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Abstract

Neural network ensemble is a learning paradigm where many neural networks are jointly used to solve a
problem. In this paper, the relationship between the ensemble and its component neural networks is analyzed
from the context of both regression and classification, which reveals that it may be better to ensemble many
instead of all of the neural networks at hand. This result is interesting because at present, most approaches
ensemble all the available neural networks for prediction. Then, in order to show that the appropriate neural
networks for composing an ensemble can be effectively selected from a set of available neural networks, an
approach named GASEN is presented. GASEN trains a number of neural networks at first. Then it assigns
random weights to those networks and employs genetic algorithm to evolve the weights so that they can
characterize to some extent the fitness of the neural networks in constituting an ensemble. Finally it selects
some neural networks based on the evolved weights to make up the ensemble. A large empirical study shows
that, comparing with some popular ensemble approaches such as Bagging and Boosting, GASEN can
generate neural network ensembles with far smaller sizes but stronger generalization ability. Furthermore, in
order to understand the working mechanism of GASEN, the bias-variance decomposition of the error is
provided in this paper, which shows that the success of GASEN may lie in that it can significantly reduce the
bias as well as the variance.
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1. Introduction

Neural network ensemble is a learning paradigm where a collection of a finite number of neural networks
is trained for the same task [42]. It originates from Hansen and Salamon’s work [20], which shows that the
generalization ability of a neural network system can be significantly improved through ensembling a
number of neural networks, i.e. training many neural networks and then combining their predictions. Since
this technology behaves remarkably well, recently it has become a very hot topic in both neural networks
and machine learning communities [40], and has already been successfully applied to diversified areas such
as face recognition [16, 22], optical character recognition [9, 19, 30], scientific image analysis [5], medical
diagnosis [6, 47], seismic signals classification [41], etc.

In general, a neural network ensemble is constructed in two steps, i.e. training a number of component
neural networks and then combining the component predictions.
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As for training component neural networks, the most prevailing approaches are Bagging and Boosting.
Bagging is proposed by Breiman [3] based on bootstrap sampling [10]. It generates several training sets
from the original training set and then trains a component neural network from each of those training sets.
Boosting is proposed by Schapire [39] and improved by Freund et al. [11, 12]. It generates a series of
component neural networks whose training sets are determined by the performance of former ones. Training
instances that are wrongly predicted by former networks will play more important roles in the training of
later networks. There are also many other approaches for training the component neural networks. Examples
are as follows. Hampshire and Waibel [17] utilize different object functions to train distinct component
neural networks. Cherkauer [5] trains component networks with different number of hidden units. Maclin
and Shavlik [29] initialize component networks at different points in the weight space. Krogh and Vedelsby
[28] employ cross-validation to create component networks. Opitz and Shavlik [34] exploit genetic
algorithm to train diverse knowledge based component networks. Yao and Liu [46] regard all the individuals
in an evolved population of neural networks as component networks.

As for combining the predictions of component neural networks, the most prevailing approaches are
plurality voting or majority voting [20] for classification tasks, and simple averaging [33] or weighted
averaging [35] for regression tasks. There are also many other approaches for combining predictions.
Examples are as follows. Wolpert [45] utilizes learning systems to combine component predictions. Merz
and Pazzani [31] employs principal component regression to determine the appropriate constraint for the
weights of the component networks in combining their predictions. Jimenez [24] uses dynamic weights
determined by the confidence of the component networks to combine the predictions. Ueda [43] exploits
optimal linear weights to combine component predictions based on statistical pattern recognition theory.

Note that there are some approaches using a number of neural networks to accomplish a task in the style
of divide-and-conquer [23, 25]. However, in those approaches, the neural networks are in fact trained for
different sub-tasks instead of for the same task, which makes those approaches usually be categorized into
mixture of experts instead of ensembles, and the discussion of them is beyond the scope of this paper.

It is worth mention that when a number of neural networks are available, at present most ensemble
approaches employ all of those networks to constitute an ensemble. Yet the goodness of such a process has
not been formally proved. In this paper, from the viewpoint of prediction, i.e. regression and classification,
the relationship between the ensemble and its component neural networks is analyzed, which reveals that
ensembling many of the available neural networks may be better than ensembling all of those networks.
Then, in order to show that those “many” neural networks can be effectively selected from a number of
available neural networks, an approach named GASEN (Genetic Algorithm based Selective ENsemble) is
presented. This approach selects some neural networks to constitute an ensemble according to some evolved
weights that could characterize the fitness of including the networks in the ensemble. An empirical study on
twenty big data sets show that in most cases, the performance of the neural network ensembles generated by
GASEN outperform those generated by some popular ensemble approaches such as Bagging and Boosting
in that GASEN utilizes far less component neural networks but achieves stronger generalization ability.
Moreover, this paper employs the bias-variance decomposition to analyze the empirical results, which shows
that the success of GASEN may owe to its ability of significantly reducing the bias along with the variance.

The rest of this paper is organized as follows. In Section 2, the relationship between the ensemble and its
component neural networks is analyzed. In Section 3, GASEN is presented. In Section 4, a large empirical
study is reported. In Section 5, the bias-variance decomposition of the error is provided. Finally in Section 6,
contributions of this paper are summarized and several issues for future works are indicated.
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2. Should we ensemble all the neural networks?

In order to know whether it is a good choice to ensemble all the available neural networks, this section
analyzes the relationship between the ensemble and its component neural networks. Note that since
regression and classification have distinct characteristics, the analyses are separated into two subsections.

2.1. Regression

Suppose the task is to use an ensemble comprising N component neural networks to approximate a
function f: Rm → Rn, and the predictions of the component networks are combined through weighted
averaging where a weight wi (i = 1, 2, …, N) satisfying both Eq. (1) and Eq. (2) is assigned to the i-th
component network fi.

10 ≤≤ iw (1)

1
1

=∑
=

N

i
iw (2)

The l-th output variable of the ensemble is determined according to Eq. (3) where fi,l is the l-th output
variable of the i-th component network.

  ,
1

N

i i ll
i

f w f
=
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For convenience of discussion, here we assume that each component neural network has only one output
variable, i.e. the function to be approximated is f: Rm → R. But note that the following derivation can be
easily generalized to situations where each component neural network has more than one output variables.

Now suppose x ∈  Rm is sampled according to a distribution p(x), the expected output of x is d(x), and the
actual output of the i-th component neural network is fi(x). Then the output of the ensemble on x is:
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=∑     (4)

The generalization error Ei(x) of the i-th component neural network on x and the generalization error

( )E x  of the ensemble on x are respectively:

( ) ( ) ( )( )2xdxfxE ii −=     (5)

( ) ( ) ( )( )2
E x f x d x= − (6)

Then the generalization error of the i-th component neural network and that of the ensemble, i.e. Ei and
E , on the distribution p(x) are respectively:

  ( )∫= xExdxpE ii )( (7)

  ( )( )E dxp x E x= ∫ (8)

Now we define the correlation between the i-th and the j-th component neural networks as:

( ) ( ) ( )( ) ( ) ( )( )xdxfxdxfxdxpC jiij −−∫= (9)

It is obvious that Cij satisfies both Eq. (10) and Eq. (11):

 iii EC = (10)

 
jiij CC = (11)
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Considering Eq. (4) and Eq. (6) we get:

( ) ( ) ( ) ( ) ( )
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i j
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= =

  = − −  
  
∑ ∑ (12)

Then considering Eq. (8), Eq. (9), and Eq. (12) we get:
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For convenience of discussion, here we assume that all the component neural networks have equal
weights, i.e. wi = 1/N (i = 1, 2, …, N). In other words, here we assume that the component predictions are
combined via simple averaging. Then Eq. (13) becomes:
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Now suppose that the k-th component neural network is excluded from the ensemble. Then the
generalization error of the new ensemble is:

( )2
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From Eq. (14) and Eq. (15) we can derive that if Eq. (16) is satisfied then E  is not smaller than 'E ,
which means that the ensemble excluding the k-th component neural network is better than the one including
the k-th component neural network.
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Then considering Eq. (16) along with Eq. (14), we get the constraint on the k-th component neural
network that should be excluded from the ensemble:
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It is obvious that there are cases where Eq. (17) is satisfied. For an extreme example, when all the
component neural networks are the duplication of the same neural network, Eq. (17) indicates that the size of
the ensemble can be reduced without sacrificing the generalization ability.

Now we reach the conclusion that in the context of regression, when a number of neural networks are
available, ensembling many of them may be better than ensembling all of them, and the networks that should
be excluded from the ensemble satisfy Eq. (17).

2.2. Classification

Suppose the task is to use an ensemble comprising N component neural networks to approximate a
function f: Rm → L where L is the set of class labels, and the predictions of the component networks are
combined through majority voting where each component network votes for a class and the class label
receiving the most number of votes is regarded as the output of the ensemble. For convenience of discussion,
here we assume that L contains only two class labels, i.e. the function to be approximated is f: Rm → {-1,
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+1}.1 But note that the following derivation can also be generalized to situations where L contains more than
two class labels.

Now suppose there are m instances, the expected output, i.e. D, on those instances is [d1, d2, …, dm]T

where dj denotes the expected output on the j-th instance, and the actual output of the i-th component neural
network, i.e. fi, on those instances is [fi1, fi2, …, fim]T where fij denotes the actual output of the i-th component
network on the j-th instance. D and fi satisfy that dj ∈  {-1, +1} (j = 1, 2, …, m) and fij ∈  {-1, +1} (i = 1, 2, …,
N; j = 1, 2, …, m ) respectively. It is obvious that if the actual output of the i-th component network on the j-
th instance is correct according to the expected output then fijdj = +1, otherwise fijdj = -1. Thus the
generalization error of the i-th component neural network on those m instances is:

( )
1

1 m

i ij j
j

E Error f d
m =

= ∑ (18)

where Error(x) is a function defined as:
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= =
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(19)

Now we introduce a vector Sum as [Sum1, Sum2, …, Summ]T where Sumj denotes the sum of the actual
output of all the component neural networks on the j-th instance,2 i.e.

1

N

j ij
i

Sum f
=

=∑ (20)

Then the output of the neural network ensemble on the j-th instance is:

   ( )jjf Sgn Sum= (21)

where Sgn(x) is a function defined as:

    ( )
1 0
0 0
1 0

if x
Sgn x if x

if x

>
= =
− <

(22)

It is obvious that 
jf  ∈  {-1, 0, +1} (j = 1, 2, …, m). If the actual output of the ensemble on the j-th

instance is correct according to the expected output then 
jjf d  = +1; if it is wrong then 

jjf d = -1; otherwise

jjf d = 0, which means that there is a tie on the j-th instance, e.g. three component networks vote for +1
while other three networks vote for -1. Thus the generalization error of the ensemble is:

( )
1

1 m

jj
j

E Error f d
m =

= ∑ (23)

Now suppose that the k-th component neural network is excluded from the ensemble. Then the output of
the new ensemble on the j-th instance is:

   ( )' j kjjf Sgn Sum f= − (24)

and the generalization error of the new ensemble is:

                                                       
1 The set of two class labels are often denoted as {0, 1}. However, using {-1, +1} here is more helpful for following
derivation.
2 Here the class labels, i.e. -1 and +1, are regarded as integers, which is the profit of using {-1, +1} instead {0, 1} in
denoting the class labels.
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From Eq. (23) and Eq. (25) we can derive that if Eq. (26) is satisfied then E  is not smaller than 'E ,
which means that the ensemble excluding the k-th component neural network is better than the one including
the k-th component neural network.
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=

− − ≥∑ (26)

Then considering that the exclusion of the k-th component neural network won’t impact the output of the
ensemble on the j-th instance where | Sumj | > 1, and considering the properties of the combination of the
functions Error(x) and Sgn(x) when x ∈  {-1, 0, +1} and y ∈  {-1, +1}, i.e.

( )( ) ( )( ) ( )1
2

Error Sgn x Error Sgn x y Sgn x y− − = − + (27)

we get the constraint on the k-th component neural network that should be excluded from the ensemble:
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It is obvious that there are cases where Eq. (28) is satisfied. For an extreme example, when all the
component neural networks are the duplication of the same neural network, Eq. (28) indicates that the size of
the ensemble can be reduced without sacrificing the generalization ability.

Now we reach the conclusion that in the context of classification, when a number of neural networks are
available, ensembling many of them may be better than ensembling all of them, and the networks that should
be excluded from the ensemble satisfy Eq. (28).

3. Selective ensemble of neural networks

In Section 2 we have proved that ensembling many of the available neural networks may be better than
ensembling all of those networks in both regression and classification, and the networks that should not be
included in the ensemble satisfy Eq. (17) and Eq. (28) respectively. However, excluding those “bad” neural
networks from the ensembles is not an easy task as we may have imagined.

Let’s look around Eq. (17) and Eq. (28) again. It is obvious that even with the assumptions such as there
is only one output variable in regression and there are only two class labels in classification, the
computational cost required by those equations for identifying the neural networks that should not join the
ensembles is still too extensive to be met in real-world applications.

In this section we present a practical approach, i.e. GASEN, to find out the neural networks that should
be excluded from the ensemble. The basic idea of this approach is a heuristics, i.e. assuming each neural
network can be assigned a weight that could characterize the fitness of including this network in the
ensemble, then the networks whose weight is bigger than a pre-set threshold λ could be selected to join the
ensemble.

Here we explain the motivation of GASEN from the context of regression. Suppose the weight of the i-th
component neural network is wi, which satisfies both Eq. (1) and Eq. (2). Then we get a weight vector w =
(w1, w2, …, wN). Since the optimum weights should minimize the generalization error of the ensemble,
considering Eq. (13), the optimum weight vector wopt can be expressed as:
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wopt.k, i.e. the k-th (k = 1, 2, …, N) variable of wopt, can be solved by lagrange multiplier, which satisfies:
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Eq. (30) can be simplified as:
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Considering that wopt.k satisfies Eq. (2), we get:
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It seems that we can solve wopt from Eq. (32). But in fact, this equation rarely works well in real-world
applications. This is because when a number of neural networks are available, there are often some networks
that are quite similar in performance, which makes the correlation matrix (Cij)N×N be an irreversible or ill-
conditioned matrix so that Eq. (32) cannot be solved.

However, although we cannot solve the optimum weights of the neural networks directly, we can try to
approximate them in some way. Look around Eq. (29) again, we may find that it could be viewed as defining
an optimization problem. Considering that genetic algorithm has been shown as a powerful optimization tool
[15], GASEN is developed. GASEN assigns a random weight to each of the available neural networks at
first. Then it employs genetic algorithm to evolve those weights so that they can characterize to some extent
the fitness of the neural networks in joining the ensemble. Finally it selects the networks whose weight is
bigger than a pre-set threshold λ to make up the ensemble. It is worth noting that if every evolved weight is
bigger than λ, then all the available neural networks will join the ensemble. We believe that this corresponds
to the situation where all the component networks satisfy neither Eq. (17) in regression nor Eq. (28) in
classification.

Note that GASEN can be applied to not only regression but also classification because the aim of the
evolving of the weights is only to select the component neural networks. In particular, the component
predictions for regression are combined via simple averaging instead of weighted averaging. This is because
we believe that using the weights both in the selection of the component neural networks and in the
combination of the component predictions is easy to suffer overfitting, which is supported by experiments
described in Section 4.

Here GASEN is realized by utilizing the standard genetic algorithm [15] and a floating coding scheme
that represents each weight in 64 bits. Thus each individual in the evolving population is coded in 8N bytes
where N is the number of the available neural networks. Note that GASEN can also be realized by
employing other kinds of genetic algorithms and coding schemes. In each generation of the evolution, the
weights are normalized so that they can compare with the pre-set threshold λ. Currently GASEN uses a quite
simple normalization scheme, i.e.
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In order to evaluate the goodness of the individuals in the evolving population, a validation data set
bootstrap sampled from the training set is used. Let V

Ew  denote the estimated generalization error of the
ensemble corresponding to the individual w on the validation set V. It is obvious that V

Ew  can express the
goodness of w, i.e. the smaller V

Ew  is, the better w is. So, GASEN uses f(w) = 1/ V
Ew  as the fitness function.

It is worth mention that with the help of Eq. (14), V
Ew  can be evaluated efficiently for regression tasks.

But since we have not such kind of intermediate result in the derivation presented in Section 2.2, the
evaluation of V

Ew  for classification tasks is relatively time-consuming.
The GASEN approach is summarized in Fig.1, where T bootstrap samples S1, S2, …, ST are generated

from the original training set and a component neural network Nt is trained from each St, an ensemble N* is
built from N1, N2, …, NT whose output is the average output of the component networks in regression, or the
class label received the most number of votes in classification.

4. Empirical study

In order to know how well GASEN works, a large empirical study is performed. This section briefly
introduces the approaches used to compare with GASEN, then presents the information on the data sets, then
describes the experimental methodology, and finally reports on the experimental results.

4.1. Bagging and Boosting

In our experiments, GASEN is compared with two prevailing ensemble approaches, i.e. Bagging and
Boosting.

The Bagging algorithm [3] employs bootstrap sampling [10] to generate many training sets from the
original training set, and then trains a neural network from each of those training sets. The component
predictions are combined via simple averaging for regression tasks and majority voting for classification
tasks. In classification tasks, ties are broken arbitrarily.

The Boosting algorithms used for classification and regression are AdaBoost [12] and AdaBoost.R2 [8]
respectively. Both algorithms sequentially generates a series of neural networks, where the training instances

  Input: training set S, learner L, trials T, threshold λ
  Procedure:
  1.  for t = 1 to T {
  2.    St = bootstrap sample from S
  3.    Nt = L(St)
  4.  }
  5.  generate a population of weight vectors
  6.  evolve the population where the fitness of a weight vector w is measured as f(w) = 1 / Ew

V

  7.  w* = the evolved best weight vector

  Output: ensemble N*
  ( ) ( )

*

* Ave
t

tN x N x
λ>

= ∑
w

for regression

  ( )
( )* :

* arg max 1
t t

y Y N x y

N x
λ∈ > =

= ∑
w

for classification

Fig. 1. The GASEN approach.
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that are wrongly predicted by the previous neural networks will play more important role in the training of
later networks. The component predictions are combined via weighted averaging for regression tasks and
weighted voting for classification tasks, where the weights are determined by the algorithms themselves.
Note that there are two ways, i.e. resampling [13] and reweighting [36], in determining the training sets used
in Boosting. In our experiments resampling is employed because neural networks can not explicitly support
weighted instances. Moreover, it is worth mention that Boosting requires that a weak learning algorithm
whose error is bounded by a constant strictly less than 0.5. In practice, this requirement cannot be
guaranteed especially when dealing with multiclass tasks. In our experiments, instead of aborting the
learning process when the error bound is breached, we generate a bootstrap sample from the original training
set and continue up to a limit of 20 such samples at a given trial. Such an option has been adopted by Bauer
and Kohavi [1] before.

4.2. Data sets

Twenty big data sets are used in our experiments, each of which contains at least 1,000 instances. Among
those data sets, ten are used for regression while the remains are used for classification.

The information on the data sets used for regression is tabulated in Table 1. 2-d Mexican Hat and 3-d
Mexican Hat have been used by Weston et al. [44] in investigating the performance of support vector
machines. Friedman #1, Friedman #2, and Friedman #3 have been used by Breiman [3] in testing the
performance of Bagging. Gabor, Multi, and SinC have been used by Hansen [18] in comparing several
ensemble approaches. Plane has been used by Ridgeway et al. [37] in exploring the performance of boosted
naive Bayesian regressors.

In our experiments, the instances contained in those data sets are generated from the functions listed in
Table 1. The constraints on the variables are also shown in Table 1, where “U[x, y]” means a uniform
distribution over the interval determined by x and y. Note that in our experiments some noise terms have
been added to the functions, but we have not shown them in Table 1 because the focus of our experiments is
on the relative performance instead of the absolute performance of the compared approaches.

All the data sets used for classification are from UCI machine learning repository [2], which has been
extensively used in testing the performance of diversified kinds of classifiers. Here the data sets are selected
according to the criterion that after the removal of instances with missing values, each data set should
contain at least 1,000 instances.

The Credit (German) we used is the numerical version donated by Strathclyde University. In Image
segmentation, a constant attribute is removed. In Allbp and Sick, seven useless nominal attributes are
removed. In Hypothyroid and Sick-euthyroid, six useless nominal attributes are removed. Besides, in Allbp,
Sick, Hypothyroid, and Sick-euthyroid, a continuous attribute that has a great number of missing values is
removed. The information on the data sets used in our experiments is tabulated in Table 2.

4.3. Experimental methodology

In our experiments, 10-fold cross validation is performed on each data set, where ten neural network
ensembles are trained by each compared approach in each fold. For Bagging and Boosting, each ensemble
contains twenty neural networks. But for GASEN, the component networks are selected from twenty neural
networks, that is, the number of networks in an ensemble generated by GASEN is far less than twenty.
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Table 1
Data sets used for regression

data set function variable size

2-d Mexican Hat
sin

sin
x

y c x
x

= = [ ]~ 2 ,2x π π−U 5,000

3-d Mexican Hat
2 2
1 22 2

1 2 2 2
1 2

sin
sin

x x
y c x x

x x

+
= + =

+
[ ]~ 4 ,4x π π−U 3,000

Friedman #1 ( ) ( )2
1 2 3 4 510sin 20 0.5 10 5y x x x x xπ= + − + + [ ]~ 0,1ix U 5,000

Friedman #2
2

2
1 2 3

2 4

1y x x x
x x

  
= + −  

  

[ ]1 ~ 0,100x U

[ ]2 ~ 40 ,560x π πU

[ ]3 ~ 0,1x U

[ ]4 ~ 1,11x U

5,000

Friedman #3 2 3
1 2 4

1

1

tan
x x

x xy
x

−

−
=

[ ]1 ~ 0,100x U

[ ]2 ~ 40 ,560x π πU

[ ]3 ~ 0,1x U

[ ]4 ~ 1,11x U

3,000

Gabor ( ) ( )2 2
1 2 1 2exp 2 cos 2

2
y x x x xπ π = − + +    [ ]~ 0,1ix U 3,000

Multi 1 2 1 4 2 5 3 4 50.79 1.27 1.56 3.42 2.06y x x x x x x x x x= + + + + [ ]~ 0,1ix U 4,000
Plane 1 20.6 0.3y x x= + [ ]~ 0,1ix U 1,000
Polynomial 2 3 41 2 3 4 5y x x x x= + + + + [ ]~ 0,1ix U 3,000

SinC ( )sin x
y

x
= [ ]~ 0,2x πU 3,000

Table 2
Data sets used for classification

attributedata set class nominal continuous size

Allbp 3 15 6 2,643
Chess 2 36 0 3,196
Credit (German) 2 0 24 1,000
Hypothyroid 2 12 6 2,000
Image segmentation 7 0 18 2,310
LED-7 10 7 0 2,000
LED-24 10 24 0 1,000
Sick 2 15 6 2,643
Sick-euthyroid 2 12 6 2,000
Waveform-40 3 0 40 5,000

The training sets of the ensembles are bootstrap sampled from the training set of the fold. In order to
increase the diversity of those ensembles, the size of their training sets is roughly half of that of the fold. For
example, for a data set with 1,000 instances, the training set of each fold comprises 900 instances, and each
of the training sets of the ensembles contains 450 instances that are bootstrap sampled from those 900
instances. The training sets of the neural networks used to constitute the ensembles are bootstrap sampled
from the training set of the ensembles. Such a methodology is helpful in estimating the bias and variance [14]
of the ensemble approaches, which will be described in Section 5.
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Here the genetic algorithm employed by GASEN is realized by the GAOT toolbox developed by Houck
et al. [21]. The genetic operators, including select, crossover, and mutation, and the system parameters,
including the crossover probability, the mutation probability, and the stopping criterion, are all set to the
default values of GAOT. The pre-set threshold λ used by GASEN is set to 0.05. The validation set used by
GASEN is bootstrap sampled from its training set.

The neural networks in the ensembles are trained by the implementation of Backpropagation algorithm
[38] in MATLAB [7]. Each network has one hidden layer that comprises five hidden units. The parameters
such as the learning rate are set to the default values of MATLAB. Here we do not optimize the architecture
and the parameters of those networks because we care the relative performance of the compared ensemble
approaches instead of their absolute performance. During the training process, the generalization error of
each network is estimated in each epoch on a validation set. If the error does not change in five consecutive
epochs, the training of the network is terminated in order to avoid overfitting. The validation set used by a
neural network is bootstrap sampled from its training set.

In order to know how well the compared ensemble approaches work, i.e. how significant the
generalization ability is improved by utilizing those ensemble approaches, in our experiments we also test
the performance of single neural networks. For each data set, in each fold, ten single neural networks are
trained. The training sets, the architecture, the parameters, and the training process of those neural networks
are all crafted in the same way as that of the networks used in ensembles.

4.4. Results

The result of an approach in each fold is the average result of ten learning systems (ensembles or single
neural networks) generated by the approach in the fold, and the reported result is the average result of ten
folds, i.e. the 10-fold cross validation results. For regression tasks, the error is measured as mean squared
error on test instances. For classification tasks, the error is measured as the number of the test instances
correctly predicted divided by the number of the test instances.

The comparison results on regression and classification are shown in Fig.2 and Fig.3 respectively. Note
that since we care relative performance instead of absolute performance, the error of Bagging, Boosting, and
GASEN has been normalized according to that of the single neural networks. In other words, the error of
single neural networks is regarded as 1.0, and the reported error of Bagging, Boosting, and GASEN is in fact
the ratio against the error of the single neural networks. Moreover, in each of those two figures there is a
subfigure titled “average” which shows the average relative error of the compared approaches on all those
regression/classification tasks.

Fig.2 shows that all the three ensemble approaches are consistently better than single neural networks in
regression. Pairwise two-tailed t-tests indicate that GASEN is significantly better than both Bagging and
Boosting in most regression tasks, i.e. 2-d Mexican Hat, Friedman #1, Friedman #2, Gabor, Multi,
Polynomial, and SinC. As for the remaining three tasks, in Friedman #3 and Plane all the three ensemble
approaches obtain similar performance, in 3-d Mexican Hat GASEN is better than Bagging but worse than
Boosting. Note that in half of those ten tasks, i.e. 2-d Mexican Hat, Friedman #2, Gabor, Polynomial, and
SinC, the performance of GASEN is so good that the relative error is reduced to the degree close to zero. So,
we believe that GASEN is better than both Bagging and Boosting when utilized in regression, which is
supported by the subfigure titled “average” in Fig.2.

Fig.3 shows that GASEN is consistently better than single neural networks in classification. Moreover,
pairwise two-tailed t-tests indicate that GASEN is significantly better than both Bagging and Boosting in
half tasks, i.e. Chess, Credit (German), Hypothyroid, Sick, and Sick-euthyroid. As for the remaining tasks, in
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LED-7 all the three ensemble approaches obtain similar performance, in Image segmentation and Waveform-
40, GASEN is far better than Boosting but comparable to Bagging, in LED-24 GASEN is far better than
Boosting but slightly worse than Bagging, and in Allbp GASEN is worse than Boosting but comparable to
Bagging. So, we believe that GASEN is better than both Bagging and Boosting when utilized in
classification, which is supported by the subfigure titled “average” in Fig.3.

In summary, Fig.2 and Fig.3 show that GASEN is superior to both Bagging and Boosting in both
regression and classification, which strongly supports our theory formally proved in Section 2 that it may be
a better choice to ensemble many instead of all neural networks at hand.

Fig.2 and Fig.3 also show that Bagging is consistently better than a single neural network in both
regression and classification, but the performance of Boosting is not so stable. There are tasks such as 3-d
Mexican Hat and Allbp where Boosting obtains the best performance, but there are also tasks such as Credit
(German), LED-24, and Waveform-40 where the performance of Boosting is even worse than that of single
neural networks. Such observation is accordant with those reported in previous works [1, 32].
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Fig. 2. Comparison of the relative error of Bagging, Boosting, and GASEN on regression tasks.
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We also compare GASEN with its two variants on those twenty data sets with 10-fold cross validation.
The first variant is GASEN-w that uses the evolved weights to select the component neural networks but
combines the predictions of the selected networks with the normalized version of their evolved weights. In
other words, weighted averaging or weighted voting is used instead of simple averaging or majority voting
for combining the predictions of the selected networks. The second variant is GASEN-wa that also uses
genetic algorithm to evolve the weights but does not select the component neural networks according to the
evolved weights. In other words, all the available neural networks are kept in the ensembles and their
predictions are combined via weighted averaging or weighted voting with the normalized version of their
evolved weights. Note that the computational cost of GASEN-w and GASEN-wa is similar to that of
GASEN because the main difference of those approaches only lies in the utilization of the evolved weights.
The comparison results on regression and classification are shown in Table 3 and Table 4 respectively. Note
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Fig. 3. Comparison of the relative error of Bagging, Boosting, and GASEN on classification tasks.
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that since we care relative performance instead of absolute performance, the error of GASEN, GASEN-w,
and GASEN-wa has been normalized according to that of the single neural networks. It is also worth
mention that each ensemble generated by GASEN-wa contains twenty component neural networks, but each
ensemble generated GASEN-w contains the same number of component networks as that generated by
GASEN, which is far less than twenty. The average number of component neural networks used by GASEN
in constituting an ensemble is also shown in Table 3 and Table 4.

Table 3
Comparison of the relative error of GASEN, GASEN-w, and GASEN-wa on regression tasks

data set GASEN GASEN-w GASEN-wa num. of networks
used by GASEN

2-d Mexican Hat 0.038 0.038 0.035 3.82
3-d Mexican Hat 0.809 0.808 0.804 5.20
Friedman #1 0.390 0.392 0.387 3.42
Friedman #2 0.005 0.005 0.005 2.07
Friedman #3 0.974 0.973 0.973 4.82
Gabor 0.025 0.027 0.028 4.10
Multi 0.131 0.127 0.129 4.50
Plane 0.982 0.982 0.981 4.32
Polynomial 0.016 0.013 0.014 2.57
SinC 0.001 0.001 0.001 2.29
average 0.337 0.337 0.336 3.71

Table 4
Comparison of the relative error of GASEN, GASEN-w, and GASEN-wa on classification tasks

data set GASEN GASEN-w GASEN-wa num. of networks
used by GASEN

Allbp 0.186 0.418 0.210 4.76
Chess 0.607 0.705 0.597 5.83
Credit (German) 0.878 0.949 0.876 7.78
Hypothyroid 0.741 0.886 0.759 6.08
Image segmentation 0.676 0.764 0.665 7.55
LED-7 0.947 0.984 0.943 8.27
LED-24 0.745 0.771 0.739 10.66
Sick 0.751 0.877 0.755 5.92
Sick-euthyroid 0.659 0.781 0.652 5.36
Waveform-40 0.871 0.927 0.870 8.76
average 0.706 0.806 0.707 7.10

Pairwise two-tailed t-tests indicate that GASEN is significantly better than GASEN-w on almost all the
classification data sets. We believe that this is because using the evolved weights both in the selection of the
component neural networks and the combination of the component predictions is easy to suffer overfitting.
There is no significant difference between GASEN and GASEN-w in regression. We believe that this is
because the regression data sets we used are artificially generated while most of the classification data sets
we used are from real-world tasks, which leads to that the noise in the regression data sets is far less than
that in the classification data sets. So, overfitting is easier to happen to the classification data sets than the
regression data sets in our experiments.

Pairwise two-tailed t-tests also indicate that there is no significant difference between the generalization
ability of the ensembles generated by GASEN and those generated by GASEN-wa. We believe that this is
because GASEN-wa does not use the evolved weights to select component neural networks, overfitting may
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not be so serious as in GASEN-w. But since the size of the ensembles generated by GASEN is about only
19% (3.71/20.0) in classification and 36% (7.10/20.0) in regression of the size of the ensembles generated
by GASEN-wa, and those two approaches are with similar computational cost, we believe that GASEN is
better than GASEN-wa.

5. Bias-variance decomposition

In order to explore the reason of the success of GASEN, the bias-variance decomposition is employed to
analyze the empirical results of Bagging, Boosting, and GASEN. This section briefly introduces the bias-
variance decomposition and then presents the decomposition results.

5.1. Bias and variance

The bias-variance decomposition [14] is a powerful tool for investigating the working mechanism of
learning approaches. Given a learning target and the size of training set, it breaks the expected error of a
learning approach into the sum of three non-negative quantities, i.e. the intrinsic noise, the bias, and the
variance. The intrinsic noise is a lower bound on the expected error of any learning approach on the target.
The bias measures how closely the average estimate of the learning approach is able to approximate the
target. The variance measures how much the estimate of the learning approach fluctuates for the different
training sets of the same size.

At present there are several kinds of bias-variance decomposition schemes [4, 26, 27]. Here we adopt the
one proposed by Kohavi and Wolpert [26]. Let YH be the random variable representing the label of an
instance in the hypothesis space, and YF be the random variable representing the label of an instance in the
target. Then the bias and the variance are expressed as Eq. (34) and Eq. (35) respectively.
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∈
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∈
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According to Kohavi and Wolpert [26], for estimating the bias and variance of a learning approach, the
original data set is split into two parts, that is, D and E. Then, N training sets are sampled from D, whose size
is roughly half of that of D to guarantee that there are not many duplicate training sets in those N training
sets even for small D. After that, the learning approach is ran on each of those training sets and the bias and
variance are estimated with Eq.(34) and Eq.(35). The whole process can be repeated several times to
improve the estimates.

Since it is difficult to estimate the intrinsic noise in practice, the actual bias-variance decomposition
scheme of Kohavi and Wolpert [26] generates a bias term that includes the intrinsic noise. Therefore the bias
plus the variance should be equal to the average error. However, if an ensemble approach employs majority
voting in classification, then the sum of the bias and the variance generated by such a decomposition scheme
may not be strictly equal to the average error. Nevertheless, this is no a serious problem in our scenarios
because such a problem also occurs in some other bias-variance decomposition schemes [4] and the
generated bias and variance are still useful in exploring the reason of the success of GASEN.

5.2. Results

With the experimental methodology described in Section 4.3, it is easy for us to estimate the bias and
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variance of the compared approaches according to Kohavi and Wolpert [26]’s decomposition scheme. In
detail, in our experiments, 90% data of the original data set is used as the original training set while the
remaining 10% data is used as the test set. From the original training set, ten training sets whose size is
roughly half of the original training set are sampled. Then, the ensemble approaches are ran on each of those
ten training sets and their bias and variance are estimated with Eq.(34) and Eq.(35). Such a process is
repeated for ten times to improve the estimates.

The bias of the compared ensemble approaches on regression and classification are shown in Fig.4 and
Fig.5 respectively, and the variance of them are shown in Fig.6 and Fig.7. Note that since we care relative
performance instead of absolute performance, the bias/variance of Bagging, Boosting, and GASEN has been
normalized according to that of single neural networks. In other words, the bias/variance of single neural
networks is regarded as 1.0, and the reported bias/variance of Bagging, Boosting, and GASEN is in fact the
ratio against the bias/variance of the single neural networks. Moreover, in each of those figures there is a
subfigure titled “average” which shows the average relative bias/variance of the compared approaches on all
those regression/classification tasks.
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Fig. 4. Comparison of the relative bias of Bagging, Boosting, and GASEN on regression tasks.
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Fig.4 shows that in most regression tasks, i.e. 2-d Mexican Hat, 3-d Mexican Hat, Friedman #2, Gabor,
Multi, Polynomial, and SinC, Boosting can significantly reduce the bias, and the degree of its reduction is
bigger than that of Bagging except in Multi. As for the remaining three tasks, in Friedman #3 both Boosting
and Bagging cannot reduce the bias, in Friedman #1 and Plane Boosting even increases the bias. Therefore
it seems that Boosting is better than Bagging in reducing the bias but its performance is not very stable,
which is accordant with the observations reported in previous works [1, 4].

Pairwise two-tailed t-tests indicate that in almost all the regression tasks except 3-d Mexican Hat,
Friedman #3, and Plane, GASEN is significantly better than Boosting in reducing the bias. In particular,
GASEN’s ability of reducing the bias is so good that in Friedman #2, Polynomial, and SinC the relative bias
is even reduced to the degree close to zero. Therefore we believe that in regression tasks, GASEN is the best
among the compared ensemble approaches in reducing the bias, which is supported by the subfigure titled
“average” in Fig.4.

Fig.5 shows that in majority classification tasks, i.e. Allbp, Chess, Hypothyroid, Image segmentation,
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Fig. 5. Comparison of the relative bias of Bagging, Boosting, and GASEN on classification tasks.



18

Sick, and Sick-euthyroid, Boosting can reduce the bias, but Bagging can only reduce the bias in Allbp and
Chess. Moreover, when Boosting cannot reduce the bias, such as in Credit (German), LED-7, LED-24, and
Waveform-40, neither can Bagging. Therefore it seems that Boosting is more effective than Bagging in
reducing the bias, which is accordant with the observations reported in previous works [1, 4].

Pairwise two-tailed t-tests indicate that when Boosting can significantly reduce the bias in the
classification tasks, GASEN can also do so although the degree of its reduction may not be so large as that
of Boosting. Therefore we believe that in classification tasks, although GASEN’s ability of reducing the bias
is not so good as that of Boosting, it is still better than that of Bagging, which is supported by the subfigure
titled “average” in Fig.5.

So, from Fig.4 and Fig.5, we believe that the success of GASEN may partially owe to its ability of
significantly reducing the bias.

Fig.6 shows that Bagging can significantly reduce the variance in all regression tasks, but the
performance of Boosting is not so stable. There are tasks such as 2-d Mexican Hat, Gabor, and SinC where
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Fig. 6. Comparison of the relative variance of Bagging, Boosting, and GASEN on regression tasks.
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Boosting reduces the variance more significantly than Bagging, but there are also tasks such as Plane where
Boosting greatly increases the variance.

Pairwise two-tailed t-tests indicate that GASEN can also significantly reduce the variance in all the
regression tasks. Moreover, GASEN’s ability in reducing the variance is even significantly better than that of
Bagging in almost half of those tasks, i.e. Friedman #2, Gabor, Polynomial, and SinC. Therefore we believe
that in regression tasks, GASEN is the best among the compared ensemble approaches in reducing the
variance, which is supported by the subfigure titled “average” in Fig.6.

Fig.7 shows that Bagging can significantly reduce the variance in all classification tasks, but the
performance of Boosting is not so stable. There are tasks such as Allbp, Chess, LED-7, and Sick where
Boosting greatly reduces the variance, but there are also tasks such as Credit (German), LED-24, and
Waveform-40 where Boosting greatly increases the variance.

Pairwise two-tailed t-tests indicate that when Bagging can significantly reduce the variance in the
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Fig. 7. Comparison of the relative variance of Bagging, Boosting, and GASEN on classification tasks.
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classification tasks, GASEN can also do so although the degree of its reduction may not be so large as that
of Bagging. Therefore we believe that in classification tasks, although GASEN’s ability of reducing the
variance is not so good as that of Bagging, it is still better than that of Boosting, which is supported by the
subfigure titled “average” in Fig.7.

So, from Fig.6 and Fig.7, we believe that the success of GASEN may partially owe to its ability of
significantly reducing the variance.

In summary, from Fig.4 to Fig.7 we find that in regression tasks GASEN can do better than both Bagging
and Boosting in reducing both the bias and the variance, and in classification tasks GASEN is better than
Bagging in reducing the bias and is better than Boosting in reducing the variance. So, we believe that the
success of GASEN may lie in that it has the ability of significantly reducing both the bias and the variance
simultaneously.

We guess that GASEN can reduce the bias because it efficiently utilizes the training data in that it
employs a validation set that is bootstrap sampled from the training set, and it can reduce the variance
because it combines multiple versions of the same learning approach. However, those guesses should be
justified by rigorous theoretical analysis.

6. Conclusions

At present, most neural network ensemble approaches utilize all the available neural networks to
constitute an ensemble. However, the goodness of such a process has not yet been formally proved. In this
paper, the relationship between the ensemble and its component neural networks is analyzed, which reveals
that it may be a better choice to ensemble many instead of all the available neural networks. This theory may
be useful in designing powerful ensemble approaches. Then, in order to show the feasibility of the theory, an
ensemble approach named GASEN is presented. A large empirical study shows that GASEN is superior to
both Bagging and Boosting in both regression and classification because it utilizes far less component neural
networks but achieves stronger generalization ability.

Note that although GASEN has obtained impressive performance in our empirical study, we believe that
there are approaches that could do better than GASEN along the way that GASEN goes, i.e. ensembling
many instead of all available neural networks under certain circumstances. The reason is that GASEN has
not been finely tuned because its aim is only to show the feasibility of our theory. In other words, the aim of
GASEN is just to show that the networks appropriate for constituting the ensemble could be effectively
selected from a collection of available neural networks. So, its performance might at least be improved
through utilizing better fitness functions, coding schemes, or genetic operators. In the future we hope to use
some other large-scale data sets such as NIST to test GASEN and tune its performance, and then apply it to
real-world applications. Moreover, it is worth mention that finding stronger ensemble approaches based on
the recognition that many could be better than all is an interesting issue for future works.

In order to explore the reason of the success of GASEN, the bias-variance decomposition is employed in
this paper to analyze the empirical results. It seems that the success of GASEN mainly lies in that GASEN
could reduce the bias as well as the variance. We guess that GASEN can reduce the bias because it
efficiently utilizes the training data in that it employs a validation set bootstrap sampled from the training set,
and it can reduce the variance because it combines multiple version of the same learning approach. Rigorous
theoretical analysis may be necessary to justify those guesses, which is another interesting issue for future
works.
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