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GRANULATION—A CORE CONCEPT 

granulation 

rough set theory 

computational 
theory of  

perceptions 
NL-Computation 

granular 
computing 

Granular Computing= ballpark computing 

CTP 

RST 

NL-C 

GrC 
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GRANULATION 

  granulation: partitioning (crisp or fuzzy) of an object 
into a collection of granules, with a granule being a 
clump of elements drawn together by 
indistinguishability, equivalence, similarity, 
proximity or functionality. 

 
example:  
Body          head+neck+chest+ans+···+feet. 
 
Set          partition into equivalence classes 

RST GRC 

f-granulation 

c-granulation 
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GRANULATION OF A VARIABLE 
(Granular Variable) 

  continuous    quantized  granulated 
  
 Example: Age 

quantized 
Age 0 

1 
µ 

1 

0 

young  
middle
-aged old  

Age 

µ 

granulated 
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GRANULATION OF A FUNCTION 
GRANULATION=SUMMARIZATION 

      if X is small then Y is small 
      if X is medium then Y is large 
      if X is large then Y is small 0 X 

0 

Y 

  f   *f : 
perception 

Y 

*f (fuzzy graph) 
medium × large 

f 

0 

S M L 

L 

M 
S 

granule 

summarization 
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GRANULATION OF A PROBABILITY DISTRIBUTION 

A1 A2 A3 

P1 
P2 
P3 

probability 

BMD:  P(X) = Pi(1)\A1  +  Pi(2)\A2 +  Pi(3)\A3 
 Prob {X is Ai }  is Pj(i) 

0 
X 

P(X)= low\small + high\medium + low\large 

X is a real-valued random variable 

g 
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GRANULAR VS. GRANULE-VALUED 
DISTRIBUTIONS 

distribution 

… 

p1 

granules 

pn 

P1 P2 P Pn 

P

0 
A1 A2 A An 

X

g(u): probability 
density of X 
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possibility distribution of 
probability distributions 

probability distribution of 
possibility distributions 
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PRINCIPAL TYPES OF GRANULES 

  Possibilistic 
 X is a number in the interval [a, b] 

  Probabilistic 
 X is a normally distributed random variable 

with mean a and variance b 
  Veristic 

 X is all numbers in the interval [a, b] 
  Hybrid 

 X is a random set 
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SINGULAR AND GRANULAR VALUES 

  X is a variable taking values in U 
  a, aεU, is a singular value of X if a is a singleton 

  A is a granular value of X if A is a granule, that is, A 
is a clump of values of X drawn together by 
indistinguishability, equivalence, similarity, 
proximity or functionality. 

  A may be interpreted as a representation of 
information about a singular value of X.  

  A granular variable is a variable which takes granular 
values 

  A linguistic variable is a granular variable with 
linguistic labels of granular values. 
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SINGULAR AND GRANULAR VALUES 

7.3% high 
102.5 very high 

160/80 high 

singular granular 
unemployment 

temperature 
blood pressure 

A 
granular value of X 

singular value of X 
universe of discourse 
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ATTRIBUTES OF A GRANULE 
  Probability measure 

  Possibility measure 

  Verity measure 

  Length 

  Volume 

  … 
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value of X is not 
known precisely 
       

value of X need not 
be known precisely 

granulation 

imperative 
(forced) 

intentional 
(deliberate) 

Rationale 1 

Rationale 2: precision is costly 
  if there is a tolerance for imprecision,  
  exploited through granulation of X 

RATIONALES FOR GRANULATION 

Rationale 2 
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          precise value   
•   p: X is a Gaussian random variable with mean m and 
variance σ2. m and σ2 are precisely defined real 
numbers 
•   p is v-imprecise and m-precise  
 
 
•   p: X is in the interval [a, b]. a and b are precisely 
defined real numbers 
•  p is v-imprecise and m-precise 

  precise meaning  
   

PRECISE 

v-precise  m-precise 

CLARIFICATION—THE MEANING OF PRECISION 

granulation = v-imprecisiation 
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machine-oriented 

m-precisiation 

mh-precisiation  mm-precisiation 

human-oriented 

MODALITIES OF m-PRECISIATION 

mm-precise: mathematically well-defined 
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CLARIFICATION 

  Rationale 2: if there is a tolerance for imprecision, 
exploited through granulation of X 

  Rationale 2: if there is a tolerance for v-imprecision, 
exploited through granulation of X followed by mm-
precisiation of granular values of X 

  Example: Lily is 25  Lily is young   

young 
1 

0 

16 /73 LAZ 6/25/2007 



RATIONALES FOR FUZZY LOGIC 

*X 

BL(X) 

FL(X) 

NL(X) 

IDL 

RATIONALE 1 

mm-precisiation 

v-imprecise 

BL: bivalent logic language 
FL: fuzzy logic language 
NL: natural language 
IDL: information description language 
•  FL is a superlanguage of BL 
•  Rationale 1: information about X is described in FL via NL  
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RATIONALES FOR FUZZY LOGIC 

X *X FL
(X) 

RATIONALE 2—Fuzzy Logic Gambit 

v-precise 

v-imprecisiation mm-precisiation 

v-imprecise 

Fuzzy Logic Gambit: if there is a tolerance for 
imprecisiation, exploited by v-imprecisiation followed by 
mm-precisiation 

•   Rationale 2 plays a key role in fuzzy control 

18 /73 LAZ 6/25/2007 



CHARACTERIZATION OF A GRANULE 
  granular value of X = information, I(X), about the 

singular value of X 
  I(X) is represented through the use of an information 

description language, IDL.  
 

  BL: SCL (standard constraint language) 
  FL: GCL (generalized constraint language) 
  NL: PNL (precisiated natural language) 

I(X) 

BL(X) 

FL(X) 

NL(X) 

bivalent logic 

fuzzy logic 

natural language 

IDL 

information = generalized constraint 19 /73 LAZ 6/25/2007 



EXAMPLE—PROBABILISTIC GRANULE 

  Implicit characterization of a probabilistic granule via 
natural language  

  X is a real-valued random variable 

  Probability distribution of X is not known precisely. 
What is known about the probability distribution of X 
is: (a) usually X is much larger than approximately a; 
usually X is much smaller than approximately b.  

  In this case, information about X is mm-precise and 
implicit. 
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PREAMBLE 
  In scientific theories, representation of 

constraints is generally oversimplified. 
Oversimplification of constraints is a 
necessity because existing constrained 
definition languages have a very limited 
expressive power. The concept of a 
generalized constraint is intended to provide 
a basis for construction of a maximally 
expressive constraint definition language 
which can also serve as a meaning 
representation/precisiation language for 
natural languages.  
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GENERALIZED CONSTRAINT (Zadeh 1986)  

•  Bivalent constraint (hard, inelastic, categorical:) 
X ε C 

constraining bivalent relation 

GC(X): X isr R 

constraining non-bivalent (fuzzy) relation 
index of modality (defines semantics)  

constrained variable  

  Generalized constraint on X: GC(X) 

r: ε | = | ≤ | ≥ | ⊂ | … | blank | p | v | u | rs | fg | ps |… 

bivalent  
primary 

  open GC(X): X is free (GC(X) is a predicate) 
  closed GC(X): X is instantiated (GC(X) is a proposition) 
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CONTINUED 
•  constrained variable 
 

• X is an n-ary variable, X= (X1, …, Xn) 
• X is a proposition, e.g., Leslie is tall 
• X is a function of another variable: X=f(Y) 
• X is conditioned on another variable, X/Y 
• X has a structure, e.g., X= Location 

(Residence(Carol)) 
• X is a generalized constraint,  X: Y isr R 
• X is a group variable. In this case, there is 

a group, G: (Name1, …, Namen), with each 
member of the group, Namei, i =1, …, n, 
associated with an attribute-value, hi, of 
attribute H. hi may be vector-valued. 
Symbolically 
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CONTINUED 
G = (Name1, …, Namen) 
 
G[H] = (Name1/h1, …, Namen/hn) 
 
G[H is A] = (µA(hi)/Name1, …, µA(hn)/Namen) 

  
 Basically, G[H] is a relation and G[H is A] is a 
fuzzy restriction of G[H] 

 
Example: 
 

 tall Swedes   Swedes[Height is tall] 
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GENERALIZED CONSTRAINT—MODALITY r 

X isr R  

r: =   equality constraint: X=R is abbreviation of X is=R 
r: ≤   inequality constraint: X ≤   R 
r:⊂   subsethood constraint: X  ⊂  R 
r: blank  possibilistic constraint; X is R; R is the possibility 

  distribution of X 
r: v   veristic constraint; X isv R; R is the verity 

  distribution of X 
r: p   probabilistic constraint; X isp R; R is the  

  probability distribution of X 
Standard constraints: bivalent possibilistic, bivalent veristic 

and probabilistic 
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CONTINUED 

r: bm   bimodal constraint; X is a random variable; R is a 
    bimodal distribution 

 
r: rs   random set constraint; X isrs R; R is the set- 

  valued probability distribution of X 

r: fg   fuzzy graph constraint; X isfg R; X is a function 
   and R is its fuzzy graph 

r: u   usuality constraint; X isu R means usually (X is R) 

r: g   group constraint; X isg R means that R constrains 
  the attribute-values of the group  
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PRIMARY GENERALIZED CONSTRAINTS 

  Possibilistic: X is R 
  Probabilistic: X isp R 
  Veristic: X isv R 
 
  Primary constraints are formalizations of 

three basic perceptions: (a) perception of 
possibility; (b) perception of likelihood; and 
(c) perception of truth 

 
  In this perspective, probability may be 

viewed as an attribute of perception of 
likelihood 
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STANDARD CONSTRAINTS 

  Bivalent possibilistic: X ε C (crisp set) 

  Bivalent veristic: Ver(p) is true or false 
 
  Probabilistic: X isp R 

  Standard constraints are instances of 
generalized constraints which underlie 
methods based on bivalent logic and 
probability theory 
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EXAMPLES: POSSIBILISTIC 
 
 
  Monika is young     Age (Monika) is young 
 
 
  Monika is much younger than Maria 
  (Age (Monika), Age (Maria)) is much younger 
 
  most Swedes are tall   

      Count (tall.Swedes/Swedes) is most 

X R 

X 

X 

R 

R 
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EXAMPLES: VERISTIC 

  Robert is half German, quarter French and 
quarter Italian 
  Ethnicity (Robert) isv (0.5|German + 
0.25|French + 0.25|Italian) 

 
  Robert resided in London from 1985 to 

1990 
  Reside (Robert, London) isv [1985, 
1990] 
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GENERALIZED CONSTRAINT LANGUAGE (GCL) 
  GCL is an abstract language 
  GCL is generated by combination, qualification, 

propagation and counterpropagation of generalized 
constraints 

  examples of elements of GCL 
  X/Age(Monika) is R/young (annotated element) 
  (X isp R) and (X,Y) is S) 
  (X isr R) is unlikely) and (X iss S) is likely 
  If X is A then Y is B 

  the language of fuzzy if-then rules is a sublanguage 
of GCL 

  deduction= generalized constraint propagation and 
counterpropagation 
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EXTENSION PRINCIPLE 

  The principal rule of deduction in NL-
Computation is the Extension Principle 
(Zadeh 1965, 1975). 

))u(f(sup)v( AuB µµ =

f(X) is A 
g(X) is B 

subject to 
)u(gv =
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EXAMPLE 

 p: most Swedes are tall 
 p*: ΣCount(tall.Swedes/Swedes) is 
most 

 
further precisiation 
 
X(h): height density function (not known) 
X(h)du: fraction of Swedes whose height 

is in [h, h+du], a ≤ h ≤ b 

1du)h(Xba =∫
34 /73 LAZ 6/25/2007 



PRECISIATION AND CALIBRATION 

  µtall(h): membership function of tall (known) 
  µmost(u): membership function of most 

(known) 

1 

0 
height 

µheight 

1 

0 
fraction 

µmost 

0.5 1 1 

0 
h (height) 

X(h) 

b a 

height density function 
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CONTINUED 

  fraction of tall Swedes:   
 
  constraint on X(h) 

dh)h()h(X tall
b
a µ∫

dh)h()h(X tall
b
a µ∫ is most 

)dh)h()h(X()h( tall
b
amost µ∫µ=π

granular value 
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DEDUCTION 

q: What is the average height of Swedes? 

q*:            is ? Q  

deduction: 

              is most 

hdh)h(Xba∫

dh)h()h(X tall
b
a µ∫

hdh)h(Xba∫ is ? Q 
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THE CONCEPT OF PROTOFORM 

  Protoform= abbreviation of prototypical form 

p summarization generalization abstraction Pro(p) 

p: object (proposition(s), predicate(s), question
(s), command, scenario, decision problem, ...) 
 
Pro(p): protoform of p 
 
Basically, Pro(p) is a representation of the deep 
structure of p 

38 /73 LAZ 6/25/2007 



EXAMPLE 

  p: most Swedes are tall 

p abstraction Q A’s are B’s 

generalization Q A’s are B’s Count(G[H is R]/G) is Q 
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EXAMPLES 

Alan has severe back pain. He goes to 
see a doctor. The doctor tells him that 
there are two options: (1) do nothing; 
and (2) do surgery. In the case of 
surgery, there are two possibilities: (a) 
surgery is successful, in which case 
Alan will be pain free; and (b) surgery is 
not successful, in which case Alan will 
be paralyzed from the neck down. 
Question: Should Alan elect surgery? option 1 

option 2 

0 
1 

2  

gain 

Monika is much younger than Robert 
(Age(Monika), Age(Robert) is much.younger 
D(A(B), A(C)) is E 
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PROTOFORM EQUIVALENCE 

  at a given level of abstraction and summarization, 
objects p and q are PF-equivalent if PF(p)=PF(q) 

 
example 
p: Most Swedes are tall   Count (A/B) is Q 
q: Few professors are rich  Count (A/B) is Q   

PF-equivalence 
class 

object space protoform space 

41 /73 LAZ 6/25/2007 



PROTOFORM EQUIVALENCE—
DECISION PROBLEM 

 Pro(backpain)= Pro(surge in Iraq) = Pro
(divorce) = Pro(new job)= Pro(new 
location) 

 Status quo may be optimal 
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DEDUCTION 

1/nΣCount(G[H is R]) is Q 
1/nΣCount(G[H is S]) is T 

Σi µR(hi) is Q 
Σi µS(hi) is T 

µT(v) = suph1, …, hn(µQ(Σi µR(hi))  
subject to 

v = Σi µS(hi) 

values of H: h1, …, hn  

  In NL-computation, deduction rules are protoformal 
Example: 
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PROBABILISTIC DEDUCTION RULE 

Prob {X is Ai} is Pi     , i = 1, …, n 

Prob {X is A} is Q 

∧⋅⋅⋅∧µ∫µ=µ )du)u(g)u(((sup)v(
11 AUPgQ

))du)u(g)u((
nnn AUPUP µ∫µ∫µ

subject to 

du)u(g)u(U AU
µ∫=
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PROTOFORMAL DEDUCTION RULE 

  Syllogism 

Example 
  Overeating causes obesity    most of 

those who overeat become obese 
  Overeating and obesity cause high blood pressure

       most of those who overeat and are 
obese have high blood pressure 

  I overeat and am obese. The probability that I will 
develop high blood pressure is most2 

Q1 A’s are B’s 
Q2 (A&B)’s are C’s 
Q1Q2A’s are (B&C)’s 

precisiation 

precisiation 
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GRANULAR COMPUTING VS. NL-COMPUTATION 
  In conventional modes of computation, the objects 

of computation are values of variables.  

  In granular computing, the objects of computation 
are granular values of variables.  

  In NL-Computation, the objects of computation are 
explicit or implicit descriptions of values of 
variables, with descriptions expressed in a natural 
language.  

  NL-Computation is closely related to Computing with 
Words and the concept of Precisiated Natural 
Language (PNL). 
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PRECISIATED NATURAL LANGUAGE (PNL) 

  PNL may be viewed as an algorithmic dictionary with 
three columns and rules of deduction 

p Pre(p) Pro(p) 

Lily is young Age (Lily is young) A(B) is C 

… … … 

… … … 

NL-Computation = PNL 
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BASIC IDEA 

  Conventional computation 
 given: value of X 
 given: value of Y 
 given: f 
 compute: value of Z 

?Z= f(X, Y) 
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CONTINUED 

  NL-Computation 
 

  given: NL(X) (information about the value of X 
described in natural language)  *X 

  given: NL(Y) (information about the values of Y 
described in natural language)  *Y 

  given: NL(X, Y) (information about the values of X 
and Y described in natural language)  *(X, Y) 

  given: NL (f) (information about f described in 
natural language)  *f 

  computation: NL(Z) (information about the value 
of Z described in natural language)  *Z 

*Z= *f(*X, *Y) 
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EXAMPLE (AGE DIFFERENCE) 

Z= Age(Vera) - Age(Pat)  

  Age(Vera): Vera has a son in late twenties and a 
daughter in late thirties 

  Age(Pat): Pat has a daughter who is close to thirty. 
Pat is a dermatologist. In practice for close to 20 
years 

  NL(W1): (relevant information drawn from world 
knowledge) child bearing age ranges from about 16 
to about 42 

  NL(W2): age at start of practice ranges from about 20 
to about 40 

  Closed (circumscribed) vs. open (uncircumscribed) 
  Open: augmentation of information by drawing on 

world knowledge is allowed 
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EXAMPLE (NL(f)) 

Y=f(X) 
 

NL(f): if X is small then Y is small 
   if X is medium then Y is large 
   if X is large then Y is small 

NL(X): usually X is medium 
?NL(Y) 
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EXAMPLE (balls-in-box) 
  a box contains about 20 black and white 

balls. Most are black. There are several times 
as many black balls as white balls. What is 
the number of white balls? 

 
EXAMPLE (chaining) 

 
  Overeating causes obesity 
  Overeating and obesity cause high blood 

pressure 
  I overeat. What is the probability that I will 

develop high blood pressure? 
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KEY OBSERVATIONS--PERCEPTIONS 

  A natural language is basically a system for 
describing perceptions 

  Perceptions are intrinsically imprecise, 
reflecting the bounded ability of human 
sensory organs, and ultimately the brain, to 
resolve detail and store information 

  Imprecision of perceptions is passed on to 
the natural languages which is used to 
describe them 

  Natural languages are intrinsically imprecise 
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• it is 35 C° 
• Over 70% of Swedes are taller than 175 
cm 
• probability is 0.8          
•   
•        

• It is very warm 
• most Swedes are tall 
• probability is high 
• it is cloudy 
• traffic is heavy 
• it is hard to find parking 
near the campus  

INFORMATION 

measurement-based  
numerical  

perception-based  
linguistic  

•  measurement-based information may be viewed as a special 
case of   perception-based information 

•  perception-based information is intrinsically imprecise 
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NL-capability 

  In the computational theory of perceptions 
(Zadeh 1999) the objects of computation are 
not perceptions per se but their descriptions 
in a natural language 

  Computational theory of perceptions (CTP) is 
based on NL-Computation 

  Capability to compute with perception-based 
information= capability to compute with 
information described in a natural language= 
NL-capability. 
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KEY OBSERVATION—NL-incapability 

  Existing scientific theories are based for the 
most part on bivalent logic and bivalent-
logic-based probability theory 

  Bivalent logic and bivalent-logic-based 
probability theory do not have NL-capability 

  For the most part, existing scientific theories 
do not have NL-capability 
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DIGRESSION—HISTORICAL NOTE 

  The point of departure in NL-Computation is 
my 1973 paper, “Outline of a new approach 
to the analysis of complex systems and 
decision processes,” published in the IEEE 
Transactions on Systems, Man and 
Cybernetics. In retrospect, the ideas 
introduced in this paper may be viewed as a 
first step toward the development of NL-
Computation. 
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CONTINUED 

  In the 1973 paper, two key ideas were 
introduced: (a) the concept of a 
linguistic variable; and (b) the concept 
of a fuzzy-if-then rule. These concepts 
play pivotal roles in dealing with 
complexity. 

In brief 
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LINGUISTIC VARIABLE 

  A linguistic variable is a variable whose values are 
fuzzy sets carrying linguistic labels 

example: 
 Age: young + middle-aged + old 

 
 
 
 
hedging 
  Age: young + very young + not very young + quite 

young + … 
  Honesty: honest + very honest + quite honest + … 

0.8 

0 

young  
middle
-aged old  

Age 

µ 

25 100 

granule 
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FUZZY IF-THEN RULES 

Rule: if X is A and Y is B then Z is C 
 
 
Example: if X is small and Y is medium then Z is large 
 
Rule set: if X is A1 and Y is B1 then Z is C1 
 

       if X is An and Y is Bn then Z is Cn 
 
A rule set is a granular description of a function 

linguistic variable linguistic value linguistic value 
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HONDA FUZZY LOGIC TRANSMISSION 

Control Rules: 
1.  If (speed is low) and (shift is high) then (-3) 
2.  If (speed is high) and (shift is low) then (+3) 
3.  If (throt is low) and (speed is high) then (+3) 
4.  If (throt is low) and (speed is low) then (+1) 
5.  If (throt is high) and (speed is high) then (-1) 
6.  If (throt is high) and (speed is low) then (-3) 

0 

1 

Speed  Throttle  Shift  
30 130 

G
ra

de
 

180 0 

1 

G
ra

de
 

54 0 

1 

G
ra

de
 

5 

Close  
Low  

Fuzzy Set  

High  High 

High 

Low Not Low  

Not Very Low  
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FUZZY LOGIC TODAY 
  Today linguistic variables and fuzzy if-then rules are 

employed in almost all applications of fuzzy logic, 
ranging from digital photography, consumer 
electronics, industrial control to biomedical 
instrumentation, decision analysis and patent 
classification. A metric over the use of fuzzy logic is 
the number of papers with fuzzy in title.   

 
 
INSPEC  
1970-1979:   569 
1980-1989:   2,403 
1990-1999:   23,210 
2000-present: 21,919 
Total:   51,096 
 

MathSciNet  
1970-1979:   443 
1980-1989:   2,465 
1990-1999:   5,487 
2000-present: 5,714 
Total:   14,612 
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INITIAL  REACTIONS 

  When the idea of a linguistic variable 
occurred to me in 1972, I recognized at once 
that it was the beginning of a new direction in 
systems analysis. But the initial reaction to 
my ideas was, for the most part, hostile. Here 
are a few examples. There are many more. 
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R.E. Kalman (1972)  
 

 I would like to comment briefly on 
Professor Zadeh’s presentation. His 
proposals could be severely, 
ferociously, even brutally critisized 
from a technical point of view. This 
would be out of place here. But a blunt 
question remains: Is Professor Zadeh 
presenting important ideas or is he 
indulging in wishful thinking?  

CONTINUED 

65 /73 LAZ 6/25/2007 



 No doubt Professor Zadeh’s 
enthusiasm for fuzziness has been 
reinforced by the prevailing climate in 
the U.S.—one of unprecedented 
permissiveness. “Fuzzification” is a 
kind of scientific pervasiveness; it 
tends to result in socially appealing 
slogans unaccompanied by the 
discipline of hard scientific work and 
patient observation. 

CONTINUED 
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CONTINUED 
Professor William Kahan (1975) 
 

 “Fuzzy theory is wrong, wrong, and 
pernicious.” says William Kahan, a 
professor of computer sciences and 
mathematics at Cal whose Evans Hall 
office is a few doors from Zadeh’s. “I 
can not think of any problem that could 
not be solved better by ordinary logic.” 
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CONTINUED 
 “What Zadeh is saying is the same sort 
of things ‘Technology got us into this 
mess and now it can’t get us out.’” 
Kahan says. “Well, technology did not 
get us into this mess. Greed and 
weakness and ambivalence got us into 
this mess. What we need is more 
logical thinking, not less. The danger of 
fuzzy theory is that it will encourage the 
sort of imprecise thinking that has 
brought us so much trouble.”   
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CONTINUED 

  What my critics did not understand was that 
the concept of a linguistic variable was a 
gambit—the fuzzy logic gambit. Use of 
linguistic variables entails a sacrifice of 
precision. But what is gained is reduction in 
cost since precision is costly. The same 
rationale underlies the effectiveness of 
granular computing, rough-set-based 
techniques and NL-Computation.  
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SUMMATION 

  In real world settings, the values of 
variables are rarely known with perfect 
certainty and precision. A realistic 
assumption is that the value is 
granular, with a granule representing 
the state of knowledge about the value 
of the variable. A key idea in Granular 
Computing is that of defining a granule 
as a generalized constraint. In this way, 
computation with granular values 
reduces to propagation and 
counterpropagation of generalized 
constraints. 
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