on  the  one 
hand,  the  system is relatively  easy  to  analyze.  while  on  the  other 
hand,  it  m)-  be u e l l  reflect  the  beha\ior of annealing  for  large  systems 
where  coapling  is  present  but  u?eak. 

Let S = {a.b.c)  u-lth  corresponding  selection  matrix 

R =  jI i :I 
and cesL functlon 1.' satisfying  V'(a)<I- '(b)<\- ' (c).  Let 
u = I-'(b)-\-'(a)  and d = \-'(c)-V'(b). S o t e  that  state  b is  a  local 
minimum of \ - '  with  depth d.  For S > l  let S' denote  the  set of N- 
tuples of elements  from S, define Vu on S" by 

and let R' denote  the  selection  matrix  over S' defined b>- 

Let X(t) = (Xl( t ) ,  . . . , Xs(t))  denote  the  state of the 
continuous-time  annealing  algorithm  for (S' , V I  , R') operating  at  a 
fixed temperature  T.  The  component  processes  speeded up by  a  factor 
of S , (x!(St)), are  independent of each  other  and  each is an  annealing 
process  for (S' . V' , R') for fixed temperature T. The  equilibrium  dis- 
tribution 7 of X is thus  given  by  a  product of equilibrium  probabili- 
ties of the individual components.  For  example,  using A = exp(-l/T). 
we  h.ave 

n-((a,a, . . . . a))  = ~1tA"+2A''c))-' 

By  the  theory  of  Markov  chains,  this  probability is equal to the  mean 
holding  time  of  state  (a,a, . . . , a)  , P d + '  , divided  by  the  mean 
recurrence  time of state  (a,a. . . . , a).  Thus.  the  mean  recurrence  time 
of state  (a,a,  . . . , a)  is 

Subtracting  the  mean  holding  time of state  (a.a. . . . , a)  from  this  we 
obtain  the  mean  time to  return  to  state  (a,a. .  . . . a)  given  that  the 
state has  lust been  exited. By symmetry.   this is the  expected  time, 

needed to reach  state  (a,a. . . . , a)  from  an>- of its  neighboring  states. 
This is clearly  also  a  lower  bound to the  mean  time  needed to  reach 
(a .a .  . . . I a )   startmg  from any initial  distribution on the EC: 

S'-{(a,a, . . . , a)).  This  shows  that if X is bounded  away  from  zero  as 
S-w, then  the  mean  time to hit  the  global  minimum  grows  exponen- 
tiall>-  with S.  Thus,  at  least  when  annealing  at  a  constant  tempera- 
ture,  a  lower  temperature is  needed  for  larger  problems.  Now,  con- 

sider  E17  for A = (a/S)' in the  limit  as S+w. 1Ve get 
1 

where 

f ( a )  = (en-l ) /a  " 
1-2 

The  fact  that 
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A chain  related  to  this  one is obtained  by  making  state  c  in- 
stantaneous  and  then  taking  the pi-fold product.  Then,  the  transi- 
tion  rates  between  states  a  and  b  re  indicated y9.u 

x 
For  this  new  model,  we  have 

E,7, = -{(l+XT-l) 2 
A u + d  

(which  is  not  significantly  different  from E,T). Moreover,  we  can 
show  that  for  any  initial  distribution p 

uniformly in N (proof  omitted).  We  conjecture  that  a  similar  bound 
is true  for  the  original  model. 

An  alternative  optimization  strategy,  called  "multistart  descent", 
is to  select  a  state in Ss at  random  and  then  run  the  annealing algo- 
rithm  at  temperature T=O until  a local minimum is reached.  This  pro- 
cedure is repeated  several  times,  and  the  lowest-cost  minimum iS 
saved.  For  this  problem  a  local  minimum is a  state  with each  coordi- 
nate  equal  to  a  or  b.  Thus, V" evaluated  at  a  local  minimum  found  by 
a  cycle of the  multistart  descent  algorithm  can be expressed  as 

(N-Z)V'(a)+ZV'(b) 

where  Z is the  number of coordinates  equal  to  b. .Assuming that each 
state  in Ss has  the  same  chances of being  the  initial  state of a cycle, 
is a  binomial  random  variable  with  parameters (N,l/z). Thus.  for 
example, if \''(a) = 0 , V'(b) = 1 and  \j'(c) = 2,  then 1'' evaluated t~ 
the local minimum  found  by  the  cycle is equal  to 2. By Sterling's 
apprcximation, given O < a < ' / 2  and  any E > O ,  there is a  constant Kc so 
that  

P [ Z ~ a S ] 6 K ~ e x p ( - ~ ( h ( c r ) - E ) ) .  

where 

h (a )  = -crlncr-(l-cr)ln(l-n) 

Thus,  the  expected  number of cycles  needed  to  reach  a  state  with  cost 
at  most crN is a t  least 

K<'exp(N(h(u)-€)) . 
which  grows  exponentially  with N. We  have  an  example  where  mul- 
tistart  descent is considerably  slower  than  the  annealing  algorithm  run 
at  a  properly chosen constant  (in  time)  temperature. See [LuhleS4]  for 
a  quite  different  example. 

4.2.  Maximum  Matching  by  Annealing 

.4 somewhat  more  complex  class of minimtzation  problems is 
provided  by  the  maximum  matching  problem in  a  graph.  Let G be an 
undirected  graph  with X vertices.  and  let  E  denote  the  set of edges of 
the  graph. A matching is a  set of edges,  no two of which  have  a  com- 
mon  vertex.  Let S denote  the  set of all  matchings  for G. We  let 
matchings M and kl' be neighbors if their  symmetric differences M A M  
contains  at  most one  edge. We define 

m if IMAM'\ = 1 

R(M,M') = 
0 for  other M' with M Zhl' 

I 
Equivalently, if the  current  state of the  algorithm  is  a  matching M, 
the  potential  next  matching is chosen by choosing an edge  in E at  ran- 
dom  and  either  adding  or  deleting  the  edge  from M. 

We define V on S by V(M) = - 1 h 4 1 ,  so that  minimizing V is the 
problem of finding  a  maximum  cardinality  matching.  This  problem is 
relatively  simple in the sense that  there  are  algorithms  for  solving  it 
using  at  most O(N3) computations.  Therefore,  the  follow-ing  result of 
my  s tudent  G. Sasaki is discouraging. 

Proposition [Sas85]. There is a 8> 1 so that  for  all p i ,  if GN is the 
graph  pictured  above, if the  annealing  algorithm  starts in  a  state 
which is not  a  maximal  matching  and if it is run  at  a  constant  tem- 
perature.  then  the mean time  to find the  global  minimum  is  at  least 8N. 

We  conjecture  that  this  result is true  for  time-varying  tempera- 
ture  schedules. On the  positive  side, if we  restrict  attention  to  fairly 
sparse  graphs.  then  the  annealing  algorithm  can  find almost maximum 
cardinality  matchings in  expected  polynomial  time  by  annealing at   a  
fixed temperature: 

Proposition  [Sas85].  There  exists  a  polynomial p with  the  fol- 
lowing  property.  Let G be any  undirected  graph  with N vertices,  let 
M* denote  the  cardinality of a  maximum  cardinality  matching of G 
and  let T denote  the  maximum degree of vertices  in G. Then  there 
exists  a  temperature  (which is a  decreasing function of the  number of 
vertices of G )  such  that  the  annealing  algorithm  run  at  a fixed tem- 
perature T finds  a  matching of cardinality  at  least 

in average  time  at  most  p(N). 

We  feel a stronger  result  holds  for  general  graphs. 
This  result is strongest  when 7 <<N (the case of "sparse  graphs"). 

5. THE ROLE OF STATISTICAL MECHANICS 
The  simulated  annealing  algorithm is a  decedent of work in sta- 

tistical  mechanics.  Can  statistical  mechanics  help  us  further?  Perhaps 
the  main  use  for  statistical  mechanics  concepts is to  predict  the  "typi- 
cal"  behavior of the  annealing  algorithm  when  applied  to  "typical" 
large  problems. Of course,  its  behavior  on  different  problems  may 
vary  drastically -- but  it  may  be  desirable  to  identify  several  types of 

[WhiS4]. 
typical  behavior.  We  first  summarize  some of the  work of White 

Consider  a  large  system. U'e postulate  that  there is an  approxi- 
mate  "density of states"  w. 

w(E)dEz#{states  with  energy in [E,E+dE]] 

We  make  the  following  postulate 

Postulate X .  .4way  from  regions of extremely  high  or  low  energy,  the 
density of states is approximately  Gaussian: 

~ ( E ) a e x p ( - ( E - r ) ~ / 2 A )  

where  and h are  constants.  The  density of states  observed  at  tem- 
perature T is thus 

so 

< E(T) > = E--, < E(T)' > - < E(T) > 2  = A2 A2 

T 
Note  that < E(T) > approaches  as  T-0.  When  T = A then 
< E(T) > is within  one  standard  deviation of E, which  suggests  that 

the  system  "looks  almost"  like  a  T = +w system  at  temperature  T = A .  
A second  postulate  describes  behavior  at  low energies 

Polstulate B. There is a  minimum  possible  energy Eo and  the  density 
of states  near E, is given by 

w(E) = exp((E-E,)y) E>E, 

for  some  constant y>O 

Postulate B is roughly  true,  for  example, if the  smallest  possible 
energies Eo < El < Ez < . . . are  equally spaced with  about  M'  states  with 
energy Ej. This  would  lead  to 
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Under  Postulate  B,  the  probabillt?;  density  of  states  observed  at tern- 
perature T in equilibrium. 

(const.)w(E)exp(-E/T), 

% 111 be increasing  as  E  tends  down  to E; if T <  l / y .  Thus. To = l/Y is 
roughly  the  temperature  at  which  equilibrium  states  will  tend  to be 
minimum  energy  stales. 

Combining  these  descriptions  for  middle  and  low  range  energies. 
u e  find that  the  mean  observed  e3ergy  versus  temperature  should  fol- 
10% the  curve  shown. 

From  a  theoretical  point of L iew,  a  way  to  give  meaning  to  state- 
ments  about  "typical  behavior" is to  study  large  random  problems. 
For  example,  spin  glass  theory  [ThAP77]  considers  the  random  cost 
function 

vg = s T W z  &€{l,- l lK 

where  the  components of \V are  independent  mean-zero  Gaussian  ran- 
dom  varlables  with E\T:: = J/2K for i # j  and W , , r O .  Since the  cost 
function is random, so are  the  sets of local  and  global  minima  and 
their  costs.  It  is  not  hard  to  shou.  for  example,  that  with  high  proba- 
bility \- has  roughly  2.ls  local  minima  [BrXlo80].  It  is  generally 
agreed that  the  minimum of V is typically cS, but  there is still  some 
controversy  regarding  the \,slue of the  constant  c. 

Combinatorial  problems on a  random  graph  (see  [Pal85])  are 
closely  related  (they  often  correspond  to  different  distributions  on IT) 
and  provide  more  examples  in  which  some  progress  has been  made 
regarding  the  distribution of minimum  cost  states. I also  think 
analysis of distributed  algorithms  such  as  that of [LubSS]  is  relevant. 
Some  work in statistical  mechanics  and  mathematical  statistlcal 
mechanics is concerned with  rates of convergence  to  equilibrium 
[Hol85a,HolS5b]  and  with  large  de\.iations of large  regular  systems of 
locallq-  interacting  particles [Isr79]. This  may  prove  useful in research 
on  slmuiated  annealing.  Finall>,  the  "mean field" approximation,  as 
used in [Th.AP77] for  example, IS itself  closely  related  to  a  different 
optimizatlon  technique propOSed  In [Hop64]. 

6. APPLICATIONS 
Simulated  annealing  has been applied  to  many  large  optimization 

problems.  It  has  been  used  to 
0 finc  estimates of noisy  images  which  maximize  a  Bayes  cost 

[GeGe84] 
0 finc  placements of devices  and  wire  routings  for VLSI chips 

[Ki(;~S3,VeKiS3,WhiS4] 

0 discover  new  combinatorial  constants.  such  as  Sphere-paCklng 
bounds  for  binary  sequences  (a  topic in codlng  theory)  [HeWeS4] 

0 solve  instances of difficult  combinatorial  optimization  problems 
[Cer82,G1GVS3.Bo184.GrSuS4] 

generate  samples  distributed  according  to  an  equilibrium  distri- 
bution  for  low  temperatures  [HiSA84]  (The  purpose  here  is  not 
to find  a  global  minimum.) 

Researchers  find that  the  annealing  algorithm  can find near-minimum 
solutions,  but it can  be  very  slow.  Even  though  it  can  sometimes  be 
speeded up  by  parallel  implementation,  no  serious  real-time  applica- 
tions  have  emerged.  It is clear  in  numerous  cases  that  simulated 
annealing  has  many  worthy  competitors in the  form of other  heuris- 
tics  for  hard  problems [.4J\IS84]. 
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