
Bayesian Networks for

Clinical Decision Support

A Rational Approach to
Dynamic Decision-Making under Uncertainty

Marcel van Gerven



BAYESIAN NETWORKS FOR CLINICAL DECISION SUPPORT

A Rational Approach to Dynamic Decision-Making under Uncertainty

Een wetenschappelijke proeve op het gebied van de
Natuurwetenschappen, Wiskunde & Informatica

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S. C. J. J. Kortmann,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op
woensdag 5 september 2007 om 15.30 precies

door

Marcel Antonius Johannes van Gerven
geboren op 4 september 1976

te ’s-Hertogenbosch



Promotor:
Prof. dr. ir. T. P. van der Weide

Copromotor:
Dr. P. J. F. Lucas

Manuscriptcommittee:
Prof. dr. H. J. Kappen
Prof. dr. ir. A. Hasman (Universiteit van Amsterdam)
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Chapter 1

Introduction

With the current rate of scientific progress and rising costsof healthcare,Evidence-
Based Medicine(EBM) is becoming increasingly important (Woolf, 2000). EBM
is the notion that medical intervention should be based on scientific evidence, thus
maintaining a high level of healthcare, justifying both theinterventions being made
and their associated costs (Lucas and Abu-Hanna, 1999). In practice, EBM im-
plies the need for an integration of individual clinical expertise and available ex-
ternal scientific evidence, where the preferences, desires, and expectations of the pa-
tient should be central to the decision-making process (Offringa et al., 2003). These
requirements make adequate decision-making during clinical patient management
more and more difficult for the physician. Advances in (medical) informatics in
general, and artificial intelligence in particular, suggest that computers may help im-
prove healthcare quality (Hasman and Takeda, 2003).

At present, automated support of physicians during clinical patient management
using mathematically sound techniques for representing and reasoning with clinical
knowledge is possible. However, the use of these techniquesis difficult in practice
since there are few guidelines that describe how to get from the specification of a
clinical problem to a system that solves the problem using the techniques in ques-
tion. Furthermore, for real-world clinical problems it is hard to obtain the required
medical knowledge and/or clinical data. The subject matterof this thesis is there-
fore to provide techniques that allow the solution of real-world problems in clinical
decision-making using mathematically sound techniques.

1.1 Medical informatics

The role of medical informatics for the improvement of healthcare quality has been
recognized as early as the 1950’s, when Ledley and Lusted presented their classi-
cal paper on the formal concepts underlying medical reasoning (Ledley and Lusted,
1959). Medical informatics is a broad field, ranging from healthcare ICT and elec-
tronic patient records to the development of electronic guidelines and clinical deci-
sion support systems (Shortliffe et al., 2001). In this thesis, our interest is in the
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support of physicians during clinical patient management.Electronic guidelines are
evidently important in this respect since they provide a formal basis for best-practice
medicine, and can be developed using guideline-representation languages such as As-
bru, PROforma, and GLIF (Peleg et al., 2003). An alternativeto supporting clinicians
in their decision-making tasks is offered by decision-support systems. In contrast to
guidelines, these systems offer support adapted to the individual patient. Clinical de-
cision support systems (CDSSs) are defined as:active knowledge systems which use
patient data to generate case-specific advice(after (Wyatt and Spiegelhalter, 1990)).
A CDSS that makes extensive use of expert knowledge is also called anexpert system
(Jackson, 1990), and we will use this term throughout.

1.2 Expert system development

As pointed out in (Patel et al., 2004), improving medical practice by understanding
the thought processes that are involved in clinical reasoning has been on the research
agenda for at least a century (Osler, 1906). An understanding of these thought pro-
cesses is needed, since it is recognized that medical decision-making should rely
more on formal techniques instead of clinical intuition (Macartney, 1988; Lucas,
1995). The use of expert systems for clinical decision support has become com-
monplace, with many potential benefits in terms of improvingpatient safety, quality
of care, and efficiency in health care delivery (Lucas and vander Gaag, 1991; Coiera,
2003). Cognitive scientists have devoted much research to the analysis of problem
solving strategies that are used in humans (Newell and Simon, 1972; Elstein et al.,
1978). Artificial intelligence researchers have used theseproblem solving strategies
in the development of expert systems (Schreiber et al., 2000).

Domain Experts

Knowledge Engineers Database Users

Knowledge Acquisition Learning Engine

Coherence Control

Knowledge Base

Information Acquisition User Interface

Inference Engine Explanation Facility

Working Memory Action Execution

Figure 1.1: The information flow between expert system components.

Figure 1.1 depicts the components that make up an expert system and represents
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the information flow between expert system components (adapted from (Castillo
et al., 1997)). One of the distinguishing features of an expert system is that domain
knowledge, as represented in theknowledge base, is separated from the problem sol-
ving strategies, as embodied by theinference engine(Clancey, 1983). The knowledge
base is constructed from knowledge that is obtained fromdomain expertsby know-
ledge engineersand/or from statistical data contained in adatabase. The task of a
learning engineis to process the data and convert it into input to the knowledge base.
The knowledge acquisitioncomponent combines the knowledge obtained from do-
main experts and statistical data. Consistency of the obtained knowledge is enforced
by thecoherence controlcomponent. Queries made by theusersare kept inworking
memoryand are processed by theinference engine, while the interaction between the
user and the expert system takes place via auser interface. Queries are processed
by an information acquisitioncomponent, and transferred to working memory. The
inference engine processes the query, possibly taking actions by means of anaction
executioncomponent, and transferring the conclusions and explanations thereof, as
generated by anexplanation facility, to the user.

1. Select problem 2. Select knowledge sources

3. Design expert system4. Choose development tool

5. Construct expert system 6. Test expert system

7. Refine and generalize8. Maintain and update

Figure 1.2: The expert system life-cycle.

Expert system development consist of a number of steps, which is shown in
Fig. 1.2, and known as the expert system life-cycle (Weiss and Kulikowski, 1984;
Castillo et al., 1997). As shown, the first step is to select anappropriate problem.
This requires the identification of the task we wish to solve as well as the domain
we wish to solve for. This first step is crucial since it may determine the ultimate
failure or success of an expert system. Expert system development is a costly un-
dertaking that requires much effort by the domain expert as well as the knowledge
engineer. Therefore, one would like to be confident that system deployment yields
benefits in terms of cost-reduction and/or quality-improvement. In other words, the
system should be cost-effective. Once the problem has been selected, it becomes
necessary to identify the possible sources from which to acquire the knowledge that
may aid in expert system construction. The available knowledge sources that can be
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distinguished aredomain literature, expert knowledge, andstatistical data. When
adequate knowledge sources have been identified, we may proceed with the design
of the components that make up the expert system. Among othertasks, this requires
the design of the knowledge base and the selection of an appropriate inference al-
gorithm. Once the expert system components have been designed, it is necessary to
choose the development tool(s) that allow the constructionof the actual system. Con-
struction of the knowledge base is regarded to be the most difficult activity and vital
to any expert system for clinical decision support. Nevertheless, other components
are equally important for obtaining a deployable system. Once the expert system has
been constructed, a constant process of testing, refinement, and maintenance ensures
the continued use and improvement of the resulting system. Note that these steps
are not sequential, but rather follow what is known as the spiral life cycle of system
development (Boehm, 1988), where we have a continuous cycleof design, deve-
lopment, operation and evaluation. In the context of expertsystem construction, the
spiral life cycle is considered to be a model of the knowledgeengineering process: as
construction progresses from an initial prototype to an increasingly complete system,
the knowledge engineer’s understanding about the domain and the domain expert’s
understanding of knowledge engineering practice deepens (Mahoney and Laskey,
1996). For more details about expert system development, werefer to (Weiss and
Kulikowski, 1984; Turban, 1992; Castillo et al., 1997; Schreiber et al., 2000).

1.3 Traditional expert systems

Medical expert systems have been under development since the early 1960s (Warner
et al., 1961), but they gained in popularity with the development of Mycin at Stan-
ford University in the mid 1970’s (Buchanan and Shortliffe,1984). Mycin is an
expert system that assists in the diagnosis and treatment ofinfectious diseases. It
was one of the first expert systems to demonstrate impressivelevels of performance,
and other medical expert systems soon followed. Examples are Oncocin, a succes-
sor of Mycin that was used for protocol management in oncology (Shortliffe et al.,
1981), Internist-1, and its successor QMR, for diagnosis ininternal medicine (Miller
and Pople, 1982; Miller et al., 1986), Puff and Centaur for determining the presence
and severity of lung diseases (Aikins et al., 1983; Aikins, 1983), CasNet/Glaucoma
for the diagnosis and treatment of glaucoma (Weiss et al., 1978b; Kulikowski and
Weiss, 1982), PIP, a program that generates hypotheses about disease processes in
patients with renal disease (Pauker et al., 1976), and Abel,for diagnosing acid-based
and electrolyte disorders (Patil, 1981).

The earliest expert systems were inherentlyrule-basedbut it was quickly recog-
nized that one cannot escape the need to represent knowledgeof an uncertain nature.
There are many examples of uncertain knowledge in the medical domain, such as
symptoms thatmaybe caused by a specific disease, a test indicating that a disease has
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someprobability of being present, and thepossibility that a patient may be cured if
a particular treatment is administered. Consequently, various methods for reasoning
under uncertainty have been developed. At that time, it was claimed that probabi-
lity theory was inadequate for representing uncertainty, based on the belief that the
assignment of probabilities to events requires information that is not normally avai-
lable (McCarthy and Hayes, 1969). This belief was based on the following two ideas
(Jackson, 1990):

1. For a long time, thefrequentistinterpretation of probability theory, which dic-
tates that probabilities should be computed as the long-runrelative frequencies
of events, has been dominant. This means that probabilitiesmust be derived
from empirical data, which is often scarce.

2. Probability theory requires the specification of ajoint probability distribution
that determines the probability for each elementary event in the domain. Sys-
tems thathadbeen based on probability theory suffered from the fact thatthey
either made unrealistically strong independence assumptions or became in-
tractable as the number of domain variables increased (Gorry, 1973; Fryback,
1978).

The scarcity of empirical data, along with the fact that a huge number of pro-
babilities is needed to fully specify a joint probability distribution, led to the initial
dismissal of probability theory. As a result, various heuristic approaches were taken
to integrate probabilistic knowledge in medical expert systems. Examples of such
heuristic approaches are the certainty factor model, whichwas used in Mycin, and
the scoring system that was employed in Internist-1 and QMR.However, as time
progressed, it became evident that these approaches were adhoc when it came to
reasoning under uncertainty. This follows from the fact that certain desirable proper-
ties a measure of belief should adhere to are not fulfilled (Heckerman and Nathwani,
1992a). It has been demonstrated, for instance, that probabilistic reasoning in sys-
tems that employ such approaches is unsound if particularlystrong independence
assumptions between domain variables fail to hold (Horvitzet al., 1986; Horvitz and
Heckerman, 1986; Lucas, 2001), and that illogical results are obtained, such as the
dependence of a diagnosis on the order in which findings are entered (Cheeseman,
1985).

1.4 A rational approach

In contrast to the ad hoc approaches discussed in the previous section, there are ratio-
nal arguments for using probability theory to express uncertainty. It has been shown
that the axioms of probability theory follow as a logical consequence from the basic
desiderata for any measure of belief (Cox, 1946; Jaynes, 2003). Furthermore, if one
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does not follow the rules of probability theory, then one is willing to accept aDutch
book; a bet which leads to a guaranteed loss (Kyburg and Smokler, 1964).

One important development in the use of probability theory as the basis for repre-
senting uncertainty has been the shift from the frequentistinterpretation of probability
theory to thesubjectivistor Bayesianinterpretation to probability theory (named after
reverend Thomas Bayes, the 19th century probability theorist), which views proba-
bilities as a measure of belief. Under this interpretation,we may use available domain
knowledge, together with available empirical data, in order to quantify our models.
This allows the use of domain experts as a source of information when quantifying a
probabilistic model.

Work by Pearl and colleagues in the 1980s eventually led to a breakthrough in the
use of probability theory as a formalism for reasoning underuncertainty (Pearl, 1988;
Lauritzen and Spiegelhalter, 1988). By taking into accountconditional independence
between random variables, a joint probability distribution can often be represented
more compactly as a product of local conditional probability distributions. This re-
presentation takes the form of a graph whose vertices stand for the random variables
that constitute the domain, and whose edges represent the independence structure that
holds between random variables. Pearl devised an algorithmthat allows for efficient
probabilistic inference when the resulting graph forms a polytree (a directed graph
that does not contain undirected cycles) (Kim and Pearl, 1983).

Bayesian networks and Markov networks are more general models, where the
underlying graph is an acyclic and directed graph or an undirected graph respectively.
Even though reasoning under uncertainty (also known as probabilistic inference) in
these more general models is NP-hard in the exact (Cooper, 1990), as well as the
approximate case (Dagum and Luby, 1993), over the years, a great deal of algorithms
have been developed that perform well in practice (e.g., (Lauritzen and Spiegelhalter,
1988; Zhang and Poole, 1994)).1 Together with the Bayesian interpretation of pro-
bability theory these models have proven to be a sound and practical framework for
reasoning under uncertainty.

Although the described models allow for reasoning under uncertainty, often the
focus lies not only on estimation of the posterior probability of events, but also on
optimal decision-making. Decision theory (Wald, 1950) is an axiomatic theory of
decision-making, which uses probability theory to represent uncertainty, allows the
incorporation of interventions as made by a decision-maker, and expresses prefe-
rences among outcomes in terms of utilities. The soundness of this theory is mo-
tivated by the work of Von Neumann and Morgenstern, who have shown that, if a
decision-maker adheres to five rational principles, then decision-making reduces to
the maximization of expected utility (Von Neumann and Morgenstern, 1947). Early
examples of research that views the decision-theoretic approach as normative for

1It has been shown (Kong, 1991) that, already in the 1970s, genetic linkage analysis researchers
have solved special cases of probabilistic inference in Bayesian networks (Elston and Stewart, 1971).
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(clinical) decision support are (Ben-Bassat et al., 1980; Charniak, 1983; Cooper,
1984; Spiegelhalter and Knill-Jones, 1984; Andreassen et al., 1987). Influence dia-
grams (Howard and Matheson, 1984a) augment Bayesian networks with decision
variables and utility functions to allow forplanning(finding optimal decision-making
strategies).

We collectively refer to models that utilize a graph in orderto represent (stochas-
tic) independence as (probabilistic) graphical models. In the context of expert sys-
tems for clinical decision support, a graphical model can beregarded as the know-
ledge base, while the inference engine is formed by a suitable inference algorithm.
In this thesis, we will mainly focus on Bayesian networks andinfluence diagrams.

1.5 Graphical model construction

In past years, much attention has been devoted to the development of algorithms
that learn the structure and parameters of a graphical modelfrom data (Cooper and
Herskovits, 1992; Buntine, 1994; Heckerman et al., 1995). These algorithms can
be distinguished intosearch-and-scorebased methods, which search the space of
graphs, and try to optimize some measure of structure optimality (e.g., (Larrañaga
et al., 1996; Chickering, 2002)), andconstraint-basedmethods, which construct a
graph based on conditional independence tests (e.g., (Spirtes et al., 1993; Cheng et al.,
2002)). Both the graph topology and the joint probability distribution of a graphical
model can be learnt from data, provided that the dataset is sufficiently large and of
acceptable quality.

An alternative to this data-driven approach is to acquire knowledge from domain
experts by means of protocol analysis and other knowledge elicitation techniques
(Schreiber et al., 2000). This knowledge can subsequently be used to manually con-
struct a graphical model. NESTOR (Cooper, 1984), a system for the differential
diagnosis of seven diseases that cause hypercalcemia, was one of the first systems
that has been developed using this approach. It uses a graph containing 100 vertices
and 200 edges in order to represent causal and probabilisticknowledge. Pathfinder
(Heckerman and Nathwani, 1992a,b) is an early example of a graphical model that is
successfully applied in clinical practice, and is used for the diagnosis of more than
60 lymph node diseases, based on more than 130 microscopic, clinical, laboratory,
immunological, and molecular-biologic features. It has also been demonstrated that
existing expert systems can be successfully translated into expert systems that are
based on graphical models. For example, QMR-DT (Shwe et al.,1991) is a decision-
theoretic reformulation of the Internist-1/QMR expert system for diagnosis in internal
medicine, which we have already encountered in Section 1.2.The structure of the bi-
partite graph allowed for the efficient diagnosis of multiple diseases, by means of the
quickscorealgorithm (Heckerman, 1989). Finally, detailed (anatomical) knowledge
can be captured in terms of a graphical model as has been convincingly demonstrated
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by MUNIN (Olesen et al., 1989), a probabilistic network for the diagnosis of neuro-
muscular disorders.

Manual construction of a graphical model for clinical decision support requires
the specification of the independence structure between domain variables as well
as the estimation of a large number of parameters, and is well-known to be non-
trivial (Druzdzel et al., 1995; van der Gaag and Helsper, 2002). Clinical experts are
often unable to articulate the knowledge needed for constructing an expert system
(Johnson et al., 1981) and parameter estimation by experts suffers from various kinds
of cognitive biases (Kahneman et al., 1982) as demonstratedfor the medical domain
in (Berwick et al., 1981).2

In practice, datasets for realistic domains can be small andof poor quality, such
that learning a graphical model from data yields unsatisfactory results (Wu et al.,
2001; van Gerven and Lucas, 2004b). In those cases, the only remaining options
are either to learn a restricted model from data by making strong assumptions about
model structure (Friedman et al., 1997) or to construct the model by hand using avai-
lable expert knowledge.

1.6 Aim of this thesis

As described in Section 1.4, graphical models can serve as normative models for deci-
sion making under uncertainty. Given that data is scarce formany medical domains,
we are faced with either learning graphical models from small datasets, or manual
construction based on available expert knowledge. There are few guidelines that take
into account all aspects of graphical model construction.3 Given the complexity of
this task, often strong assumptions are made with respect tothe structure and/or pa-
rameters of the graphical model, such as assuming mutual exclusiveness of diseases
in Pathfinder and independence of findings given diseases in QMR-DT. These as-
sumptions may not always be warranted for the problem at hand, affecting both the
realism and usefulness of the resulting systems. As a result, few graphical models
for clinical decision support have seen a successful implementation in practice. The
main objective of this thesis is therefore:

To provide techniques for the construction of graphical models for clini-
cal decision support that are realistic enough to be appliedin practice,
where the focus on real-world problems entails that the model is con-
structed from available expert knowledge or a limited amount of data.

2The difficulty of acquiring accurate domain knowledge is commonly known as theknowledge-
acquisition bottleneck(Cullen and Bryman, 1988).

3See (Abramson and Ng, 1993; Pradhan et al., 1994; Mahoney andLaskey, 1996; Druzdzel et al.,
1999) for some exceptions.
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1.7 Thesis outline

In order to achieve the objective of Section 1.6, this thesisproceeds as follows.

Chapter 2

In Chapter 2, we deal with the necessary preliminaries. We describe probability
theory and graph theory as the mathematical foundations forgraphical models. Sub-
sequently, we focus on (inference in) probabilistic graphical models and (solving)
influence diagrams.

Chapter 3

Construction of graphical models for clinical decision support often proceeds in an
ad hoc fashion, which implies the need for a more principled approach. In Chapter
3 we develop such an approach by making a connection between the description of
clinical tasks in terms of problem solving and particular choices of Bayesian network
designs.

Chapter 4

The manual construction of a graphical model from availableexpert knowledge is a
difficult and time-consuming task. Therefore, any tool thatreduces model construc-
tion efforts is welcomed. In Chapter 4, we focus on causal independence models,
which use deterministic interaction functions in order to reduce the number of pa-
rameters that need to be specified. We provide a qualitative analysis of the indepen-
dence of causal influence, which allows us to determine the qualitative properties of
a causal independence model with a given interaction function without the need to
specify the probabilistic parameters in advance.

Chapter 5

Clinical decision support systems often require that a decision-making strategy is
represented as part of the system, and an important goal is toautomatically find
an optimal strategy for decision problems that are characterized by uncertainty and
which evolve over time. Chapter 5 proceeds with the development of a framework
for dynamic decision making under uncertainty and the construction of a number of
algorithms that approximate optimal strategies. The usefulness of the approach is
demonstrated with the solution of a dynamic decision problem in oncology.
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Chapter 6

In Chapter 6, we describe the construction and validation ofa realistic dynamic
Bayesian network for clinical decision support, where we focus on prognosis of pa-
tients that suffer from a low-grade midgut carcinoid tumors. This model has been
created in collaboration with an expert physician at the Netherlands Cancer Institute,
and is one of the largest dynamic Bayesian networks for clinical decision support to
date.

Chapter 7

Chapter 7 focuses on Bayesian networks that are used for the purpose of probabilistic
classification and which are learned from a limited amount ofdata. Three different
techniques are examined and validated using clinical data:

1. Themaximum mutual information algorithm, which learns a probabilistic clas-
sifier based on information-theoretic principles.

2. Thedecomposed tensor classifier, which uses a rank-K tensor approximation
for the purpose of classification.

3. Thenoisy-threshold classifier, which employs a particular causal independence
model as a probabilistic classifier.

Chapter 8

This thesis is concluded in Chapter 8 with a summary of the scientific contributions,
a discussion of the strengths and limitations of the described research, and a general
conclusion about the subject matter of this thesis.



Chapter 2

Preliminaries

In this chapter, we deal with the necessary preliminaries. We describe the mathemati-
cal foundations of graphical models and the algorithms thatare used for probabilistic
inference and the solution of decision problems.

2.1 Probability theory

As discussed, probability theory is used in order to represent and reason with un-
certainty.1 The measurement of uncertainty proceeds by defining asample spaceΩ,
which includes the mutually exhaustive and collectively exhaustive outcomes of an
experiment, and a collectionA of subsets ofΩ that adheres to the following proper-
ties:

1. ∅ ∈ A;

2. if A1, A2, . . . ∈ A then
⋃∞

i=1Ai ∈ A;

3. if A ∈ A thenĀ ∈ A, whereĀ denotes the complement ofA.

The setA is known as aσ-field and its elements are calledevents. The aim is to
express the degree of uncertainty about events by means of aprobability measure.

Definition 2.1. A probability measureP : A → [0, 1] on (Ω,A), defining theproba-
bility space(Ω,A, P ), is a function that satisfies the following axioms:

1. P (∅) = 0.

2. P (Ω) = 1.

3. For any infinite sequence,A1, A2, . . . ∈ A, it holds that

P

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai) .

1For a more complete treatment of probability theory we referto (Grimmett and Stirzaker, 1992).
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In general, we find it convenient to work with random variables, which describe
experimental outcome in terms of real numbers for some probability space.

Definition 2.2. A random variableis a functionX : Ω → R such that{ω ∈
Ω: X(ω) ≤ x} ∈ A for eachx ∈ R.

Sometimes, it is necessary to take time into account and to determine how a
sequence of random variables evolves over time. We call thissequence arandom
process.

Definition 2.3. A random processX is a family{X(t) : t ∈ T} of random variables
that take values inΩX and are indexed by some setT . If T ⊆ N, then we call the
process adiscrete-time process.

Each random variable has an associated distribution function.

Definition 2.4. Thedistribution functionF : R → [0, 1] of a random variableX is
defined asF (x) = P (X ≤ x).

In this thesis, we will mainly deal withdiscreterandom variables (whose values
are restricted to a countable subsetΩX = {x1, . . . , xn} of R) and to a lesser degree
with continuousrandom variables (whose values are given byR). Uppercase letters
X,Y,Z are used to denote random variables, and boldface uppercaselettersX,Y,Z
are used to denote sets or vectors of random variables. We uselowercase lettersx, y, z
to denote values that random variables may take on and usex = (x1, . . . , xn) for an
element in the sample spaceΩX = ΩX1×· · ·×ΩXn for a vectorX = (X1, . . . ,Xn)
of random variables. For a discrete random variable, we define itsprobability mass
functionas follows.

Definition 2.5. The probability mass functionof a discrete random variablesX
(loosely referred to as the probability distribution ofX) is the functionf : R→ [0, 1]
such thatf(x) = P (X = x).

A joint probability distribution is then defined as follows.

Definition 2.6. The joint probability distribution (JPD) of a vector X =
(X1, . . . ,Xn) of discrete random variables is the functionf : R

n → [0, 1] such that
f(x) = P (X = x).

We abbreviateP (X = x) by P (x), and also write it asP (X1 = x1, . . . ,Xn =
xn), which is abbreviated byP (x1, . . . , xn). Themarginal probability distribution
for a random variableXi can be obtained from the JPD as follows:

P (Xi = xi) =
∑

x1,...,xi−1,xi+1,...,xn

P (x1, . . . , xi−1, xi, xi+1, . . . , xn) .

If knowledge is obtained about the occurrence of some event then this can modify
the probabilities that other events occur. This is capturedby the notion ofconditional
probability.
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Definition 2.7. Let X and Y be two disjoint subsets of random variables with
P (y) > 0. Theconditional probability distribution(CPD) ofX given thatY =y is
given by

P (X=x | Y=y) = P (x | y) =
P (x,y)

P (y)

which stands for the probability of observingX=x given evidenceY=y.

Since conditional probabilities play a central role in the Bayesian interpretation
of probability theory, they are used to define a joint probability distributionP (X,Y),
as in:

P (X,Y) = P (X | Y)P (Y) = P (Y | X)P (X) .

By rearranging terms, Bayes’ rule follows immediately fromthis definition:

P (X | Y) =
P (Y | X)P (X)

P (Y)
(2.1)

for P (Y) > 0. InterpretingX as a hypothesis andY as the available evidence,
Bayes’ rule allows us to update our prior beliefs aboutX as evidenceY becomes
available. For the Bayesian subjectivist, Eq. (2.1) is a normative rule for belief upda-
ting in the light of available evidence (Pearl, 1988). Aposteriorbelief in the hypothe-
sisP (X | Y) is obtained by multiplying theprior belief in the hypothesisP (X) with
thelikelihoodP (Y | X) of the hypothesis given the evidence and by normalizing this
quantity using theevidenceP (Y).

2.2 Graph theory

Decision-theoretic models, as used in this thesis, rely heavily on graph-theoretical
concepts. In this section we define the necessary concepts. For additional background
material, we refer the reader to (Diestel, 2000).

Definition 2.8. A graphis a pairG = (V,E), whereV is a finite set ofnodesand
E ⊆ V × V a set ofedges. We also useV (G) andE(G) to denote nodes and edges
ofG.

We say that an edge isundirectedif {(v, v′), (v′, v)} ⊆ E(G), and we say that an
edge isdirectedif (v, v′) ∈ E(G) ⇒ (v′, v) /∈ E(G). We define the following sets
of nodes:

• We call νG(v) = {v′ | {(v, v′), (v′, v)} ⊆ E(G)} the neighborsof v and
|νG(v)| thedegreeof v.

• We callρG(v) = {v′ | (v′, v) /∈ E(G), (v′, v) ∈ E(G)} thechildrenof v and
|ρG(v)| theout-degreeof v.
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• We callπG(v) = {v′ | (v′, v) ∈ E(G), (v′, v) /∈ E(G)} theparentsof v and
|πG(v)| the in-degreeof v. Thefamilyof v is given byfaG(v) = {v} ∪ πG(v).

We also define the following node sequences.

Definition 2.9. A route in G, with lengthn − 1, is a sequencev1, . . . , vn of nodes
such that(vi, vi+1) ∈ E(G) or (vi+1, vi) ∈ E(G) for 1 ≤ i < n.

Definition 2.10. A route is called apathif (vi+1, vi) /∈ E(G) for 1 ≤ i < n.

The ancestorsanG(v) of a nodev are those nodesv′ for which there is a path
betweenv′ andv, and thedescendantsdeG(v) of a nodev are those nodesv′ for
which there is a path betweenv andv′. We call a routev1, . . . , vn of distinct nodes
such thatv1 = vn a loop, and a pathv1, . . . , vn of distinct nodes such thatv1 = vn a
cycle. A chordof a loop is an edge between two nodes in a loop that is not contained
in the loop. A graph isconnectedif there is a route fromv to v′ for all v, v′ ∈ V (G)
with v 6= v′. A directed(undirected) graph consists only of directed (undirected)
edges, and anacyclicgraph contains no (directed or undirected) cycles. For a directed
graphG, we also use the termarcsA(G) to refer to edgesE(G). Some important
classes of graphs are the following.

Definition 2.11. Anacyclic directed graph(ADG) is a directed graph that is acyclic.

Definition 2.12. A treeis a connected acyclic undirected graph, where nodes of de-
gree one are calledleafsand non-leaf nodes are calledinternal nodes.

Definition 2.13. A rooted treeis an acyclic directed graph with the edges pointing
away from a distinguished node, called theroot of the tree.

Definition 2.14. A polytreeis a directed acyclic graph that has no undirected cycles
when we drop the directions of the edges in the graph.

Definition 2.15. A moral graphGm is the graph that is obtained from an acyclic
directed graphG, by linking the parents of each node inG by edges, and by dropping
the orientation of arcs in the graph.

Definition 2.16. A triangulated graphis an undirected graph such that all loops of
length four or more have at least one chord.

Given an undirected graphG, a cliqueof G is a set of nodesC ⊆ V (G) that is
complete(all pairs of nodes inC are neighbors inG) andmaximal(C ∪ {V } with
V ∈ V (G) \C is not complete). An important property of any triangulatedgraph is
the following.

Definition 2.17. An ordering(C1, . . . ,Cm) of the cliques inG satisfies therunning
intersection propertyif Ci ∩ (C1 ∪ · · · ∪ Ci−1) ⊆ Cj for all 1 ≤ i ≤ n where
1 ≤ j ≤ i− 1.
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We may use the cliques of a graph in the definition of a secondary graph as
follows.

Definition 2.18. A clique graphof a graphG with cliquesC = {C1, . . . ,Cm} such
that V (G) = C1 ∪ · · · ∪Cm is an undirected graphG′ with V (G′) = C, such that
(Ci,Cj) ∈ E(G′)⇔ Ci ∩Cj 6= ∅.

For any triangulated graph, we may construct a clique graph known as ajunction
tree(Jensen, 1988), which is defined as follows.

Definition 2.19. A junction treeis a clique graph whose nodes and edges form a tree
that satisfies the running intersection property.

The junction tree is prominent in probabilistic inference,as is demonstrated later on.

2.3 Bayesian networks and Markov networks

The connection between probability theory and graph theoryis made by using graphs
to represent(conditional) independencerelations between random variables (Dawid,
1979).

Definition 2.20. LetX be a set of random variables with JPDP (X). LetU,Y,Z ⊆
X be disjoint subsets ofX. Then,U is said to beconditionally independentof Y

givenZ, denoted byU⊥⊥P Y | Z, iff

P (U | Y,Z) = P (U | Z)

wheneverP (Y,Z) > 0.

This independence relation can be characterized by axioms,such as the following:

1. Symmetry:
U⊥⊥P Y | Z⇔ Y⊥⊥P U | Z

2. Decomposition:
U⊥⊥P Y ∪V | Z⇒ U⊥⊥P Y | Z ∧ U⊥⊥P V | Z

3. Weak Union:
U⊥⊥P Y ∪V | Z⇒ U⊥⊥P Y | Z ∪V

4. Contraction:
U⊥⊥P Y | Z ∧ U⊥⊥P V | Y ∪ Z⇒ U⊥⊥P Y ∪V | Z

5. Intersection:
U⊥⊥P Y | Z∪V ∧U⊥⊥P V | Z∪Y⇒ U⊥⊥P Y∪V | Z iff ∀u : P (u) > 0
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If the first four axioms are satisfied then the independence relation is called asemi-
graphoidand if the fifth condition is satisfied as well, then the independence relation
is called agraphoid. These axioms allow the derivation of other interesting lemmas
such as the following.

Lemma 2.1. U⊥⊥P Y | Z ∧ U ∪ Z⊥⊥P V | Y ⇒ U⊥⊥P V | Z

Proof. We derive

U ∪ Z⊥⊥P V | Y ⇒ V⊥⊥P U ∪ Z | Y (symmetry)
⇒ V⊥⊥P U | Y ∪ Z (weak union)
⇒ U⊥⊥P V | Y ∪ Z (symmetry)

and use this result to obtain

U⊥⊥P Y | Z ∧ U⊥⊥P V | Y ∪ Z ⇒ U⊥⊥P Y ∪V | Z (contraction)
⇒ U⊥⊥P V | Z (decomposition)

which concludes the proof.

The semi-graphoid axioms have been proposed as basic to the definition of in-
formational dependency (Pearl and Paz, 1985) and although the semi-graphoid ax-
ioms allow for the derivation of many other interesting independence relations, Stu-
dený has shown that the independence relation is not finitely axiomatizable (Studený,
1989, 1992).

One way to represent a set of independence relations is by means of a graph
G. Let X denote a set of random variables. We assume that there is a one-to-one
correspondence between variables inX and nodes inV (G), and writeG = (X, E)
when this correspondence is established. We use the notation U ⊥⊥G Y | Z to denote
theseparationof U andY by Z in G, whereU, Y andZ are disjoint subsets ofX.
The notion of separation depends on the type of the graphG. If G is undirectedthen
separation is intuitively defined as the blocking of each path betweenU andY by Z.
In directedgraphs on the other hand, separation is referred to asd-separation, which
is defined as follows.

Definition 2.21. Z d-separatesU and Y, denoted byU ⊥⊥G Y | Z, if for every
routeX, . . . , Y in G, withX ∈ U andY ∈ Y, there is a vertexZ, such that

• there are no two arcs in the route that point towardsZ, andZ ∈ Z, or

• there are two arcs in the route that point towardsZ, and neitherZ nor any of
its descendants are inZ.

Let X denote a set of random variables andU, Y, Z disjoint subsets ofX. We
say that a graphG, with V (G) = X, is adependency map(D-map) ofP (X) iff

∀U,Y,Z : U⊥⊥P Y | Z⇒ U ⊥⊥G Y | Z .
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Likewise, we say thatG is anindependency map(I-map) ofP (X) iff

∀U,Y,Z : U⊥⊥P Y | Z⇐ U ⊥⊥G Y | Z .

Finally, if G is both a D-map and an I-map ofP (X), then we say thatG is a per-
fect mapof P (X). Most probability models have no perfect map representation.
However, we can use I-maps to represent independence statements for any probabi-
lity model. We say that an I-map isminimal if with the removal of any edge from the
graph, the I-map property ceases to hold, i.e., the graph represents the largest possible
number of independence statements. We now arrive at the following two definitions.

Definition 2.22. A Markov networkM = (G,Ψ) is a pair, whereG is anundirected
graphwith nodes corresponding to a set of random variablesX, representing a mi-
nimal I-map ofP (X), andΨ = {ψi(ci) : Ci ∈ C} is a set of non-negative functions,
known aspotentials, defined for the cliquesC ofG.

Definition 2.23. A Bayesian networkB = (G,P ) is a pair, whereG is an acyclic
directed graphwith nodes corresponding to a set of random variablesX, representing
a minimal I-map ofP (X), andP = {P(x | πx) : X ∈ X} is a set of conditional
probability distributions, defined for random variablesX in G.

Markov networks and Bayesian networks capture different sets of independence
relations, leading to different representations of a JPD interms of a product of local
factors. For a Markov network, with cliquesC = {C1, . . . ,Cm}, the JPD factorizes
as follows:

P (x) =
1

Z

m
∏

i=1

ψi(ci) (2.2)

whereZ =
∑

x

∏m
i=1 ψi(ci) is thepartition function, which acts as a normalizing

constant. Unfortunately, it is difficult to quantify the potentialsψi in terms of quanti-
ties that are meaningful for a domain expert. Only if the Markov network isdecom-
posable(if G is triangulated) do we have a meaningful factorization (Pearl, 1988).
Let (C1, . . . ,Cm) denote an ordering of the cliques ofG that satisfies the running
intersection property of Def. 2.17, and defineSi = Ci∩ (C1∪· · ·∪Ci−1) andRi =
Ci \ Ri. Then, a decomposable Markov network withΨ = {P (ri | si) : Ci ∈ C}
can be factorized as

P (x) =

m
∏

i=1

P(ri | si)

which allows a specification in terms of conditional probability distributions. For a
Bayesian network, we immediately obtain such a meaningful interpretation, since for
a set of random variablesX = {X1, . . . ,Xn}, the JPD factorizes as:

P (x) =
n
∏

i=1

P(xi | πi) (2.3)
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whereπi ∈ Ωπ(Xi) denotes a realization of the parents ofXi that is compatible
with x. For convenience, when dealing with a Bayesian network(G,P ) for a set of
random variablesX, we often omitG from our notation when clear from context,
and callP the JPD ofX.

2.4 Probabilistic inference

Probabilistic graphical models generally reduce the number of free parameters that
are needed to specify a JPD and allow for efficient probabilistic inference. Using
probabilistic inference, various queries may be answered,such as conditional and
marginal probabilities of a set of random variablesU ⊆ X given evidenceE ⊆
X, U ∩ E = ∅, the maximum a posteriori (MAP) hypothesis, which is the most
probable instantiation of random variables given partial evidence:E ⊂ X \ U, or
the most probable explanation (MPE), which is the most probable instantiation of
random variables given complete evidence:E = X \U.

Over the years, variousexact and approximateinference methods have been
developed, where exact methods typically require the graphstructure underlying a
graphical model to be sufficiently sparse. As mentioned,belief propagation(Pearl,
1988) is exact only when the graph is a polytree. Thejunction tree algorithm(Lau-
ritzen and Spiegelhalter, 1988), in contrast, allows for the computation of conditional
and marginal probabilities for arbitrary graphs. First, a junction tree and associated
potentials are constructed from a Bayesian network(G,P ) for a set of random vari-
ablesX as in Algorithm 2.1.

Algorithm 2.1 Junction tree construction.
input: ADG G, conditional distributionsP , random variablesX.
construct the moral graphGm fromG (moralization)
construct a triangulated graphG′ by adding edges toGm (triangulation)
construct a junction treeT = (C, E) fromG′ with cliquesC = {C1, . . . , Cm}
for X ∈ X do

assignX to a cliqueC ∈ C that containsX
end for
let Xi denote the set of random variables assigned toCi

for i = 1 tom do
defineψi(ci) =

∏

X∈Xi
P (x | πX)

end for
return T , Ψ = {ψi(ci) : Ci ∈ C}

Inference proceeds by means of evidence absorption and message passing in the
junction tree, and produces posteriors for random variablesX \E, as is described by
Algorithm 2.2.

For exact algorithms, continuous distributions are often restricted to be condi-
tional Gaussian distributions (Lauritzen and Wermuth, 1989). Although arbitrary
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Algorithm 2.2 Junction tree inference.
input: junction treeT , set of potentialsΨ, evidencee.
for i = 1 tom do

absorb evidence by settingψi(ci) = 0 if c is inconsistent withe
end for
construct separatorsSij = Ci ∩Cj for all neighborsCi andCj in C
repeat

for i = 1 tom do
for all neighborsCj ∈ ν(Ci) do

if messages byν(Ci)\{Cj} have been received byCi then sendCj the message
Mij(sij) =

∑

ci\sij
ψi(ci)

∏

k 6=j Mki(ski).
end for

end for
until all messages have been computed
for i = 1 tom do

calculateP (ci) = ψCi
(ci)

∏

k Mki(sik)
end for
for X ∈ X \E do

computeP (x | e) =
∑

ck\{x} P (ck) for the smallest cliqueCk with X ∈ Ck

end for
return {P (x | e) : X ∈ X \E}

continuous distributions can be represented by means of techniques such asmix-
tures of Gaussians(Shenoy, 2006) ormixtures of truncated exponentials(Cobb et al.,
2006), this is computationally more expensive. When extensive use is being made of
arbitrary continuous distributions, or if the graph structure becomes too dense, then
one may resort to variousdeterministicor stochasticapproximate inference algo-
rithms. Examples of deterministic approximate inference methods areloopy belief
propagation(Murphy et al., 1999), which is the application of belief propagation to
acyclic directed graphs, andvariational methods(Jordan et al., 1999), which trans-
form a probabilistic model into a less complex model in orderto compute bounds on
probabilities of interest. Examples of stochastic approximate inference methods are
importance sampling(Geweke, 1989; Yuan and Druzdzel, 2005) andGibbs sampling
(Geman and Geman, 1984; Pearl, 1987).

In case we are dealing with stochastic (decision) processes, we use a so-called
dynamic Bayesian network (DBN) in order to represent the temporal structure of
the problem (Murphy, 2002) (as explained in detail in Chapters 3 and 5). In this
case, probabilistic queries of interest may beprediction(computing posterior proba-
bilities of unobserved random variables at some future timegiven evidence),filtering
(computing posterior probabilities of unobserved random variables at the current time
given evidence),smoothing(estimating posterior probabilities of unobserved random
variables at some past time given evidence), orViterbi decoding(computing the most
probable explanation at the current time given evidence). These queries are answered



20 Preliminaries

by means of specialized inference algorithms such as the exact interface algorithm
(Murphy, 2002), which uses the junction tree algorithm as a subroutine, or approx-
imateparticle filtering, which comprises the group of sequential Monte Carlo met-
hods for dynamic state estimation. Particle filtering in a DBN amounts to sampling
particlesx′(1), . . . ,x′(N) with associated weightsw(1), . . . , wN from a distribution
P(X(t) | X(t-1) = x,Y(t) = y) that represent our belief state aboutX(t). Al-
gorithm 2.3 shows how a particle is sampled from this distribution (adapted from
(Koller and Lerner, 2001)).

Algorithm 2.3 Particle sampling in a dynamic Bayesian network.
input: previous statex, current observationsy
w = 1, x = ∅

letX ′
1, . . . , X

′
n be an ancestral ordering such that parents occur before children

for i = 1 to n do
setz ∈ Ωπ(X′

i
) compatible withx andx′

if X ′
i 6∈ Y then

samplex′i from P(X ′
i | π(X ′

i) = z)
else

setx′i to its value iny
setw = w · P(x′i | π(X ′

i) = z)
end if

end for
return (x′, w)

2.5 Influence diagrams

Although Bayesian networks allow for efficient probabilistic inference, their seman-
tics does not incorporate the notions of decision-making and outcome preference.
Influence diagrams (Howard and Matheson, 1984a) are designed exactly for this pur-
pose and are convenient for the solution of (medical) decision problems (Owens et al.,
1997; Nease and Owens, 1997). Influence diagrams are defined as follows.

Definition 2.24. An influence diagram(ID) is a tuple(C,D, U,A, P ) such thatG =
(N,A) is an ADG with nodesN = C ∪D ∪ {U} and arcsA, with

• C a set of random variables, which we refer to aschance variables,

• D a set ofdecision variablessuch that

– each decision variableD ∈ D can take on a value from a set of choices
ΩD,

– there is a total ordering≺ of the decision variables implied by a path in
G that contains allD ∈ D,
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treatment outcome

U

test

findingsymptom

disease

Figure 2.1: An influence diagram for patient treatment, where observable random variables
are shaded and decision variables are represented by rectangles. Based on a symptom, we
may choose whether or not to test a patient. This can result ina finding that some disease is
present. Our treatment decision is based on the finding in conjunction with the symptom and
the previous test decision. The actual outcome is determined by the treatment together with
the state of disease. The test and treatment both have associated costs, and there is a utility
associated with each of the different outcomes, as capturedby the utility functionU .

– if D′ ≺ D thenπ(D′) ⊆ π(D),

• U a utility function U : Ωπ(U) → R such thatρ(U) = ∅,

and whereP = {P (C | π(C))midC ∈ C}.

Figure 2.1 shows an example of an influence diagram. Chance nodes (depicted
as ellipses) represent the stochastic component of the model. If (X,C) ∈ A(G)
then the conditional probability distribution associatedwith C may be influenced by
X as in a Bayesian network. Decision nodesD (depicted as rectangles) represent
the actions that may be performed by a decision maker. If(X,D) ∈ A(G) thenX
represents information that is available to the decision maker prior to deciding upon
D. X is also known as aninformational predecessorand we normally depict only
those informational predecessors ofD that are not yet informational predecessors
of decision nodesD′ ≺ D. The assumption that all past information is relevant to
decision-making is known as theno forgettingprinciple. The utility nodeU (also
known as value node and depicted as a diamond) represents theutility of being in
a certain state, as defined by configurations of chance and decision variables. If
(X,U) ∈ A(G) thenX takes part in the specification ofU such thatU : Ωπ(U) → R.
It is assumed thatU has no children in the graph. Formally, the setP is not to be
interpreted as a set of conditional probability distributions, since chance nodes may
have decision nodes as parents, which do not normally have associated probability
distributions. EachP (C | π(C)) is rather a family that specifies for each configu-
rationd ∈ ΩD a conditional probability distribution (Lauritzen and Nilsson, 2001).
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We use the notation

P (C : D=d) =
∏

C∈C

P (C | π(C)) (2.4)

to represent the probability distribution ofC given that the decision maker has setD

equal tod (Cowell et al., 1999).
The ultimate goal of an influence diagram is to find the optimaldecision making

strategy for a given decision problem. Astochastic policyfor decisionsD ∈ D is
defined as a probability distributionP (D | π(D)) that maps configurations ofπ(D)
to a distribution over alternatives forD. If P (D | π(D)) is degenerate then we say
that the policy isdeterministic. Let V denoteC ∪D. A strategyis a set of policies
∆ = {P (D | π(D)) : D ∈ D} which induces the following joint distribution over
the variables inV:

P∆(V) = P (C : D)
∏

D∈D

P (D | π(D)) . (2.5)

Using this distribution we can compute the expected utilityof a strategy∆ as:

EU(∆) =
∑

v

P∆(v)U(v) . (2.6)

The aim of any rational decision maker is then to maximize theexpected utility by
finding an optimal strategy:

∆∗ ≡ arg max
∆

EU(∆) . (2.7)

Influence diagrams are not the only way to represent decisionproblems (notable
alternatives aredecision trees(Quinlan, 1986, 1992),valuation networks(Shenoy,
1996), andsequential decision diagrams(Covaliu and Oliver, 1995)) but the com-
pactness and intuitiveness with which (symmetric) decision problems are specified,
are desirable properties of the influence diagram formalism(Bielza and Shenoy,
1999).

2.6 Solving an influence diagram

There are different ways to solve an influence diagram (i.e.,finding the optimal stra-
tegy). The original solution method transforms an influencediagram into a corres-
ponding decision tree and then solves the corresponding decision tree (Howard and
Matheson, 1984a). This solution method does not necessarily require a total ordering
of the decision nodes, although this results in enormous space requirements (Pearl,
1988). A popular algorithm for solving influence diagrams was presented in (Olm-
sted, 1983) and is based on the following four graph transformations:
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• Barren node removal:
Chance or decision nodes that do not have children may be removed from the
graph.

• Arc reversal:
The orientation of an arc between two chance nodesC andC ′ may be reversed
if there is no other directed path betweenC andC ′, by letting the parents
of C be inherited byC ′ and vice versa, and by recomputing the conditional
probabilities forC andC ′ using Bayes’ rule.

• Conditional expectation:
A chance nodeC that directly precedesU may be removed by adding the
parents ofC to the parents ofU and eliminatingC by taking the conditional
expectation.

• Maximization:
A decision nodeD that directly precedesU may be removed by maximizing
the expected utility, provided that barren nodes have been removed and prede-
cessors ofU are also predecessors ofD.

The algorithm is guaranteed to find the optimal action for thefirst decision node
after a finite number of transformations. A third solution method is based on the
transformation of an influence diagram to a Bayesian networkand to use probabilistic
inference methods for evaluation (Cooper, 1988; Shachter and Peot, 1992). Due to
this technique, we can represent decision-theoretic notions such as decisions and
utilities in a Bayesian network, even though this is not explicitly provided by the
semantics of Bayesian networks. We will make use of this observation when we deal
with dynamic decision problems; i.e., when decision makingextends over longer
periods of time. Dynamic decision making is discussed in-depth in Chapter 5.





Chapter 3

Clinical Decision Support
with Bayesian Networks

In the last decades, many techniques have been developed that can serve as the
basis for automated clinical decision support. Some examples of these techniques
are frame-based systems (Miller and Pople, 1982; Aikins, 1983), rule-based systems
(Buchanan and Shortliffe, 1984), and probabilistic methods (Cooper, 1984; Spiegel-
halter and Knill-Jones, 1984). In the latter category, Bayesian networks (also called
belief networks) (Pearl, 1988) have become a popular tool for automated clinical
decision support since they allow for the explicit representation of domain know-
ledge and sound probabilistic inference. Developing a Bayesian network as part of a
system that supports clinical tasks such as diagnosis or treatment selection, implies
bridging the gap between an informal description of the clinical task and its actual
implementation in terms of a Bayesian network. It has been recognized before in the
knowledge acquisition and modeling research community that it is often only feasi-
ble to bridge this gap in small steps, for example by using intermediate, semi-formal
representations that somehow capture the essence of the task to be modeled. This is
what is being offered by the idea of representing the clinical decision making process
in terms of problem solving methods. However, to date, not much is known about
how problem solving methods that capture clinical tasks relate to concrete implemen-
tations in terms of Bayesian networks.

In this chapter, we address the problem of how to get from a particular informally
described clinical decision making task to the constructedBayesian network that sup-
ports that task. We commence by providing abstract descriptions of some important
tasks in clinical decision support in Section 3.1, and show how logical, Bayesian, and
decision theoretic formulations of clinical decision support relate to these abstract
descriptions. Subsequently, we show in Section 3.2 how the descriptions translate
into concrete Bayesian network designs, where the implications of some common
design assumptions will be discussed. In Section 3.3, we discuss concrete aspects of
Bayesian network development that can be of practical use tothe knowledge engi-
neer.
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3.1 Clinical problem solving

Insight into the nature of clinical decision making is, and should be, the starting point
for the construction of models aimed at supporting the tasksinvolved in it. We start
by adopting the view that clinical decision making can be described as a type of
problem solving in a way related to previous work done in the knowledge modeling
community (e.g. (Schreiber et al., 2000)).

3.1.1 Problem solving methods

All activities in clinical decision making can be describedin terms of problem sol-
ving, where solving a problem is described in terms of domains, models, knowledge
sources, and relationships between models and knowledge sources. This yields an
abstract view of clinical decision making, which then can beelaborated on at a more
detailed level, e.g., in terms of an underlying languageL such as predicate logic,
probability theory, or decision theory. We define a domain ofdiscourse as follows.

Definition 3.1. Let Φ = (U ,A,O) be adomainof discourse, with the setU con-
taining unobservableelements, the setA containingactionelements, and the setO
containingobservableelements, where the sets are pairwise disjoint.

The setU contains the domain concepts that cannot be observed by an exter-
nal observer. E.g., the tumor size in a cancer patient is an unobservable element.
The setA contains the actions that can be performed by a decision maker, such as
chemotherapy or surgery for a patient. The setO contains the domain concepts that
can be observed by an external observer, such as patient gender. It is assumed that the
problem to be solved is given by aproblem description, which is defined as follows.

Definition 3.2. LetM define amodelover a domainΦ and a set ofproblem solutions
Σ, both in some languageL. A problem descriptionis defined as a tuple

D = (Φ,Σ,M,a,o)

with a ⊆ A the set of actions ando ⊆ O the set of observations.

The setΣ represents the set of problem solutions, which may be elements in
Φ, or more abstract elements defined for the problem at hand. For example, in
a diagnostic problem, the set of problem solutions may be theset of unobserv-
able disorders, such thatΣ = U , or a set of disorder classes, such asΣ =
{benign-disease,malignant-disease}. The seta represents the set of actions that
are selected by an external decision maker. This comprises both actions that have
been performed in the past and actions that still need to be performed in the future.
The seto represents the set of observations that are actually observed for a particular
problem instance.
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Problem solving in a particular domain may, or may not, involve explicit reaso-
ning about time. This is the reason why in the following a distinction is made between
non-temporalproblem solving, where the temporal nature of the clinical task at hand
is not explicitly taken into account, andtemporalproblem solving, where we do
explicitly take into account the notion of time. In case of a non-temporal problem
description, we make use of a non-temporal model, whereas incase of a temporal
problem description, we make use of a temporal model where domain elements in
Φ are assumed to be indexed by time. Non-temporal problem solving is defined as
follows.

Definition 3.3. A (non-temporal) problem solutionof a non-temporal problem de-
scriptionD = (Φ,Σ,M,a,o) is defined as a sets ⊆ Σ, such that

M∪ a ∪ s �N o

for a (non-temporal) problem solving relation�N .

This means that the observationso can be explained in terms of a modelM
together with selected actionsa and the solutions. What this particular type of
problem solving does, is determined by the content of the non-temporal problem
solving relation�N . Temporal problem solving is defined similarly, as follows.

Definition 3.4. A (temporal) problem solutionof a temporal problem description
D = (Φ,Σ,M,a,o) is defined as a sets ⊆ Σ, such that

M∪ a ∪ s �T o

for a (temporal) problem solving relation�T .

In the following, we use� to denote either a non-temporal or temporal problem
solving relation. In general, it should hold thatM∪ a∪ s∪ o 6� ⊥, meaning that the
model is consistent with actions, solutions, and observations.

For clinical problem solving, we consider the relation between patient and physi-
cian. In this case,M can be distinguished into apatient modelMπ, which de-
scribes how the patient responds to decisions made by the physician, and aphysician
modelMφ, which describes how decision making by the physician is influenced by
observations about the patient. The problem solution is then considered to be the
physician’s response for a particular problem description, which includes the model
M = Mπ ∪ Mφ, observationso that represents observations about the patient’s
state, and interventionsa that are explicitly chosen by the physician. The distinction
between patient and physician is refined by organizing clinical concepts in the do-
main of discourseΦ, that are used in the definition of modelsM, into the following
categories (Weiss et al., 1978a):
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Patient























Risk factors (etiology, epidemiology, patient characteristics)
Pathogenesis (concepts linking risk factors and disorders)
Disorders (cause, localization, complications)
Pathophysiology (concepts linking disorders and findings)
Findings (clinical signs, test results, subjective symptoms)

Physician

{

Tests (physical examination, laboratory tests)
Treatments (drug therapy, surgery, radiotherapy, psychotherapy).

In the context of clinical problem solving, pathogenetic and pathophysiological
concepts are assumed to be unobservable by the physician. Disorders are assumed
to be particular pathophysiological concepts and form a special case, since prior to
diagnosis, disorders are unknown to the physician, whereasafter diagnosis it may
be the case that disorders become observed. The actions thatcan be performed by
the physician are given by tests, which may be used to gather information, and treat-
ments, which may be used to influence the pathophysiologicalprocess. Risk factors
and findings are assumed to be observable by the physician andthe information they
provide can be used as the basis for clinical problem solving. In case of temporal cli-
nical problem solving, clinical concepts are indexed by times inT ⊆ R. A problem
solutions ∈ Σ may be a physician’s conclusion about the patient’s state, but often
the solution involves decision making since most physicians agree that the majority
of clinical questions for which support is needed deal with what the physician should
do instead of what the physician shouldknow(Shortliffe et al., 2001). Under the latter
interpretation, a clinical problem description can be viewed as acontrol problem, re-
quiring optimal manipulation of a (stochastic) process by an external decision maker.
Figure 3.1 depicts this representation of clinical problemsolving.

Risk factors

Pathogenesis

Disorders

Pathophysiology

Findings

patient

Risk factors

Pathogenesis

Disorders

Pathophysiology

Findings

patient

Tests

Treatments

physician

· · · · · ·

Mφ

Mπ

Figure 3.1: Clinical problem solving as a control problem, where the physician’s decisions
are based on the current patient state and the past patient state (as indicated by the dashed
line). The decisions in turn influence the patient’s future state.

In this chapter, we focus on problem solving for the primary tasks in clini-
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cal patient management, which are taken to bediagnosis, test selection, progno-
sis, treatment selection, and monitoring. For these clinical tasks, we formulate
non-temporal and temporal problem solving variants where the described categories
form the domain of discourseΦ. In case of temporal problem solving, we use
tc ∈ T to represent thepresent, H = {t : t < tc, t ∈ T} to represent the past, and
G = {t : t > tc, t ∈ T} to represent thefuture. H+ andG+ are used to represent
the past and futureincluding the present timetc. Table 3.1 provides for an overview
of the choices ofU ,A, andO that are typically made for the various clinical tasks in
case of a temporal problem description. For a non-temporal problem description, we
use the same structure save the fact that time is omitted fromthe description.

Table 3.1: Choices ofU ,A, andO for a temporal problem description of a clinical task.

Task Design choices

Diagnosis
U ⊆

(

Pathogenesis∪Pathophysiology∪Disorders
)

×H+

A ⊆
(

Tests∪Treatments
)

×H

O ⊆
(

Risk factors ∪Findings
)

×H+

Test selection
U ⊆

(

Pathogenesis∪Pathophysiology∪Disorders
)

×H+

A ⊆
(

Tests∪Treatments
)

×H

O ⊆
(

Risk factors ∪Findings∪Disorders
)

×H+

Prognosis
U ⊆ Pathophysiology×H+

A ⊆
(

Tests∪Treatments
)

×T

O ⊆
(

Risk factors ∪Findings∪Disorders
)

×H+

Treatment selection
Monitoring

U ⊆ Pathophysiology×H+

A ⊆
(

Tests∪Treatments
)

×H

O ⊆
(

Risk factors ∪Findings∪Disorders
)

×H+

We now turn our attention to a description of the various clinical tasks.

Diagnosis

Diagnosisrefers to the explanation of observations in terms of unobservable disor-
ders. Since we do not need to model decision making explicitly for pure diagnosis,
we may restrict ourselves to a patient modelMπ, which models the relation between
disorders and observations, possibly influenced by selected actions. The problem
solving relation� uses observationso ⊆ O (and possibly actionsa ⊆ A when-
ever they induce changes in how disorders relate to observations) in order to predict
disorderss ⊆ Σ from which the patient is suffering. In case ofnon-temporaldi-
agnosis, it is assumed that the set of solutions is defined asΣ ⊆ Disorders. In case
of temporaldiagnosis, the set of solutions is defined asΣ ⊆ Disorders× H+. Note
that actions are confined to the strict past, since current actions do not have an im-
mediate effect on the diagnosis. The definition ofΣ allows the expression ofwhen
disorders have developed, but often our interest is incurrentdisorders only, such that
Σ ⊆ Disorders× {tc}.
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Test selection

Test selectionstands for the selection of tests by the physician for the purpose of
information gathering. The modelM consists of a physician modelMφ that dictates
which tests to choose in a given situation, and possibly a patient modelMπ which
allows for the representation of how unobserved quantitiesaffect decision making.
The problem solving relation� uses observationso ⊆ O (and possibly actionsa ⊆
A) in order to select tests inΣ that maximize the information gained and minimize
patient risk. Fornon-temporaltest selection, the set of solutions is given byΣ ⊆
Tests. Note that disorders can be part of either the unobservable or the observable
variables, depending on whether testing is performed for the purpose of diagnosis (in
which case the disorder is unknown) or for the purpose of treatment (in which case
the disorder is typically known). Fortemporaltest selection, the set of solutions is
given byΣ ⊆ Tests×G+. We remark that for a diagnosticprocess, diagnosis and test
selection is interleaved, since diagnosis depends on the information that is unveiled
by selected tests. The same holds for the treatment process,where treatment and
testing depend on one another.

Prognosis

Prognosisstands for the prediction of a prognostic outcome for a patient given ob-
servations, performed actions, and projected actions. ThemodelM should contain
the patient modelMπ, which describes projected patient response, and may addi-
tionally contain the physician modelMφ, which describes projected interventions
by the physician. The problem solving relation� uses observationso ⊆ O together
with performed actions and projected actionsa ⊆ A in order to assign the patient to
a prognostic solution inΣ. Prognosis is typically performed in the situation where
the disorder from which a patient is suffering is known, and the set of solutionsΣ
may either be defined in terms of abstract concepts such as quality-adjusted life ex-
pectancy or concrete concepts such as health status, tumor size, etc. Fortemporal
prognosis, the set of solutionsΣ may again be defined in terms of abstract or con-
crete concepts that are indexed by time, such as patient survival in the coming five
years, or tumor remission in the next year. Note that the action setA also contains
future actions since this allows the physician to insist on aprojected treatment. This
is to be contrasted with the physician modelMφ, which represents future decision
making as a whole and may depend on future (yet to be made) observations.

Treatment selection

Treatment selectionstands for the selection of actions by the physician for the pur-
pose of influencing the pathophysiological process. It is not much different from test
selection since the only change is the purpose of the task, namely control instead of
information gathering. The modelM therefore consists of a physician modelMφ
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that dictates which treatments to choose in a given situation, and possibly a patient
modelMπ which allows for the representation of how unobserved quantities affect
decision making. The problem solving relation� uses observationso ⊆ O (and pos-
sibly actionsa ⊆ A) in order to select treatments from the set of possible treatments
Σ, where the selected treatments should maximize patient benefit and minimize pa-
tient risk. It is assumed that during treatment, disorders are known, as is shown in
Table 3.1. Fornon-temporaltreatment selection we use solutionsΣ ⊆ Treatments and
for temporaltreatment selection we use solutionsΣ ⊆ Treatments×G+.

Monitoring

Monitoring stands for the prediction of the current pathophysiological state based on
observations and actions. The prediction requires a patient modelMπ and a problem
solving relation� which uses observationso ⊆ O (and possibly actionsa ⊆ A) in
order to predict the current (unobservable) pathophysiological state of the patient.
In case ofnon-temporalmonitoring, we have solutionsΣ ⊆ Pathophysiology, and in
case oftemporalmonitoring, we have solutionsΣ ⊆ Pathophysiology× {tc}.

We have described the various clinical tasks in terms of abstract non-temporal
and temporal problem solving, independent of the languageL at hand. In the fol-
lowing, we describe logical, probabilistic, and decision-theoretic problem solving
respectively, and also discuss what, according to these interpretations, constitutes a
good problem solution.

3.1.2 Logical problem solving

In logical problem solving, we use standard first-order predicate logic as our language
L. In order to make the notion of logical problem solving more concrete, we focus
on a logical formulation of non-temporal diagnosis, calledabductive diagnosis.

In abductive diagnosis (Console et al., 1989, 1991), we start with a domainΦ =
(U ,A,O) with U = Disorders, A = ∅, andO ⊆ Findings; sets are interpreted
logically as conjunctions of their elements. Here, disorders are given by so-called
defect literalsd and findings are given by so-calledfinding literals f . The non-
temporal problem description is given byD = (Φ,Σ,Mπ,∅,o), where the set of
solutions is given byΣ = U and the patient modelMπ is a set of logical implications
of the form:

d1 ∧ · · · ∧ dn → d, d1 ∧ · · · ∧ dm → f

linking defects with defects and defects with findings respectively. Selected actions
are not taken into account, and observationso are assumed to be given by the union
of present and absent findings:

o+ ⊆ {f ∈ Findings: f is a positive literal}
o− ⊆ {¬f ∈ Findings: f /∈ o+, f is a positive literal}
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An abductive diagnosisof D is defined as a set of defectss ⊆ Σ, such that:

1. Mπ
N ∪ s � o+ (covering condition)

2. Mπ
N ∪ s ∪ o− 6� ⊥ (consistency condition)

Hence, in abductive diagnosis, the hypothesiss must predict all present findings and
should not predict any absent finding. Therefore, we have a non-temporal problem
solving relation of the following form:

Mπ
N ∪ a ∪ s �N o ⇔ Mπ

N ∪ s � o+ ∧ Mπ
N ∪ s ∪ o− 6� ⊥

wheres is a possible problem solution.
From a logical point of view, any problem solution that is derived using logical

deduction isoptimalin the sense that solutions are indistinguishable. Often, however,
in a particular logical framework, extra optimality criteria are added that allow the
selection of an optimal solution from a set of possible solutions (e.g. (Lucas, 1998)).
In abductive diagnosis, we often require that the solution is minimal with respect to
set inclusion. For example, suppose we have a model

d1 → f, d2 → f, d1 ∧ d2 → f

Then, upon observingf , we deduce thatd1 andd2 are optimal problem solutions,
whereasd1 ∧ d2 is not.

Although logical approaches to clinical problem solving such as abductive diag-
nosis have proven successful, there are also problems whichlogical problem solving
cannot handle. In particular, the resulting optimal problem solutions may lead to
non-optimal behavior. For example, it may well be the case that an observed finding
f provides much stronger evidence ford2 than ford1, which may lead us to favor
d2 overd1, which is not easily expressed in a logical framework. Bayesian problem
solving, as discussed in the following section, solves thisproblem by expressing pre-
ferences for optimal solution, in terms of a measure of belief.

3.1.3 Bayesian problem solving

In Bayesian problem solving, the languageL is chosen to be probability theory. We
start with a problem descriptionD = (Φ,Σ,M,a,o) whereΦ contains assignments
to random variables of the formX=x for non-temporal problems, and assignments
to random processes of the formX(t) = x for temporal problems. The modelM
represents a probability model that allows the associationof a posterior probability
P (s | a,o) ∈ [0, 1] with any problem solutions ⊆ Σ, expressing our degree of
belief ins givenactionsa and observationso. Then, to say that a problem solution is
possible, is equivalent to stating thatP (s | a,o) > 0.

Bayesian problem solving gives us a stronger optimality criterion than logical
problem solving. In a truly Bayesian setting, we would express a problem solution
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as a posterior distribution overs ⊆ Σ, but if we are forced to choose a particular
solutions ⊆ Σ then Bayesian problem solving dictates that we should use the most
probable explanation (MPE) (or maximum a posteriori (MAP) hypothesis in case of
incomplete evidence) as our optimal problem solution. The MPE criterion states that
out of all the world models consistent with the evidence, we should choose the one
with highest overall probability (Pearl, 1988):

s∗ = arg max
s
P (s | a,o) .

Using the MPE criterion, we define an optimal problem solution as follows:

M∪ a ∪ s � o⇔ s = s∗

wheres∗ is an MPE problem solution. For the example of Section 3.1.2,we would
choose the configuration ofs = {D1 = d1,D2 = d2} for which P (s | f) is maxi-
mal. Note that the minimality criterion, which was used as anadditional constraint
in Section 3.1.2, is implied by Bayesian problem solving since it follows from the
rules of probability theory thatP (x | y) ≥ P (x′ | y) if x ⊆ x′. Still, Bayesian
problem solving may lead to non-optimal behavior in case onepossesses payoff in-
formation for the different solutions. For example, if misdiagnosingD2 leads to more
negative consequences than misdiagnosingD1 (such as higher death risk), we may
still be inclined to diagnoseD2, even if it holds thatP (D1 = yes,D2 = no | f) ≫
P (D1 = no,D2 = yes| f). We handle this with decision-theoretic problem solving,
as discussed in the next section.

3.1.4 Decision-theoretic problem solving

Decision-theoretic problem solving, where the languageL is decision-theory, sub-
sumes Bayesian problem solving and dictates that, in the presence of payoff informa-
tion, an optimal problem solution is given by the maximum expected utility (MEU)
criterion (Von Neumann and Morgenstern, 1947). The MEU criterion represents pay-
off information in the form of utilitiesU(x) that express the reward gained (or cost
experienced) for different solutions, and states that the best solution is the one which
maximizes reward (or minimizes cost):

s∗ = arg max
s

∑

x

U(x)P (x | a,o) .

for x compatible witha,o, ands. Using the MEU criterion, we define an optimal
problem solution as follows:

M∪ a ∪ s � o⇔ s = s∗
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wheres∗ is a MEU problem solution. Returning to the diseases and findings of
Section 3.1.2, suppose we have

P (D1 =yes,D2 =no | f) = 0.99 U(D1 =yes,D2 =no) = 1
P (D1 =no,D2 =yes| f) = 0.01 U(D1 =no,D2 =yes) = 100

Then, we would choosed2 as our diagnosis, even though it is not the MPE problem
solution. Note that in case we have no payoff information or if utilities are equal
for all solutions then decision-theoretic problem solvingreduces to Bayesian pro-
blem solving. If, additionally, uncertainty does not play arole then decision-theoretic
problem solving reduces to logical problem solving.

3.2 Bayesian network designs for clinical tasks

In Section 3.1, we have shown how clinical tasks can be solvedusing different pro-
blem solving strategies, but we have not yet addressed the properties of the modelM
that is used for problem solving. In this section, we will focus on decision-theoretic
problem solving (with Bayesian and logical problem solvingas special cases), and
show howM can be described in terms of particular Bayesian network designs. As
before, we distinguish non-temporal and temporal problem solving.

3.2.1 Non-temporal problem solving with Bayesian networks

Let X be a set of random variables, representing relevant domain variables.1 A
Bayesian network(G,P ) consists of an acyclic directed graphG that represents the
independence structure between domain variables and a joint probability distribution
(JPD)P for random variables inX. A Bayesian network can often represent the JPD
compactly, sinceG factorizes the JPD according to:

P (X) =
∏

X∈X

P (X | π(X)) (3.1)

whereπ(X) denotes the parents ofX in G. This factorization generally reduces
the number of parameters that need to be estimated and allowsfor more efficient
probabilistic inference.

If a Bayesian network is used for the purpose of non-temporalproblem solving,
then the aim is to define a JPD for variables inX ⊆ U ∪ A ∪ O ∪ Σ, where pro-
babilistic independence between domain variables is modeled by the absence of arcs
in G. The design of a Bayesian network is then determined in part by (1) the na-
ture of the clinical task, (2) the selected clinical categories, and (3) independence
relations between clinical categories that are assumed to hold. For example, if the

1Decisions and utility functions can be transformed into random variables when required (Cooper,
1988; Shachter and Peot, 1992).
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task is (non-temporal) test selection, then we need to represent at least the solutions
Σ ⊆ Tests and a physician modelMφ which specifies how tests are selected. More
complex designs may distinguish more clinical categories,incorporate more domain
variables, and/or use less restrictive independence assumptions at the level of clinical
categories and/or domain variables. For a real-world clinical problem, choosing the
right design requires finding a balance between many constraints, which allows for
the easy specification of few parameters at the expense of model expressiveness, and
few constraints, which allows for an expressive model at theexpense of the more
difficult specification of many parameters.

A rigorous restriction is to disregard hidden variables andactions and to focus
solely on how a solutionS is influenced by a set of observationsO. There are two
common approaches to the implementation of this restriction, as shown in Figs. 3.2
and 3.3.

S

O1 On· · ·

Figure 3.2: A discriminative model.

The discriminative model in Fig. 3.2 predicts the state ofS directly from the states
of O = {O1, . . . , On} through the associated conditional probability distribution
P (S | O). For discrete random variables, the number of parameters that need to
be estimated for this model, equals(|ΩS | − 1) ·

∏n
i=1 |ΩOi

| . This normally remains
prohibitive in practice, since the number of observationsn, and/or the state-spaces
ΩOi

andΩS can be large. One way to solve this problem, is to constrain the form of
P (S | O). If, for instance, it is assumed that the influences of observationsOi on
the outcomeS combine linearly, then we can use a special form such as the softmax
regression model:

P (S = sj | O = o) =
eaj1(o1)+···+ajn(on)

∑m
k=1 e

ak1(o1)+···+akn(on)
.

For continuous observations withaij(oj) = αij · oj and a binary valued outcome
variableS, this model reduces to the well-known logistic regression model, which is
used extensively in medicine. Another approach that constrains the form ofP (S | O)
would be to assume that observations act independently and combine deterministi-
cally, as is the topic of Chapter 4.

The generative model of Fig. 3.3 takes a different approach.Instead of constrai-
ning the form ofP (S | O), it uses Bayes’ theorem together with additional indepen-
dence assumptions, in order to make the computation ofP (S | O) feasible. Recall
that according to Bayes’ theorem, it holds that

P (S | O) ∝ P (S)P (O | S).
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S

O1 On· · ·

Figure 3.3: A generative model.

By introducing the assumption that observationsO,O′ ∈ O, O 6= O′ are conditio-
nally independent given the outcome, we arrive at the generative model of Fig. 3.3,
with associated conditional probability distribution

P (S | O) ∝ P (S)
∏

O∈O

P (O | S) . (3.2)

Since the generative model assumes independence of observations given the outcome,
it is known as thenaiveBayes model. It has the advantage that it only requires the
estimation of|ΩS−1|+

∑

O∈O(|ΩO|−1)·|ΩS | parameters. De Dombal’s system for
the diagnosis of acute abdominal pain employed the naive Bayes model and was one
of the first successful implementations of Bayesian probability theory in medicine
(de Dombal et al., 1972).

D1 D2 D3 · · · Dn

F1 F2 F3 · · · Fm

Figure 3.4: The QMR-DT system is a bipartite graph, modeling the association between
disordersDi and findingsFj .

A generalization of the naive Bayes model to multiple class variables has been
used in the definition of QMR-DT (Shwe et al., 1991). It is a Bayesian reformulation
of the Internist-1/QMR expert-system for differential diagnosis in internal medicine
(Miller and Pople, 1982; Miller et al., 1986) and is shown in Fig 3.4. The graph is
constrained to be a bipartite graph relating disordersDi (such thatΣ = Disorders) and
findingsFj (such thatO = Findings). Note that additional independence assumptions
are defined at the level of clinical categories, since QMR-DTassumes that findings
are conditionally independent given the disorders, as in the naive Bayes model.

Promedas (Kappen and Neijt, 2002) covers a large diagnosticrepertoire of inter-
nal medicine and extends the QMR-DT architecture by definingrisk factorsRk that
condition the occurrence of disorders (such thatO = Risk factors ∪ Findings). Addi-
tionally, disorders may condition other disorders since the occurrence of one disorder
may influence the occurrence of another disorder. Note that additional independence
assumptions are again defined at the level of clinical categories, since risk factors are
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R1 R2 R3 · · · Rr

D1 D2 D3 · · · Dn

F1 F2 F3 · · · Fm

Figure 3.5: Promedas models associations between risksRk, disordersDi, and findingsFj .

marginally independent and findings are conditionally independent given the disor-
ders (Fig. 3.5).

F1 F2 F3 · · · Fm

D

Figure 3.6: Pathfinder consists of a disorder nodeD containing over 60 mutually-exclusive
disorders that condition findingsF1, . . . , Fm with m > 130.

The assumption of independence between observations giventhe outcome that
is made by the above structures is often unrealistic and manyalternative structures
therefore focus on lifting the independence assumptions ofthe naive Bayes model
(Spiegelhalter and Knill-Jones, 1984). Pathfinder was one of the first large graphical
models for medical decision support (Heckerman and Nathwani, 1992a,b) and does
not consider findings to be conditionally independent giventhe disorder, although
it does assume that disorders are mutually exclusive (Fig. 3.6). Pathfinder is used
for the diagnosis of more than 60 lymph node disorders, usingmore than 130 mi-
croscopic, clinical, laboratory, immunological, and molecular-biologic features. Its
commercialization, known as IntelliPath, has been used by physicians, both in prac-
tice and in education (Heckerman, 1990).

Even though Bayesian networks that are based on restricted structures may per-
form well in clinical tasks such as differential diagnosis,they often make unrealistic
assumptions which affects both the accuracy of computed posterior probability dis-
tributions and the ability to understand how random variables interact in the domain.
The developers of QMR-DT remark, for instance, that performance suffered from
the lack of anatomical knowledge, the absence of the representation of intermedi-
ate pathophysiological states, and the lack of dependencies between diseases (Shwe
et al., 1991). In practice, one often needs detailed information about the causal me-
chanisms that are responsible for observed findings. The useof causality as a guiding
principle when building a Bayesian network for clinical decision support is advan-
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tageous, since knowledge concerning pathophysiology and the effect of treatment is
normally described in the medical literature in terms of causes and effects (Lucas,
1995). This has been used as a modeling strategy in some of theearly medical ex-
pert systems (Kulikowski and Weiss, 1982; Patil et al., 1982; Miller and Pople, 1982;
Pople, 1982), and a number of Bayesian networks have recently been developed that
capture the causal structure of restricted medical domainsto various degrees of rea-
lism (e.g., (Andreassen et al., 1987; Dı́ez et al., 1997; Kahn Jr et al., 1997; Wasyluk
et al., 2001; Lacave and Dı́ez, 2003; van der Gaag et al., 2001)). Causal models allow
for an accurate representation of domain knowledge, and also facilitate the explana-
tion of drawn conclusions, which may increase the acceptance of decision support in
medicine, both by the physician and by the patient (Teach andShortliffe, 1984; Suer-
mondt and Cooper, 1993; Lacave and Dı́ez, 2002). As our discussion about decision-
theoretic problem solving suggests, even if systems such asQMR-DT would be capa-
ble of estimating the posterior probability of disease given findings with a reasonable
accuracy, then, in general, this is insufficient for guidingtreatment, since clinical de-
cision support often requires the suggestion of appropriate action (Long, 1996). In
other words, automatically obtaining a differential diagnosis is beneficial in the sense
that the physician is less likely to misdiagnose, but does not always give insight into
the optimal treatment given the differential diagnosis. Hence, it is often necessary to
represent decision-making as well.

NONE
HEMORRHAGE
PERFORATION
OBSTRUCTION

CLINICAL-PRESENTATION

NO
YES

POST-SURGICAL-SURVIVAL

POOR
AVERAGE

GOOD

GENERAL-HEALTH-STATUS

10-19
20-29
30-39
40-44
45-49
50-54
55-59
60-64
65-69
70-79
80-89
>=90

AGE

ALIVE
DEATH

5-YEAR-RESULT

NO
YES

IMMEDIATE-SURVIVAL

NO
YES

POST-CT&RT-SURVIVAL

NO
YES

HEMORRHAGE

NONE
RT
CT

CT-NEXT-RT

CT&RT-SCHEDULE

CR
PR
NC
PD

EARLY-RESULT

LOW-GRADE
HIGH-GRADE

HISTOLOGICAL-CLASSIFICATION

YES
NO

BULKY-DISEASE

I
II1
II2
III
IV

CLINICAL-STAGE

NO
YES

THERAPY-ADJUSTMENT

NO
YES

PERFORATION

NO
YES

BM-DEPRESSION

NONE
CURATIVE

PALLIATIVE

SURGERY

Figure 3.7: A causal model for prognosis of non-Hodgkin lymphoma.
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The Bayesian network in Fig. 3.7 is an example of a non-temporal Bayesian net-
work for prognosis of non-Hodgkin lymphoma that incorporates causal knowledge,
with arc orientation denoting the flow from causes to effects(Lucas et al., 1998).
It depicts for instance thatgeneral-health-status is influenced byage and shows
that bulky disease is determined byage, the tumor’sclinical-stage, and the tumor’s
histological-classification. It also incorporates decision making through the repre-
sentation of the influence of treatment variablesct&rt-schedule (chemotherapy and
radiotherapy schedule) andsurgery on prognosis. Note that the Bayesian network
does not represent the decision making strategy through a modelMφ, but rather re-
quires the physician to impose a strategy through the selection of actions inA. A
prognosis is performed by selecting actions and observations, which gives a posterior
distribution on the outcome5-year result.

3.2.2 Temporal problem solving with Bayesian networks

If time is involved, domain variables are taken to be random processes, whereX(t)
denotes a random processX at timet ∈ T . A Bayesian network(G,P ) defined for
a setX of random processes, is called adynamic Bayesian network (DBN), whereG
factorizes the JPD according to:

P (X) =
∏

X(t)∈X

P (X(t) | π(X(t))) . (3.3)

Since a DBN may be defined for a possibly infinite sequence of timest ∈ T , of-
ten, a number of standard assumptions are made. It is naturalto assume that influ-
ences between random processes cannot be oriented against the arrow of time; i.e.,
(X(t), Y (u)) /∈ A(G) if u < t with t, u ∈ T . We also find it useful to focus on
discrete time{t0, t1, . . . , th} ⊂ R

+
0 with ti+1 > ti for 0 ≤ i < h, representing

the decision moments for the clinical task. Here,t0 denotes theinitial time, such
as for instance the time of birth or the time of admission to the hospital, andth
denotes a (possibly countably infinite)horizon, which can be a fixed period (e.g.,
five years after admission) or an as yet undefined time of death(formally represen-
ting an infinite-horizon process). We also define a fixedinterval δt = ti+1 − ti for
ti, ti+1 ∈ T , which is chosen for the problem at hand. For example, in caseof moni-
toring this period could be measured in seconds, hours, months, or even years. Given
an infinite-horizon process, specification of a discrete-time DBN may still be pro-
hibitive. In order to allow for a compact specification the following assumptions are
commonly made:

• The DBN is(first-order) Markovian:

X(t+ 1)⊥⊥P X(t− 1) | X(t)

such that the future is independent of the past given the present.
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• The DBN istime-invariant:

– The same independence relations hold at each point in time:

U(t)⊥⊥P V(u) |W(s)⇔ U(t+ c)⊥⊥P V(u+ c) |W(s + c)

for U,V,W ⊆ X andt, u, s, t+c, u+c, s+c ∈ T . I.e., domain structure
is fixed.

– The model ishomogeneous, such that

P (U(t+ c) | V(t)) = P (U(t′ + c) | V(t′))

for U,V ⊆ X andt, t′, t+ c, t′ + c ∈ T . I.e., transition probabilities are
fixed.

Given these assumptions, the control structure of Fig. 3.1 can be completely specified
by means of aprior modelB0, representing the situationP (X(t0)), and atransition
modelBt, representing the change in stateP (X(t) | X(t-1)) for t > t0, t ∈ T , that
takes place by moving forward in discrete time until the horizon th is reached. The
pair (B0,Bt) is often used in the formulation of a dynamic Bayesian network (Dean
and Kanazawa, 1989).

health health

disease disease

health health

disease disease

health health

disease disease

(a) (b) (c)

Figure 3.8: Three transition models forhealth anddisease, where dashed objects represent the
situation at timet− 1, and solid objects represent the situation at timet. Solid arcs between
objects denote possible dependence between the random variables that constitute the objects,
and the absence of arcs denotes a statement of (conditional)independence.

There are multiple ways to indicate (in)dependence betweenrandom variables for
a transition model. Consider for instance the wayhealth is influenced by adisease
in Fig. 3.8. Figure 3.8 (a) depicts an immediate influence ofdisease on health,
which has the advantage thathealth can be predicted from the disease status, without
taking into account temporal interactions. Figure 3.8 (b) depicts a lagged influence
of disease on health. This has the advantage that futurehealth is predicted from the
current disease status, which can be more natural to the physician. Figure 3.8 (c)
depicts the combined influence of pastdisease and presentdisease on health, and
provides the most precise representation.
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Example 3.1. Suppose that the disease is present at timet-1 and absent at time
t. In case of Fig. 3.8 (a) we computePa(health(t) | disease(t) = absent,
health(t-1)), whereas for Fig. 3.8 (b) we computePb(health(t) | disease(t-1) =
present, health(t-1)). It is likely that the model of Fig. 3.8 (a) overestimates patient
health since is does not take into account that the patient was still diseased at the pre-
vious point in time, whereas it is likely that the model of Fig. 3.8 (a) underestimates
patient health since is does not take into account that the patient is cured at this point
in time. In contrast, Fig. 3.8 (c) may take these effects intoaccount, by represen-
ting Pc(health(t) | disease(t), disease(t-1), health(t-1)) as a weighted average of
Pa andPb. Note that, if disease progression is sufficiently slow, then the quality of
the approximations would increase asδt decreases.

Once a transition model is completed, the prior model needs to be specified.
In the prior model, we use variablesX(0) for all variablesX(t) in the transition
model. Furthermore, since direct influences should hold at the initial time as well,
arcs (X(0), Y (0)) are added to the prior model for each arc(X(t), Y (t)) in the
transition model. Finally, for each variableY that has an arc(X(t-1), Y (t)) in the
transition model, we determine whether there are variablesZ1(0), . . . , Zk(0) in the
prior model that condition the distribution forY (0). The arcs(Zi(0), Y (0)) do not
necessarily reflect causation but rather associations between random variables that
have arisen due to causal interactions in the past. Algorithm 3.1 summarizes the
strategy for constructing a prior model.

Algorithm 3.1 Construction of a prior model.

1. Add a variableX(0) to the prior modelB0 for each variableX(t) in the transition
modelBt.

2. Add an arc(X(0), Y (0)) to the prior modelB0 for each arc(X(t), Y (t)) in the tran-
sition modelBt.

3. For all variablesY with arcs(X(t-1), Y (t)) in the transition modelBt such thatX 6=
Y , determine if there are variablesZi(0) in the prior modelB0 that condition the prior
distribution ofY (0) and add arcs(Zi(0), Y (0)) to B0.

The temporal nature of a problem is often essential to clinical decision-making
(Augusto, 2005). During diagnosis, to know the temporal order and duration of
symptoms can influence the diagnostic conclusions, the selection of treatments or
tests may depend on the time at which the selection is made, during prognosis, the
disease dynamics is described as the unfolding of events over time, and during mon-
itoring, we need to track the patient’s pathophysiologicalstatus over time. The bene-
fits of temporal modeling of clinical problems have become clear in practice, as il-
lustrated by the work of Long (Long, 1996), who used a representation based on
Bayesian networks and time intervals (Allen, 1984) for diagnosing heart disease,
which eliminated errors that were made by a non-temporal model. Similarly, it was
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found in (Charitos et al., 2005) that a redefinition of a static Bayesian network for the
diagnosis of ventilator-associated pneumonia (VAP) in terms of a dynamic Bayesian
network that allows for temporal reasoning, increased diagnostic performance. Some
other examples of dynamic Bayesian networks in medicine arepresented in Refs.
(Dagum and Galper, 1993; Andreassen et al., 1994; Hernando et al., 1996).

Once the Bayesian network design has been chosen, we proceedwith the actual
construction of the Bayesian network. In the next section, we describe how Bayesian
networks for clinical decision support are constructed in practice.

3.3 Bayesian network construction

Bayesian network construction may be distinguished into variable definition, struc-
ture specification, factor association, and parameter estimation. In this section, these
basic steps will be discussed.

3.3.1 Variable definition

Variable definition refers to the identification of domain variables, and the determi-
nation of theirname, category, type, andstates. The name of a variable should be
unambiguous, intuitive to the domain expert(s), and conforming to domain termi-
nology. The category of the variable can be distinguished into chance, decision, or
utility. The type of the variable is either discrete or continuous, and if it is discrete,
then the mutually exclusive states of the variable should bedetermined. With respect
to determining which variables are relevant, it is useful totake into account a number
of heuristics. It is good practice to start with a simple initial model and to refine it by
gradually introducing additional variables in order of importance until the model is
accurate enough. Too complex models will result in the estimation of huge numbers
of probabilities during parameter estimation and often obscures how the model ope-
rates (Druzdzel et al., 1999). One way to quickly zoom in on relevant variables is the
overkill test(Abramson and Ng, 1993), which aims to identify questions that would
get the expert to provide all relevant information and suppress all irrelevant informa-
tion. Once variables and states are identified, they should pass theclarity test; i.e.,
it should be explicitly questioned whether the definition isprecise enough to allow
for later estimation of (conditional) probabilities (Druzdzel et al., 1999). One way
to ensure the definition of quantifiable variables is to use concepts that follow formal
domain standards.

As the number of domain variables grows, the graphical modelstructure can
become overwhelmingly complex. This problem has been recognized by the re-
search community and various approaches have been used to reduce this comple-
xity. Object-oriented Bayesian networks(OOBNs) (Koller and Pfeffer, 1997) use an
object-oriented approach analogous to the object-oriented approach in software en-
gineering. An object in a Bayesian network is associated with a network fragment
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that represents a collection of attributes that may themselves be defined in terms of
such fragments. A class in a Bayesian network is then simply afragment that is not
associated with an object. This object-oriented approach has several advantages:

• Generalization: Classes allow network fragments to be reused for multiple
objects.

• Encapsulation: The internal details of a class are encapsulated within that
class.

• Reusability: The inheritance hierarchy over classes provides for an is-a hierar-
chy over objects that supports reusability.

• Modularization: The ability to enclose objects within objects allows for a part-
of hierarchy over objects.

Similar ideas of object-orientation can be found in the workon network fragments
as defined by Laskey and Mahoney (Laskey and Mahoney, 1997). One difference
between OOBNs and network fragments is the way in which the combination of
Bayesian network structures is handled. In the former case,a random variable always
belongs to one particular object, and objects are combined by defining interfaces to
variables internal to an object. In the latter case, a randomvariable may belong
to multiple network fragments, where fragments are combined by defining suitable
combination functions that combine the distributions for random variables that be-
long to multiple fragments. The idea of modularization has also been exploited in
work on hierarchical model-based diagnosis (Srinivas, 1994). Here, a top-down ap-
proach of model construction is advocated where increasingly detailed subsystems
are added to a hierarchical structure. This makes it possible to focus on the global as-
pects of model architecture in early stages of model construction deferring the mode-
ling of details to later stages. In our research, we have found object-oriented Bayesian
networks particularly useful in order to structure our domain models, as demonstrated
by Fig. A.2 in Appendix A.

3.3.2 Structure specification

The construction of a Bayesian network for clinical decision support is a difficult
undertaking, and the most important directive is tokeep it simple. Simple models
can gradually be extended to more complex models by adding detail to small domain
fragments and evaluating the functionality of this fragment. Starting with complex
models on the other hand makes it virtually impossible to evaluate functionality, since
distant variables may interact in a complex way. A useful starting point when con-
structing a model for clinical decision support, is to first construct the patient model,
which represents disease progressionwithout interventions, and to subsequently con-
struct the physician model, which represents the interventions made by the decision
maker.
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If a DBN is used, then we also distinguish the prior model and transition model,
and need to choose an initial time, an interval, and a horizonfor the model. These
choices should be motivated both by the properties of the domain (i.e., we need to
be able to model the processes on the time-scale in which we are interested) and by
considerations with regard to available domain knowledge (i.e., domain experts need
to be able to express the knowledge that is required to specify the model).

Refining a patient modelMπ

One way to refine the structure of a patient model is by means ofextension, which is
the notion that we (partially) explain the influence of a variableX on another variable
Y by introducing an intermediate variableZ such that(X,Z) and(Z, Y ) are arcs
in the graph (Fig. 3.9). For instance, suppose that the disease we are dealing with
in Fig. 3.8 is acquired immuno-deficiency syndrome (AIDS). Then, assuming that
health does not influence the disease, we might introducepneumonia as a compli-
cation, that partially explains the influence betweenaids andhealth. If the influence
is totally explained, then the original direct influence should be removed from the
model. If the influence of multiple direct parentsX of Y onY are totally explained
byZ then extension is also known as parent divorcing (Olesen et al., 1989).

pneumonia pneumonia

health health

aids aids

Figure 3.9: Model refinement by means of extension, where the arc betweenaids andhealth

may be removed ifpneumonia fully explains their dependence.

Another way to refine the model is by means ofdecomposition, which is the no-
tion that we decompose a variableX into constituentsX1, . . . ,Xn. For instance, the
complicationpneumonia of Fig. 3.9 could be decomposed into the variablesmicrobe
and location, since the cause of infection (microbe), as well as the location of infec-
tion in the lungs, are important components of pneumonia (Fig. 3.10).

A third way to refine a model isstate revelation, which adds observable vari-
ablesO ∈ O to the model, that (partially) reveals the state of unobservable variables.
Consider for instance the further refinement ofpneumonia in Fig. 3.11.

Extension, decomposition, and state revelation are methods to incrementally add
random variables to the model. Once sufficient detail has been added, it becomes
useful to focus oncontext-specific independenciesthat may hold between the states
of random variables (Boutilier et al., 1996b).
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microbe microbe

location location

health health

aids aids

Figure 3.10: Model refinement by decomposingpneumonia into microbe andlocation.

microbe

location

microbe

location

sputum

Figure 3.11: Pneumonia is characterized by the unobservable variablesmicrobe and location,
but the state may be partially revealed by analyzing asputum sample.

Definition 3.5. Let U,V,W ⊆ X be disjoint subsets of a set of random variables
X, and letφ be a Boolean formula over variables inW, where literals are of the
form (W =w) or ¬(W =w). Then,U is said to becontextually independentof V
givenW andφ, denoted byU⊥⊥P V |W, φ, iff

P (U | V,W, φ) = P (U |W, φ)

wheneverP (V,W, φ) > 0.

U

Z

p1 p2

V

p3 W

p4 Z

p5 p6

Figure 3.12: A probability tree forP (Y | U, V,W,Z) with probabilitiesp1, . . . , p6.

As an example of context-specific independence, consider the conditional pro-
bability distribution ofP (Y | U, V,W,Z). If variables are binary then we need to
specify 25 conditional probabilities. However, it may well be the casethat a con-
siderable amount of structure is present in the table, whichcan be represented in



46 Clinical Decision Support with Bayesian Networks

terms of a probability tree (Fig. 3.12) that expresses the following context-specific
independencies:

• Y ⊥⊥P {V,W} | {U,Z}, u ∧ z

• Y ⊥⊥P {W,Z} | {U, V },¬u ∧ v

• Y ⊥⊥P Z | {U, V,W},¬u ∧ ¬v ∧ w

Using these context-specific independencies, we need to specify just the six proba-
bilities shown in Fig. 3.12, which is a substantial improvement. Context-specific
independence can be represented within a Bayesian network by means of a recur-
sive decomposition using multiplexer nodes (Boutilier et al., 1996b) or by means of
an additive factorization that employs hidden variables (van Gerven, 2006). These
representations not only allow for a more compact specification but additionally for
more efficient probabilistic inference.

Model refinement should always be well-motivated, where valid reasons are (1)
when the refinement has a significant impact on the posterior distributions of our
query variable(s), (2) when the refinement alters model structure in such a way that
it increases model intelligibility, or (3) when the refinement leads to a more compact
factorization of the JPD. Algorithm 3.2 summarizes the strategy for constructing a
transition model.

Algorithm 3.2 Construction of a Bayesian network.
1. Start with a basic model that includes the desired solutions inΣ.

2. Try to refine the model by decomposing a variableX into constituentsX1, . . . , Xn.

3. Try to extend the model by adding a variableZ, such that for allX ∈ X, arcs(X,Y ) ∈
A(G) are (partially) explained by(X,Z) and(Z, Y ) in A(G).

4. Try to add observable variablesO ∈ O to the model that (partially) reveal the state of
unobserved variables inΣ ∪ U .

5. While the model is incomplete, return to step 2.

6. Try to reduce the number of free parameters by taking context-specific independencies
into account.

Specifying a physician modelMφ

Once a patient model has been completed, we proceed with the specification of deci-
sion making by the physician. The construction of a physician model should always
start with the definition of the treatment protocol that is used in clinical practice. The
treatment protocol describes exactly which treatment is applied in which situation,
and if dependencies between treatments exist. Treatments may be represented in two
alternative ways:
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• One random variable for each treatmentX, whereΩX represents the different
possibilities forX, and whereX is conditioned on all its required precondi-
tions.

• One random variableX, whose states represent allpossiblemutually exclu-
sive treatment combinations, and whereX is conditioned on all the required
preconditions of every treatment combination.

For example, for pneumonia, we may choose to represent each antibiotic as a
separate random variable, or to represent each possible antibiotic combination as that
state of a random variable. Assuming that we decide for the last option, disregarding
patient characteristics, a protocol may be determined by the structure in Fig. 3.13.

antibiotics

healthmicrobe location

Figure 3.13: Representation of a protocol for treatment of pneumonia.

It is assumed in the above that the states ofmicrobe, health, andlocation are fully
observable, since otherwise, the protocol is represented by a stochastic policy, which
may lead to arbitrarily poor results (Singh et al., 1994). Ifthe state of a relevant
variable is unobservable then we condition instead on indirect observations of these
states; in our case, by explicitly representing thesputum history, as in Fig. 3.14.

antibiotics

health

sputum historysputum history

sputum

Figure 3.14: An alternative representation of a protocol for treatment of pneumonia.

For more elaborate treatments, such as the prolonged administration of medica-
tion, modeling of the protocol can quickly become more complex. For example, if
treatments can only be started when other treatments have failed, then this failure
should be represented explicitly in the model, and if treatments can only be given
for a maximum amount of time, then the treatment history should become part of the
model.

The effect of treatment can often be distinguished into a positive effect on the
target of treatment, and a negative effect on patient health. Figure 3.15 depicts these
effects for antibiotics treatment. Once disease progression is represented in enough
detail by the patient model, and the treatment protocol is captured by the physician
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antibiotics

health

microbe

health

Figure 3.15: Positive and negative effects of antibiotics treatment.

model, we have completed the specification of a Bayesian network structure for cli-
nical decision support.

3.3.3 Factor association

Factor association refers to the association of a factor with each random variable that
defines the functional form of how the outcome of the random variable depends on its
parent variables. This is an important step since it determines the number of parame-
ters that need to be estimated subsequently. We restrict thediscussion to discrete ran-
dom variables and assume that continuous quantities have been discretized a priori.
For discrete random variables, a factor can be thought of as a(conditional) probabi-
lity table (CPT), which is a mappingγ : ΩY ×ΩX → [0, 1] such that

∑

y γ(y,x) = 1,
for a random variableY and a (possibly empty) set of parentsX.

C1 Cn

X1

M1

Xk

Mk

E

· · ·

· · ·

Figure 3.16: A causal interaction model, where causesCj , 1 ≤ j ≤ n may take part in mul-
tiple mechanisms that lead to the effect. Each mechanismMi, 1 ≤ i ≤ k has an associated
intermediate variableXi, that partially determines the effectE through a deterministic func-
tion f : ΩX → ΩE . In an object-oriented approach, the internal details of how mechanisms
interact to produce the effect can be private to an object andhidden for other objects.

One way to reduce the size of this mapping is to determine how causes (parent
variables) interact in order to produce the effect (child variable). Meek and Hecker-
man formalized this idea in terms ofcausal interaction models(Meek and Hecker-
man, 1997), where a cause may be associated with several mechanisms and multiple
causes may be associated with a single mechanism, and combine deterministically
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using a deterministic interaction functionf (Fig. 3.16). Although causal interaction
models allow arbitrarily complex mechanisms and interaction functions, the most
widely employed causal interaction models arecausal independence models, which
assume that mechanismsMi are given by the intermediate variablesXi, and for
which it holds that:

P (e | c) =
∑

x : f(x)=e

n
∏

i=1

P (xi | ci)

The theory of causal independence adopts specific independence assumptions to
model the interactions between a set of cause variables and an effect variable, and
using this approach, the number of parameters that need to beestimated decreases
from exponential to linear in the number of variables. The most widely employed
causal independence model is thenoisy-maxmodel, which specializes to thenoisy-or
model for binary random variables (Good, 1983; Pearl, 1988;Henrion, 1989; Dı́ez,
1993). This model expresses that the presence of one or more causesC1, . . . , Cn is
sufficient to give rise to the occurrence of an effectE, and has been used for instance
in the QMR-DT system, and the Promedas system. As an example of a noisy-or
model, consider a diseaseD that may have multiple causesC = {C1, . . . , Cn}, and
where state spaces are given by{true, false}. Then

P (D = true | C) = 1−
n
∏

i=1

P (Xi = false | Ci)

and requires the specification of2n instead of2n free parameters. Since it is often as-
sumed that absent causes do not contribute to the effect, we obtain a further reduction
to justn free parameters. Another frequently used CI model is thenoisy-andmodel;
it expresses that all causes must be present in order to give rise to the effect. It has,
for example, been used to model the joint effect of antibiotics on bacteria causing
ventilator-associated pneumonia in patients (Lucas et al., 2000).

3.3.4 Parameter estimation

Once factors have been attached, the final task is to estimatethe parameters that com-
plete the distributions. One way to estimate parameters is to learn them from data.
However, in practice, datasets can be too small or of too poorquality to yield ac-
curate estimates for the desired quantities (Korver and Lucas, 1993; Jensen, 1995).
Small datasets can be a consequence of the prohibitive costsof obtaining the data,
undisclosed data due to data privacy issues, or adata-poor domain; a domain whose
properties forbid the accumulation of enough data. This phenomenon can be ob-
served, for instance, when the prevalence of a disease one isabout to model is low.
Data quality may be compromised in a number of ways such as missing values, mea-
surement errors, selection effects, and data which is not independently sampled and
identically distributed (i.i.d). An example of a violationof the i.i.d. assumption can
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be found in (Lucas, 2004), where the evolution of a treatmentprotocol introduces a
systematic bias in the data.

An alternative way to estimate parameters when data is lacking is to acquire them
from available domain literature. Although much probabilistic information can be
obtained in this way, often the information is incomplete (Druzdzel et al., 1995). For
example, although the probability of a symptom in the presence of a disease is often
mentioned, the probability of a symptom in the absence of a disease is not.

Finally, parameters may be estimated by eliciting them fromexperts. This is a
subject that should be treated with care, where both statistical (Savage, 1971) and
psychological aspects (Kahneman et al., 1982; Baron, 1994)should be taken into ac-
count. The subject of probability elicitation is treated indetail in (O’Hagan et al.,
2006; Jenkinson, 2005). In the context of expert systems, research has focused on
the fast elicitation of many probabilities. Reference lotteries, for instance, are very
time consuming and less appropriate due to the large number of parameters involved
(van der Gaag et al., 1999). A good strategy seems to be the combined use of lin-
guistic and numerical anchors (Renooij and Witteman, 1999)for the assessment of
probabilities (Fig. 3.17).

0impossible
(almost)

15improbable
25uncertain

50fifty-fifty

75expected
85probable

100certain
(almost)

Figure 3.17: Assessment of probabilities by means of linguistic and numerical anchoring.

Other approaches to parameter estimation are the estimation of distributions
based on qualitative constraints (Feelders and van der Gaag, 2006) or the completion
of partially specified models based on maximum entropy arguments (Wiegerinck and
Heskes, 2001; Wiegerinck, 2005). A modeling strategy that is much used in prac-
tice is to build the structural part of the underlying graphical model based on expert
knowledge and domain literature, whereas parameters are estimated from statistical
data (Druzdzel and Dı́ez, 2003).

With respect to decision making, we need to model how decisions influence do-
main variables (being part ofMπ), as well as how the decision making strategy is
influenced by domain variables (being part ofMφ). The strategy is often given by
some deterministic policy as is dictated for instance by medical guidelines. Stochas-
ticity in the policy can be useful in some cases, such as when the time of treatment is
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uncertain, when we choose randomly between treatments thathave the same expected
utility, or when conditioning variables remain unmodeled.If utilities that capture out-
come preference need to be assessed then we may resort to decision analytical tech-
niques such asdirect scalingand thestandard reference gamble(Sox et al., 1988).
The robustness of the assessed probabilities and utilitiescan be determined by means
of sensitivity analysis(Morgan and Henrion, 1990), which amounts to the systematic
variation of probabilities and an analysis of its effects; it is discussed in the context
of Bayesian networks in (Coupé et al., 1999).

3.4 Summary

Bayesian network construction for clinical decision support is a difficult task, espe-
cially if causality, decision making, and the dynamics of a problem need to be taken
into account. To date, guidelines for the construction of such Bayesian networks have
remained scarce, and the aim of this chapter is to contributeto these guidelines. We
have described clinical tasks in terms of problem solving methods and discussed the
different design choices that can be made for Bayesian networks that are used for
clinical decision support. Subsequently, we have discussed the steps that need to be
taken when constructing realistic Bayesian networks that capture disease dynamics in
terms of a patient model and a treatment protocol in terms of atreatment model. It is
hoped that this work aids the knowledge engineer who is facedwith the construction
of a Bayesian network for clinical decision support.





Chapter 4

A Qualitative Characterization
of Causal Independence

In designing Bayesian networks, developers try to create acyclic directed graphs
that are as sparse as possible, as the size of a conditional probability table is expo-
nential in the number of associated variables. Creating sparse graphs not only saves
space, but may also speed up probabilistic inference. Unfortunately, the creation of
sparse graphs for a given problem may not always be possible.However, by im-
posing extra independence assumptions, supplemented by assumptions of functional
dependence, it may be possible to reduce the number of conditional probabilities that
need to be assessed. The theory ofcausal independenceis especially suited for this
purpose (Heckerman and Breese, 1996).

The theory of causal independence adopts specific independence assumptions to
model the interactions between a set of cause variables and an effect variable; using
this approach, the number of parameters that need to be estimated decreases from
exponential to linear in the number of variables. The noisy OR model, that expresses
that the presence of one or more causes is sufficient to give rise to the occurrence
of the effect, is an example of a causal independence model that is widely used in
practice (Good, 1983; Henrion, 1989; Dı́ez, 1993). It has been used in the QMR-DT
system, which includes knowledge of approximately 600 diseases and approximately
4000 findings (Shwe et al., 1991), the Promedas system, whichaims to cover a large
diagnostic repertoire of internal medicine (Kappen and Neijt, 2002), and in DIAVAL,
an expert system for electrocardiography that uses a generalization of the noisy OR
for non-binary random variables (Dı́ez et al., 1997). Another, frequently used causal
independence model is the noisy AND model; it expresses thatall causes must be
present in order to give rise to the effect. It has, for example, been used to model
the joint effect of antibiotics on bacteria causing ventilator-associated pneumonia in
patients (Lucas et al., 2000).

The noisy OR and noisy AND models are special cases of causal independence
models based on Boolean functions; any of the22n

possiblen-ary Boolean functions

This chapter is based on (van Gerven et al., 2005, 2006c).
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can be used to model deterministic interactions between cause and effect variables.
Given the favorable properties of causal independence models, it is unfortunate that
only very few of these are used in practice: only the mentioned noisy OR and noisy
AND are popular amongst developers. This is caused by the fact that it is often un-
clear with what behavior a particular causal independence model is endowed when
choosing a particular Boolean function. In (Lucas, 2005) this problem was addressed
by exploitingqualitative probabilistic network(QPN) theory to characterize the be-
havior of causal independence models in terms ofinfluencesandsynergies(Wellman,
1990). Such a qualitative characterization may then be matched with the behavior
that is dictated by the domain, as suggested in Figure 4.1. The qualitative pattern as-
sociated with a particular causal independence model is termed aqualitative causal
pattern.

Causal
Independence

Model

Derived
qualitative
interactions

Required
qualitative
interactions

Domain
Knowledge

match?

Figure 4.1: Comparing the observed qualitative behavior of a causal independence model
with the desired qualitative behavior as specified by a domain expert.

The idea that QPN theory might be suitable for analyzing the behavior of causal
independence models was recognized by Wellman, who states that: “...prototypical
patterns of systematic interaction might alleviate the burden of specifying qualitative
synergies”and “ ...we should expect non-ambiguous synergy results from canoni-
cal models because any representation that specifies ann-way influence in terms
of O(n) parameters must employ some systematic assumption about interactions”
(Wellman, 1990). However, (Lucas, 2005) offers the first systematic approach to
analyzing causal independence models in terms of QPN theory. This was done in
particular for decomposable causal independence models, i.e., causal independence
models which are characterized in terms of binary functions. There are 16 binary
Boolean functions, which can be used to compose a subset ofn-ary Boolean func-
tion, and which can be classified in terms of presence or absence of the properties of
associativityandcommutativity. The previously discussed noisy-OR model is based
on the Boolean OR, which is both commutative and associative. Although this offers
an analysis of a useful subset of Boolean functions, a general characterization of the
behavior of Boolean functions is not provided by Ref. (Lucas, 2005).

This chapter offers a substantial generalization of previously published results as
it develops a general theory of qualitative causal patterns. The theory identifies:

1. The qualitative behavior that holds for a given causal independence model.

2. Properties of causal independence models that hold givena qualitative specifi-
cation.
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The theory developed in this chapter is useful in Bayesian network design, as it pro-
vides a tool for matching desired qualitative behavior of causal independence models
with the appropriate structural and quantitative parameters. Furthermore, a more
widespread use of causal independence models in Bayesian networks will facilitate
the intelligibility of network behavior, allow the construction of denser networks and
ease the estimation of network parameters.

The structure of this chapter is as follows. In Section 4.1 wereview some neces-
sary preliminaries, drawing upon Bayesian network, causalindependence and QPN
theory. Subsequently, we study some general properties of causal independence mo-
dels in Section 4.2. These properties are then used to identify the qualitative behavior
for different Boolean functions in Section 4.3. Finally, inSection 4.4 we round off
with a discussion of the obtained results.

4.1 Preliminaries

In this section we will subsequently discuss Bayesian networks, causal independence
models, the running example of this chapter, and QPN theory.Throughout, it is
assumed that all random variables are binary. We will usex to denoteX = ⊤
(logical truth) and̄x to denoteX = ⊥ (logical falsehood). If the value of variableX
is either true of false, but unspecified, then this is indicated byX = x̂, or simply by
x̂.

4.1.1 Causal Independence Models

Causal independence is the notion that causes are independently contributing to the
occurrence of an effect through some pattern of interaction, represented as a set of
local conditional probability distributions of a Bayesiannetwork (Heckerman and
Breese, 1996). The associated Bayesian network structure is depicted in Figure 4.2,
where variablesCk indicate cause variables,Mk intermediate variables andE is an
effect variable. LetB = {⊥,⊤}. We usec ∈ B

n, possibly with a subscript, to
denote an element ofBn for vectorsC = (C1, . . . , Cn); similarly, we usem ∈ B

n

for elements ofM = (M1, . . . ,Mn). These are calledconfigurations. To reduce
the use of numeric indices, we associate with each cause variableC an intermediate
variableMC . The notion of causal independence is captured by the requirement that
an intermediate variableMC ∈M is dependent of cause variableC and independent
of the other cause variablesC\{C}. According to the independence structure shown
in Figure 4.2, it holds that:

P (e | c) =
∑

m

P (e |m)P (m | c)

=
∑

m

P (e |m)
n
∏

i=1

P (m̂i | ĉi). (4.1)
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An intermediate variableMC can be interpreted as modulating the contribution of
a causeC to the effectE and often specific assumptions are made about this con-
tribution. Here we formalize this by the notions ofconsequentialityandaccounta-
bility. Consequentiality states that the truth of a cause variableincreases our belief
that the associated intermediate variable is true as well. Formally, we require that
P (mC | c) > 0. Accountability states that the truth of an intermediate variable
must imply the truth of its associated cause variable; formally, P (mC | c̄) = 0. The
conditional probability distributionP (E | M) used in Eq. (4.1) is assumed to be
deterministic in causal independence models, and, thus, can be taken as representing
a functionf : B

n → B, such thatP (e | m) = 1 if f(m) = ⊤ andP (e | m) = 0
otherwise. A causal independence model, or CI model, is now defined formally as
follows:

Definition 4.1. A causal independence modelC is a tuple(C,M, E, f,P), where
C is a set ofcause variables, M is a set of intermediate variables, E is an effect
variable, f is an interaction function, and P is a set{P (MC | C) | C ∈ C} of
parameters, withMC ∈M, for eachC ∈ C and vice versa, such that:

P (e | c) =
∑

f(m)=e

n
∏

i=1

P (m̂i | ĉi). (4.2)

By f(m) = e is denoted the situation where bothf(m) = ⊤ andE = ⊤ hold.
The probabilityP (mC | c) will often be abbreviated toP (m | c). In literature diffe-
rent interpretations of causal independence exist, often taking the form of restrictions
on an interaction functionf that underlies the model (Cozman, 2004; Heckerman
and Breese, 1996). Here, we assume that an interaction function can be any Boolean
functionf : B

n → B.

C1 C2 . . . Cn

M1 M2 . . . Mn

E ê = f(m̂1, . . . , m̂n)

Figure 4.2: Causal independence model.

A causal independence modelC = (C,M, E, f,P) can act as the basis for the
specification of a Bayesian networkB = (G,P ), with ADG G = (V,E), as de-
picted in Figure 4.2, and joint probability distributionP , whereG respects all the
dependences represented by the joint probability distribution P . The vertices inG
are given by

V = C ∪M ∪ {E}
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such that the setsC,M and{E} are disjoint, and the arcs inG are given by

E = {(C,MC ) | C ∈ C} ∪ {(M,E) |M ∈M}.

In addition to the parametersP (MC | C) and the interaction functionf , we also
need to specify a prior joint probability distributionP (C) to obtain a complete spe-
cification of the Bayesian networkB.

In the sequel, we will often use the notationP [f ] to refer to the probability dis-
tribution P (E | c); in this chapter it is assumed that both consequentiality and ac-
countability hold. We can alternatively write Eq. (4.2) in somewhat generalized form
as:

P [f ] (e | c) =
∑

m

f(m)P (m | c) =
∑

m

f(m)
n
∏

i=1

P (m̂i | ĉi), (4.3)

where we make use of the analogy between Boolean algebra and ordinary arithmetic
by interpreting⊥ as0 and⊤ as1, i.e., if f(m) = ⊥ this is interpreted asf(m) = 0,
and asf(m) = 1 otherwise (Birkhoff and Mac Lane, 1997). We will sometimes
employ functionsf that are not Boolean; even then Eq. (4.3) still applies, where
P [f ] (e | c) can be interpreted as the conditional expectation off givenc. If f is a
constant and there are no cause variablesC thenP[f ] = f .

Illness

(I)
Treatment 1

(T1)
Treatment 2

(T2)

Body failure

(B)
Effectiveness 1

(E1)
Effectiveness 2

(E2)

Survival

(S)

Figure 4.3: A prognostic model of survival in serious illness, modelingthe interaction be-
tween two drugs, expressed as a causal independence model.

As an example of a realistic causal independence model that will be used to il-
lustrate the theory developed in this chapter, consider thecausal independence model
shown in Figure 4.3 that represents a piece of medical knowledge with respect to the
prognosis of aserious illness(I), such as malignant hypertension due to chronic kid-
ney infection, infectious hypertension for short, which ishandled by two alternative
treatmentsT1, an antihypertensive drug, andT2, rifampin (an antibiotic).1 The seri-
ousness of the infectious hypertension is reflected by the fact that we are interested

1The choice of these drugs was inspired by the death of Slobodan Miloševic. It is hypothesized
that his death was due to the combined effect of an antihypertensive drug, which was meant to re-
duce the height of his blood pressure, and the antibiotic rifampin, which counteracted the effect of the
antihypertensive drug. Here, we abstract from the course ofevents.
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in thesurvival(S) (e.g., within the next 5 years) of a patient with this illness. The re-
sulting causal independence model is shown in Figure 4.3. The variableB stands for
body failuredue to the illness,E1 stands for theeffectivenessof treatmentT1 andE2

for the effectiveness of treatmentT2. If body failure occurs and the disease cause is
eradicated, it is assumed that the patient will survive. However, if both treatmentsT1

andT2 are effective then the patient will not survive due to the synergistic interaction
between the two treatments (rifampin in conjunction with the antihypertensive drug).
This can be expressed by means of a Boolean functionf defined by the following
Boolean expression:

ŝ = (¬b̂ ∧ ¬ê1 ∧ ¬ê2) ∨ (ê1 ∧ ¬ê2) ∨ (¬ê1 ∧ ê2) (4.4)

(survival is equivalent to the absence of body failure or eradication of the disease due
either treatmentT1 or T2, but not both). In the sequel, we will use Boolean functions
and Boolean expressions interchangeably. The qualitativebehavior that arises from
this choice should then be in accordance with the domain knowledge as stated above.

According to what has been said above, the Bayesian network model is an exam-
ple of a CI model. It will be called theprognostic modelin the following. Here, the
variablesI, T1 andT2 act as cause variables andB, E1 andE2 are the intermediate
variables. For example, we have thatB = MI .

There are two main tasks in building a CI model. The first is to determine the
underlying interaction functionf , in the example a Boolean function that is assumed
to model the interaction between the factors Body Failure (B), Effectiveness 1 (E1)
and Effectiveness 2 (E2) with respect to Survival (S), whereS is the effect vari-
able. The second task is to estimate the parametersP (B | I), P (E1 | T1) and
P (E2 | T2). Notice that just three conditional probabilities need to be estimated, as
P (mC | c̄) is assumed to be zero for each cause variableC. Examples of causal
independence models that model other real-world problems and employ alternative
interaction functions can be found in (Lucas, 2005).

4.1.2 Qualitative Probabilistic Networks

Recall that the aim of the research underlying this chapter was to develop a theory that
is able to assist Bayesian network developers in quantifying Bayesian networks using
qualitative knowledge from a problem domain. Qualitative probabilistic networks
are at the core of this theory. We will, therefore, briefly summarize the theory of
qualitative probabilistic networks.

Qualitative probabilistic networks (QPNs) were introduced by Wellman as a qua-
litative abstraction of ordinary Bayesian networks (Wellman, 1990). The relation-
ships between variables are described by the concepts ofinfluencesandsynergies. In
the following, let(G,P ) be a Bayesian network, letA,B,C ∈ X be binary random
variables and let(A,C) and(B,C) be arcs inG.
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A qualitative influence expresses how the value of one variable influences the
probability of observing values for another variable.

Definition 4.2. LetX denoteπG(C)\{A}. We say that there is apositive qualitative
influenceofA onC, written asδA→C = +, if

δA→C(x) = P (c | a,x)− P (c | ā,x) ≥ 0

regardless of the configurationx, with a strict inequality for at least one configuration
x. Negative(δA→C = −) and zeroqualitative influences (δA→C = 0) are defined
analogously, replacing≥ by≤ and= respectively. If there are valuesx andx′, such
that

P (c | a,x) − P (c | ā,x) > 0 andP (c | a,x′)− P (c | ā,x′) < 0

then we say that the qualitative influence isnon-monotonic, denoted byδA→C =
∼. If none of these cases hold, i.e., when there is incomplete information about
the probability distribution, then we say that the qualitative influence isambiguous,
written asδA→C = ?.

Example 4.1. In order to illustrate the qualitative concepts we assume for the mo-
ment that the exact probabilities associated with the prognostic model are known. We
assumeP (b | i) = 0.9, P (e1 | t1) = 0.3 andP (e2 | t2) = 0.6. Hence, it is very
likely that a serious illness gives rise to body failure, as it occurs in 90% of cases,
treatmentT1 is effective in 30% of the patients and treatmentT2 is effective in 60%
of the patients. What then, we might ask, is the qualitative influence of a serious
illness on the survival? This is computed as follows, where the Boolean functionf is
defined by the Boolean expression (4.4):

δI→S({t̂1, t̂2}) = P[f ](s | i, t̂1, t̂2)− P[f ](s | ı̄, t̂1, t̂2)

= P (ē1 | t̂1)P (ē2 | t̂2)
(

P (b̄ | i)− P (b̄ | ı̄)
)

.

It follows that δI→S({t1, t2}) = −0.252, δI→S({t̄1, t2}) = −0.36,
δI→S({t1, t̄2}) = −0.63 andδI→S({t̄1, t̄2}) = −0.9. In accordance with our ex-
pectations, serious illness appears to have a negative influence on survival.

An additive synergy expresses how the interaction between two variables influ-
ences the probability of observing values for a third variable.

Definition 4.3. LetX denoteπG(C)\{A,B}. We say that there is apositive additive
synergyofA andB onC, written asδ(A,B)→C = +, if

δ(A,B)→C(x) = P (c | a, b,x) + P (c | ā, b̄,x)− P (c | ā, b,x) − P (c | a, b̄,x) ≥ 0

regardless of the configurationx, with a strict inequality for at least one configura-
tion x. Negative, zero, non-monotonic and ambiguous additive synergies are defined
analogous to qualitative influences.
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Example 4.2. With regard to the prognostic model, we might be interested in the
additive synergy between serious illness and treatmentT1 with respect to survival.
This is computed as follows, where again we employ Boolean expression (4.4):

δ(I,T1)→S({t̂2}) = P[f ](s | i, t1, t̂2) + P[f ](s | ı̄, t̄1, t̂2)−

P[f ](s | ı̄, t1, t̂2)− P[f ](s | i, t̄1, t̂2)

= P (ē2 | t̂2)
(

P(b̄ | i)− 1
)(

P (ē1 | t1)− 1
)

.

It follows thatδ(I,T1)→S({t2}) = 0.108 andδ(I,T1)→S({t̄2}) = 0.27 such that illness
I and treatmentT1 have a positive additive synergy with respect to survival.

A product synergy expresses how upon observation of a commonchild of two ver-
tices, observing the value of one parent vertex influences the probability of observing
a value for the other parent vertex. The original definition of a product synergy is as
follows (Henrion and Druzdzel, 1991).

Definition 4.4. LetX denoteπG(C)\{A,B}. We say that there is apositive product
synergyofA andB with regard to the valuêc of variableC, written asδĉ

(A,B)→C
=

+, if

δĉ
(A,B)→C(x) = P (ĉ | a, b,x)P (ĉ | ā, b̄,x)− P (ĉ | ā, b,x)P (ĉ | a, b̄,x) ≥ 0

regardless of the configurationx, with a strict inequality for at least one configuration
x. It is assumed that the valuêc of variableC is either true or false. Negative, zero,
non-monotonic and ambiguous product synergies are again defined analogous to the
corresponding types of qualitative influences.

Example 4.3. With regard to the prognostic model, the product synergy between
treatmentsT1 andT2 in the case of survival, is computed as follows.

δs
(T1,T2)→S({ı̂}) = P[f ](s | ı̂, t1, t2) · P[f ](s | ı̂, t̄, t̄2)−

P[f ](s | ı̂, t̄1, t2) · P[f ](s | ı̂, t1, t̄2)

= −P (e1 | t1)P (e2 | t2)

It follows that δs
(T1,T2)→S

({ı̄}) = δs
(T1,T2)→S

({i}) = 0.18 such that treatmentsT1

andT2 have a positive product synergy with respect to survival. This positive product
synergy arises due to the fact that in the case of survival of apatient, it is more likely
that one of both treatments is given. The presence of bothT1 andT2 and the absence
of bothT1 andT2 will lead to patient death.

The following lemma states that for binary random variables, the product synergy
whenC = ⊥ is partially determined by the associated additive synergy.
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Lemma 4.1. For binary random variables, the product synergy whenC = ⊥ is
determined by the product synergy whenC = ⊤ and the additive synergy through
the following equality:

δc̄
(A,B)→C(x) = δc

(A,B)→C(x)− δ(A,B)→C(x).

Proof.

δc̄
(A,B)→C(x) = P (c̄ | ā, b̄,x)P (c̄ | a, b,x)− P (c̄ | a, b̄,x)P (c̄ | ā, b,x)

= (1− P (c | ā, b̄,x))(1 − P (c | a, b,x)) −

(1− P (c | a, b̄,x))(1 − P (c | ā, b,x))

=
(

P (c | ā, b̄,x)P (c | a, b,x)− P (c | a, b̄,x)P (c | ā, b,x)
)

−
(

P (c | ā, b̄,x) + P (c | a, b,x)− P (c | a, b̄,x)− P (c | ā, b,x)
)

= δc
(A,B)→C(x)− δ(A,B)→C(x) ,

which completes the proof.

Modifications to the definition of a product synergy have beenmade after the
observation that Def. 4.4 is incomplete when parent vertices inX are uninstantiated
(Druzdzel and Henrion, 1993b,a). In other words,

∀x[P (ĉ | a, b,x)P (ĉ | ā, b̄,x) − P (ĉ | a, b̄,x)P (ĉ | ā, b,x) ≤ 0

; P (ĉ | a, b)P (ĉ | ā, b̄)− P (ĉ | a, b̄)P (ĉ | ā, b) ≤ 0].

This so-called type II product synergy can be formalized in terms of the more
intuitive notion of anintercausal influence(Renooij, 2001).

Definition 4.5. LetX denoteπG(B) ∪ πG(C) \ {A}. Then a variableA exhibits a
positive intercausal influenceonB with regard to the valuêc if

P (b | a, ĉ,x) − P (b | ā, ĉ,x) ≥ 0,

regardless of the configurationx. Negative, zero, non-monotonic and ambiguous
intercausal influences are again defined analogous to the corresponding types of qua-
litative influences.

For causal independence models, intercausal influences describe the dependence
between two causesC andC ′ when the value of the effect variable is observed. We,
therefore, compute

P (c′ | c, ê, c2)− P (c′ | c̄, ê, c2) (4.5)

for all valuesc2 of the causesC2 = C \ {C,C ′}. Using Bayes’ rule we obtain the
equal expression

P (ê | c, c′, c2)P (c′ | c, c2)

P (ê | c, c2)
−
P (ê | c̄, c′, c2)P (c′ | c̄, c2)

P (ê | c̄, c2)
. (4.6)
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Note thatP (c′ | c, c2) = P (c′ | c̄, c2) = P (c′), as cause variables are independent.
This leads to the following expression, whose sign equals that of Formula (4.6):

P (ê | c̄, c2)P (ê | c, c′, c2)− P (ê | c, c2)P (ê | c̄, c′, c2).

RewritingP (ê | c̄, c2) asP (ê | c̄, c′, c2)P (c′)+P (ê | c̄, c̄′, c2)P (c̄′) andP (ê | c, c2)
asP (ê | c, c′, c2)P (c′) + P (ê | c, c̄′, c2)P (c̄′), we obtain:

P (ê | c, c′, c2)P (ê | c̄, c̄′, c2)− P (ê | c̄, c′, c2)P (ê | c, c̄′, c2)

which is the definition of the product synergy, specialized to causal independence
models. Hence, for causal independence models over binary variables the product
synergy and intercausal influences are equivalent.

So far, we have assumed that the parametersP (mC | c) are known when quali-
tative properties are computed. However, the goal of this chapter is to qualitatively
characterize causal independence models with varying interaction functions. There-
fore, we abstract away from the parameters and derive the qualitative properties solely
by taking into account the properties of a causal independence model’s interaction
function. In the next section, we infer some general properties of causal indepen-
dence models.

4.2 Properties of causal independence models

In this section, we will investigate general properties of the probability distribution
P[f ], where it is assumed thatf is a Boolean function. We will make use of the
analogy between Boolean algebra and ordinary arithmetic byinterpreting⊥ as0 and
⊤ as1 in an arithmetic context (Birkhoff and Mac Lane, 1997), in order to allow for
a compact notation.

4.2.1 General properties

Lemma 4.2 states thatP [f ] is bounded byf = ⊥ andf = ⊤, which is a basic result
due to the first axiom of probability theory.

Lemma 4.2. 0 = P[⊥] ≤ P[f ] ≤ P[⊤] = 1.

The probabilityP [¬f ] is determined through the following lemma.

Lemma 4.3. P [¬f ] = 1− P [f ].

Proof.

P [¬f ] (e | c) =
∑

m

(1− f(m))P (m | c) =
∑

m

P (m | c)−
∑

m

f(m)P (m | c)

which is equivalent to1− P [f ] (e | c).
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Sometimes, we will add two Boolean functions or compute the difference be-
tween two Boolean functions within a CI model. In that case, Lemma 4.2 does not
hold and the expression is not a proper probability distribution anymore, butcanbe
interpreted as a conditional expectation.

Lemma 4.4. P [af + bf ′] = aP[f ] + bP[f ′] for constantsa andb.

Proof. This follows from the linearity property of conditional expectation.

P[f ] can be bounded from below and above through the following inequalities.

Corollary 1. P[f ∧ f ′] ≤ P[f ] ≤ P[f ∨ f ′] ≤ P[f ] + P[f ′].

Proof.

P[f ∧ f ′](e | c) =
∑

m f(m)f ′(m)P (m | c)
≤

∑

m f(m)P (m | c)
= P[f ](e | c)
≤

∑

m(f(m) + f ′(m)− f(m)f ′(m))P (m | c)
= P[f ∨ f ′](e | c)
≤

∑

m(f(m) + f ′(m))P (m | c)
= P[f ](e | c) + P[f ′](e | c)

which completes the proof.

4.2.2 Analytical tools

Next, we introduce a number of analytical tools that will be used in the subsequent
sections.

Definition 4.6. Letf : B
n → B be a Boolean function. Then, thecurryof f , denoted

by fXj=x̂j
, is defined as the functionfXj=x̂j

: B
n−1 → B, such that

fXj=x̂j
(x̂1, . . . , x̂j−1, x̂j+1, . . . , x̂n) = f(x̂1, . . . , x̂j−1, x̂j , x̂j+1, . . . , x̂n).

Central to the analysis is the notion of a partial order≤ on configurations ofC and
M.

Definition 4.7. Letm = (m̂1, . . . , m̂n), c = (ĉ1, . . . , ĉn) ∈ B
n be Booleann-tuples.

It holds thatm ≤ c iff m̂i ≤ ĉi for all i, 1 ≤ i ≤ n, where⊥ < ⊤. The relation
m < c holds iffm ≤ c andm 6= c and the relation> is defined analogously.

Note that for any two tuplesm andc it holds that eitherm < c, m > c, m = c

or ∃C : m̂C < ĉ ∧ ∃C′ : m̂C′ > ĉ′. If the latter holds then we say thatm and
c are incomparable. By means of this ordering we are in a position to compare
configurationsm of the intermediate variablesM with configurationsc of the cause
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variablesC. In other words, we can compare intermediate states with causal states.
We have chosen for this partial order instead of for a lexicographic order, as the order
of the cause and intermediate variables is not always important. By means of the
partial order we can prove the following lemmas.

Lemma 4.5. m = c⇒ P (m | c) > 0.

Proof. If m = c, then

P (m | c) =
∏

C∈C

P (mC | c)
ĉP (m̄C | c̄)

1−ĉ =
∏

C∈C

P (mC | c)
ĉ > 0

due to the assumptions thatP (mC | c) > 0 andP (mC | c̄) = 0.

Lemma 4.5 states that the probability that an intermediate state is equal to the
causal state is always larger than zero. Hence, the causal state always conveys infor-
mation about the actual state of the intermediate variables.

Lemma 4.6. P (m | c) > 0⇒ c ≥m.

Proof. If c 6≥ m then there is some cause variableC = ⊥ and intermediate variable
MC = ⊤. SinceP (mC | c̄) = 0 it holds thatP (mC | c) = 0.

Lemma 4.6 follows from the notion of accountability and states that the truth of
an intermediate variable always implies the truth of its associated cause variable. It
is an important lemma, as it essentially shows that we can ignore all configurations
m that are not smaller than or equal, or incomparable, to a given configurationc.

The following lemmas demonstrate how a choice of the parameters influences the
value ofP (m | c).

Lemma 4.7. ∀CP (mC | c) = 1⇒ ∀m 6=cP (m | c) = 0 for arbitrary c.

Proof. ChooseP (mC | c) = 1 for eachC ∈ C. If m = c, thenP (m | c) = 1, and
necessarilyP (m | c) = 0 for m 6= c.

Lemma 4.7 states that if the causal relationship between thecausesC the interme-
diatesMC is deterministic, it is not allowed that the values of causesand intermediate
variables differ, which is as expected.

Lemma 4.8. ∀CP (mC | c) < 1⇒ ∀m≤cP (m | c) > 0 for arbitrary c.

Proof. Sincem ≤ c we have that for each cause variableC such thatMC = ⊤ also
C = ⊤ and for eachC such thatMC = ⊥ it is the case that eitherC = ⊥ orC = ⊤.
Therefore, we may write

P (m | c) =
∏

C∈C

P (mC | c)
m̂CP (m̄C | c)

(1−m̂C )ĉC

sinceP (m̄C | c̄) = 0 by assumption. Since it is also assumed that0 < P (mC | c) <
1, we haveP (mC | c) > 0 andP (m̄C | c) > 0, which proves the proposition.
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Lemma 4.8 states that if there is an uncertain causal relationship between every
causeC and its associated intermediate variableMC , then it follows that each inter-
mediate state whose true variables form a subset of the true cause variables, has a
non-zero probability of occurring.

As the qualitative behavior of a CI model is completely determined by its inter-
action function, in the following we will frequently investigate how these functions
behave. This analysis will frequently go beyond pure Boolean functions, as some of
the interaction patterns are the result of adding and subtracting Boolean functions.
Considerable insight into the interaction patterns is obtained by looking at the func-
tion values (positive, negative or zero) of the resulting function for configurations
smaller than a given configuration. For this, introduction of a special notation will be
convenient, as given by the following definition.

Definition 4.8. Letq : B
m →W be a function, whereW = {−b, . . . , 0, . . . , b} ⊂ Z,

thenq is said to haveinitial non-negative function values, denoted byV +
q , if

∃m
[

[q(m) ∈ {1, . . . , b}] ∧ ∀m′<m [q(m′) ∈ {0, . . . , b]
]

.

Similarly,q is said to haveinitial non-positive function values, denoted byV −
q , if V +

−q

holds.

Thus,V +
q means that the function value ofq is positivefor some valuem, and

takes non-negative values for any valuem′ lower in the ordering<. The meaning of
V −

q is analogous.
As an example, consider a functionq that indicates quality of life, where the

variables ‘happiness’ and ‘beauty’, abbreviated toH andB, are used as summary
variables. It is defined as follows. Withq(h, b) = 1 is indicated maximal quality of
life; for all (ĥ, b̂) < (h, b), for example(h̄, b) < (h, b), unsatisfactory quality of life
is quantified byq(ĥ, b̂) = 0. Thus, for this quality of life functionV +

q holds whereas
V −

q does not. The propertiesV +
q andV −

q of a functionq will be important tools for
the qualitative analysis of CI models.

4.3 Qualitative properties of CI models

In this section, it is assumed that a Boolean interaction function underlying a causal
independence model is given; we then identify the signs of qualitative influences
(Section 4.3.1), additive synergies (Section 4.3.2) and product synergies (Section
4.3.3). These results can be used to identify Boolean functions that respect a parti-
cular qualitative characterization. Note that we can assume that the causes are direct
parents ofE as the intermediate variables are marginalized out of the final computa-
tion of P [f ] (e | c) (cf. Eq. (4.2)). For our analysis, we assume some fixed CI model
over a setC of n cause variables, in which we focus on the interaction between dif-
ferent cause variablesC andC ′ and the effect variableE, where we abbreviateMC
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byM andMC′ byM ′. Throughout this chapter we will useM1 to denoteM \ {M}
andM2 to denoteM \ {M,M ′}. Likewise, we will useC1 to denoteC \ {C} and
C2 to denoteC \ {C,C ′}.

4.3.1 Qualitative Influences

Let δC→E [f ] denoteδC→E wheref is the interaction function of the corresponding
CI model. A qualitative influenceδC→E [f ] between a causeC and effectE denotes
how the observation ofC influences the observation of the effecte. The sign of a
qualitative influence for a CI model mediated by a functionf is then determined by
the sign of

δC→E[f ](c1) = P[f ](e | c, c1)− P[f ](e | c̄, c1). (4.7)

The analysis of qualitative influences requires that we isolate the contribution of par-
ticular cause variablesC with respect to the effectE. By writing

P[f ](e | ĉ, c1) =
∑

m

f(m)P (m | c)

= P (m | ĉ)P[fm](e | c1) + (1− P (m | ĉ))P[fm̄](e | c1)

= P[fm̄](e | c1) + P (m | ĉ)P[g](e | c1) (4.8)

whereg denotes thedifference functionfm − fm̄, we obtain this isolation ofC from
the remainder of the cause variables. Sometimes, we wish to refer to the variableM
over which we vary the interaction functionf , and then the notationgM is used. Note
that it holds for the difference function thatg(m1) ∈ {−1, 0, 1}. If we substitute
Eq. (4.8) into (4.7) we obtain the following equation for thesign of a qualitative
influence in CI models:

δC→E [f ](c1) = (P (m | c)− P (m | c̄)) · P[g](e | c1).

Under the assumption thatP (m | c) > P (m | c̄), which always holds under the
assumption of accountability, i.e.,P (m | c̄) = 0 (cf. Section 4.1.1), we may write

δC→E [f ](c1) ∝ P[g](e | c1). (4.9)

We use Def .4.7 and its associated lemmas to derive some properties of qualitative
influences in causal independence models. We can write

P[g](e | c1) =
∑

m1

g(m1)P (m1 | c1),

where the configurationm1 ranges over all elements ofB
n−1. Let these configu-

rationsm1 be represented bymi
1, for i = 1, . . . , 2n−1, and ordered such that if

mi
1 < m

j
1 theni < j. The configurationsc1 of C1 may also be any element ofB

n−1
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and we assume that they are ordered likewise such thatci
1 = mi

1 for i = 1, . . . , 2n−1.
From Lemma 4.6 it follows that for each configurationc1:

P[g](e | c1) =
∑

m1≤c1

g(m1)P (m1 | c1). (4.10)

Therefore, we need only take into account intermediate states that precede a causal
state in the ordering. Based on this ordering we derive the properties of qualitative
influences in causal independence models. We will state these properties compactly
in terms of the difference functiong.

Proposition 4.1. δC→E [f ] = 0⇔ g = 0.

Proof. Using Eq. (4.10), we prove by induction that ifP[g](e | ck
1) = 0 then

g(mk
1) = 0, for k = 1, . . . , 2n−1.

Basis.Let k = 1. ThenP[g](e | ck
1) = g(mk

1) · P (mk
1 | c

k
1). SinceP (m1

1 | c
1
1) > 0

by Lemma 4.5, it must be the case thatg(m1
1) = 0 if P[g](e | c1

1) = 0.

Inductive hypothesis. For i = 1, . . . , k, it holds that fromP[g](e | ci
1) = 0 it

follows thatg(mi
1) = 0, and vice versa.

Induction step. From the inductive hypothesis, it follows that:

P[g](e | ck+1
1 ) =

∑

1≤i≤k+1

g(mi
1)P (mi

1 | c
k+1
1 ) = g(mk+1

1 )P (mk+1
1 | ck+1

1 ).

As P (mk+1
1 | ck+1

1 ) > 0 it follows that g(mk+1
1 ) = 0 if P [g](e | ck+1

1 ) = 0, and
vice versa. But theng(mi

1) = 0, for i = 1, . . . , 2n−1.

In order to distinguish the different signs of qualitative influences it is necessary
to know when positive and negative contributions are possible in principle. We first
state an elementary relationship between positive and negative contributions to the
sign of a qualitative influence.

Lemma 4.9. δC→E [f ](c1) > 0⇔ δC→E [¬f ](c1) < 0.

Proof. Using the result of Lemma 4.3, we derive

δC→E[f ](c1) > 0 ⇔ P[fm](e | c1)− P[fm̄](e | c1) > 0

⇔ (1− P[fm](e | c1))− (1− P[fm̄](e | c1)) < 0

⇔ P[¬fm](e | c1)− P[¬fm̄](e | c1) < 0

⇔ δC→E [¬f ](c1) < 0

which completes the proof.



68 A Qualitative Characterization of Causal Independence

Exploring the initial function values of the difference functiong, as defined above
in Def. 4.8, yields further insight into the properties of qualitative influences. Note
that we use the definition here by takingb = 1.

Lemma 4.10 lists a sufficient condition for observing a positive value of
δC→E [f ](c1).

Lemma 4.10. For every CI model with interaction functionf it holds that

V +
g ⇒ ∃c1 : δC→E [f ](c1) > 0

Proof. Recall from Def. 4.8 that it holds that

V +
g = ∃m1 : g(m1) = 1 ∧ ∀m′

1<m1
g(m′

1) ∈ {0, 1}.

Choosingc1 = m1 we obtainP[g](e | c1) =
∑

m′

1≤c1
g(m′

1)P (m′
1 | c1) according

to Eq. (4.10). Since for eachm′
1 < c1 it holds thatg(m′

1) ∈ {0, 1} andg(m1) = 1
with P (m1 | c1) > 0 we have proved the lemma.

We present a similar result for negative values ofδC→E[f ](c1).

Lemma 4.11. For every CI model with interaction functionf it holds that

V −
g ⇒ ∃c1 : δC→E [f ](c1) < 0.

Proof. Recall thatV −
g = ∃m1 : g(m1) = −1∧∀m′

1<m1
g(m′

1) ∈ {−1, 0}. If we use
¬f in Lemma 4.10 and the correspondence¬fm(m1)−¬fm̄(m1) = 1⇔ g(m1) =
−1 then we obtain

∃m1 : g(m1) = −1 ∧ ∀m′

1<m1
g(m′

1) ∈ {−1, 0} ⇒ ∃c1 : δC→E [¬f ](c1) > 0.

From Lemma 4.9 it follows thatδC→E[¬f ](c1) > 0 ⇔ δC→E [¬¬f ](c1) < 0 =
δC→E [f ](c1) < 0, which proves the proposition.

The reason why we can find a positive (or negative) value ofδC→E [f ](c1) follows
from the fact that we may choose a configurationc1 that renders all configurations
m1 that are larger than or incomparable withc1 irrelevant. This is visualized in
Figure 4.4.

If we consider the functionsfm andfm̄ then one of four different situations may
arise. First, if neitherV +

g nor V −
g hold then the inductive argument of Lemma 4.1

holds andδC→E [f ] = 0. Second, if bothV +
g andV −

g hold, then we have two incom-
parable configurationsm1 and m′

1 that renderδC→E [f ](c) positive and negative,
respectively. This leads to the following proposition.

Proposition 4.2. V +
g ∧ V

−
g ⇒ δC→E[f ] = ∼ .

Proof. This follows from Lemma 4.10 and Lemma 4.11.
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fm :

fm̄ :

c1

Figure 4.4: The horizontal bars represent the outcome forfm andfm̄ respectively for those
configurations fromm1

1 to m2n−1

1 of M1 that are comparable toc1. A black bar denotes
that the output is true whereas a white bar denotes that the output is false. The vertical line
represents a configurationc1 of C1. Due to a choice forc1 the onlyreachableconfigurations
are contained within the dashed region, which must lead to a positive sign offm − fm̄.

Third, if V +
g holds andV −

g does not hold then there is a positive value of
δC→E [f ](c1) for some configurationc1 of C1 such thatδC→E [f ] is either+ or ∼.
Under a specific condition we can infer that the sign must be positive.

Proposition 4.3. If V +
g and¬∃m1 : g(m1) = −1 thenδC→E[f ] = +.

Proof. The proposition follows from the observations thatδC→E [f ](c) > 0 for some
c and no negative contribution to the sign of the qualitative influence.

Ref. (Lucas, 2005) includes tables for Boolean functions defined in terms of the
16 binary Boolean functions. We use these results in the following example.

Example 4.4. For both the AND and the OR operator, we haveδC→E [f ] = + since
for both operators it holds that the difference functiong = fm − fm̄ is non-negative
and positive for at least onem1, which implies that the conditions of Proposition 4.3
hold.

If the conditions of Proposition 4.3 do not hold then we know for a fact that the
sign is ambiguous, since it can be either non-monotonic or positive if the parameters
are unknown.

Proposition 4.4. If V +
g and∃m1 : g(m1) = −1 thenδC→E [f ] = ?.

In order to prove Proposition 4.4, we need to prove that ifV +
g and

∃m1 : fm(m1) < fm̄(m1) then we can find parameters such thatδC→E[f ] =∼ and
other parameters such thatδC→E [f ] = +. The non-monotonic case is easily proven
by the following lemma.

Lemma 4.12. If ∃m1 : g(m1) = 1 ∧ ∃m′

1
: g(m′

1) = −1 then we can choose para-
meters suchδC→E[f ] =∼.

Proof. From Lemma 4.7 it follows that we can choose parameters such that
δC→E [f ](c1) = g(m1) = 1 andδC→E[f ](c′1) = g(m′

1) = −1.
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It is more complex to prove that we can also find parameters such thatδC→E [f ] =
+. The proof relies on the fact that we can always find parameters such that the
negative contribution remains smaller than the positive contribution to the sign of the
qualitative influence.

Lemma 4.13. If V +
g and∃m1 : g(m1) = −1 then we can find parameters such that

δC→E [f ] = +.

Proof. It suffices to prove that∀cδC→E [f ](c) ≥ 0 for some choice of the para-
meters. We know that there must be some configurationm1 with g(m1) = 1
and for all configurationsm′′

1 < m1 it holds thatg(m′′
1) ∈ {0, 1}. We assume

that ∀m′′

1<m1
g(m′′

1) = 0 and∀m′

1>m1
g(m′

1) = −1, which minimizesP[g](e | c1).
The incomparable configurations must be either zero or positive (otherwise a non-
monotonic qualitative influence is implied) such that thesecannot contribute nega-
tively. We therefore obtain:

P[g](e | c1) ≥
∏

C∈C1

P(mC | ĉ)
m̂C P(m̄C | ĉ)

1−m̂C −
∑

m′

1>m1

P(m′
1 | c1) . (4.11)

By choosingP(mC | c) = 1 for eachC such thatMC =⊤, we obtain

P[g](e | c1) ≥
∏

C∈C1

P(m̄C | ĉ)
1−m̂C −

∑

m′

1>m1

∏

C∈C1

P(mC | ĉ)
(1−m̂C )m̂′

C P(m̄C | ĉ)
(1−m̂C )(1−m̂′

C
)

due to the fact that ifMC =⊥ thenM ′
C =⊤ or M ′

C =⊥. Given that for eachm′
1

there must exist at least one causeCu(m′

1)
with u : B

n−1 → {1, . . . , n}, such that
M ′

u(m′

1) =⊤ andMu(m′

1) =⊥, we obtain

P[g](e | c1) ≥
∏

C∈C1

P(m̄C | ĉ)
1−m̂C −

∑

m′

1>m1

P(mu(m′

1) | ĉu(m′)) .

By distinguishing present and absent causes, we may write

P[g](e | c1) ≥
∏

C∈C1

P(m̄C | c)
(1−m̂C )ĉ−

∑

m′

1>m1

P(mu(m′

1
) | cu(m′

1
))

ĉu(m′

1
) ·0

1−ĉu(m′

1
) .

A key step is to distinguishC1 into Ca =
{

C | C ∈ C1,∀m′

1>m1
C 6= Cu(m′

1)

}

and

Cb =
{

C | C ∈ C1,∃m′

1>m1
: C = Cu(m′

1)

}

, such that

P[g](e | c1) ≥
∏

C∈Ca

P(m̄C | c)
(1−m̂C )ĉ

∏

C′∈Cb

P(m̄C′ | c′)(1−m̂C′ )ĉ′ −

∑

m′

1>m1

P(mu(m′

1) | cu(m′

1))
ĉu(m′

1
) · 0

1−ĉu(m′

1
) .
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By choosing parametersP(m̄C | c) = q for eachC ∈ Ca such thatMC = ⊥ and
P(mu(m′

1) | cu(m′

1)) = p for all m′
1 > m1, we obtain

P[g](e | c1) ≥
∏

C∈Ca

q(1−m̂C)ĉ
∏

C′∈Cb

(1− p)(1−m̂C′ )ĉ′ −
∑

m′

1>m1

p
ĉu(m′

1
) · 0

1−ĉu(m′

1
) .

Let w be the cardinality of{m′
1 | m

′
1 ∈ B

n−1,m′
1 > m1}. As there are at most

n− 1 cause variables inC1, we obtain:

P[g](e | c1) ≥ q
n(1− p)n −wp

wherew is the cardinality of{m′
1 | m′

1 ∈ B
n−1,m′

1 > m1}. It follows from
Bernoulli’s inequality thatP[g](e | c1) ≥ qn(1 − np) − wp, such that by choosing
p < qn

qnn+w
, we have ensured thatP[g](e | c1) ≥ 0. As there must be at least one

configuration ofC1 for whichP[g](e | c1) 6= 0, we have proved the proposition.

Finally, if V −
g holds andV +

g does not hold then there is a negative value of
dC→E [f ](c1) for some configurationc1 of C1 such thatδC→E[f ] is either− or ∼.
Analogous to positive qualitative influences, under a specific condition we can infer
that the sign must be negative.

Proposition 4.5. If V −
g and¬∃m1 : g(m1) = 1 thenδC→E [f ] = −.

Proof. Analogous to the proof of Proposition 4.3.

Symmetrically to positive qualitative influences, if this condition does not hold
then we know for a fact that the sign is ambiguous since it can be either non-
monotonic or negative if the parameters are unknown.

Proposition 4.6. If V −
g and∃m1 : g(m1) = 1 thenδC→E[f ] =?.

The proof that parameters can always be found to generate negative or non-
monotonic qualitative influences proceeds in the same way asthat for the positive
qualitative influences.

In the above, we have shown how properties of the interactionfunctionf influ-
ence the qualitative properties of causal independence models. It is straightforward
to recast properties of the difference functiong in terms of properties of the interac-
tion functionf due to the identityg = fm − fm̄ as is demonstrated by means of the
prognostic model.

Example 4.5. We first consider the qualitative influence ofI onS. In order to iden-
tify the qualitative behavior, we need to investigate the curriesfb andfb̄. If we restrict
B to⊤ (i.e.,b), we have

fb ≡ (¬b ∧ ¬E1 ∧ ¬E2) ∨ (E1 ∧ ¬E2) ∨ (¬E1 ∧ E2)

≡ (E1 ∧ ¬E2) ∨ (¬E1 ∧ E2)
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In a similar vein we can reducefb̄ to ¬
(

E1 ∧ E2

)

. It follows that forg we have2

g(e1, e2) = fb(e1, e2)− fb̄(e1, e2) = (e1 ∧ ¬e2) ∨ (¬e1 ∧ e2)− ¬(e1 ∧ e2)) = 0

g(e1, ē2) = fb(e1, ē2)− fb̄(e1, ē2) = (e1 ∧ ¬ē2) ∨ (¬e1 ∧ ē2)− ¬(e1 ∧ ē2)) = 0

g(ē1, e2) = fb(ē1, e2)− fb̄(ē1, e2) = (ē1 ∧ ¬e2) ∨ (¬ē1 ∧ e2)− ¬(ē1 ∧ e2)) = 0

g(ē1, ē2) = fb(ē1, ē2)− fb̄(ē1, ē2) = (ē1 ∧ ¬ē2) ∨ (¬ē1 ∧ ē2)− ¬(ē1 ∧ ē2)) = −1

It follows that Proposition 4.5 holds, such thatδI→S [f ] = −. This negative influence
of the serious illness on prognosis is in accordance with thepreviously stated domain
knowledge. We proceed in a similar way for the qualitative influences ofT1 onS and
obtain the following results. For the qualitative influenceof T1 onS we havefe1 ≡
¬E2 andfē1 ≡ (¬B ∧ ¬E2) ∨ E2. It follows that forg we have thatg(i, e2) = 0,
g(i, ē2) = 1, g(̄ı, e2) = −1 andg(i, e2) = 0. As (i, ē2) and(̄ı, e2) are incomparable
and have opposing signs, it follows thatδT1→S[f ] =∼ according to Proposition 4.2.
We remark thatδT2→S [f ] =∼ by symmetry. The qualitative influences are depicted
in Figure 4.5.

I: illness T1: treatment 1 T2: treatment 2

S: survival

- ∼ ∼

Figure 4.5: Qualitative influences with respect to patient survival.

Previously, we have shown how properties of the interactionfunctionf influence
the qualitative properties of causal independence models.Next, we show that, by
means of the propositions and lemmas that have been derived,we can also imme-
diately infer properties of interaction functions that should hold when a qualitative
influence is known. First, observe that, based on the lemmas and propositions above
(

V +
g ∧ ¬∃m1 : g(m1) = −1

)

∨
(

V +
g ∧ ∃m1 : g(m1) = −1

)

∨
(

V −
g ∧ ¬∃m1 : g(m1) = 1

)

∨
(

V −
g ∧ ∃m1 : g(m1) = 1

)

∨ (g = 0)

covers all possible cases. The first two conjunctions in thisdisjunction handle the
positive qualitative influences (due to Proposition 4.3 andLemma 4.13). The third
and fourth conjunctions in this disjunction handle the negative qualitative influences
(by symmetry), and the last conjunction is a necessary and sufficient condition for
observing a zero qualitative influence (due to Proposition 4.1). The second and fourth
conjunctions are conditions that may lead to non-monotonicqualitative influences,
and whose disjunction is equivalent to∃m1 : g(m1) = −1 ∧ ∃m1 : g(m1) = 1. The
properties of interaction functions given a qualitative influence are listed in Table 4.1.

2Recall that in an arithmetic context, we interpret⊤ as 1 and⊥ as 0.
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Table 4.1: Properties of interaction functions given a qualitative influence.

Qualitative Influence Property of the Interaction Function
0 g = 0
+ V +

g

− V −
g

∼ ∃m1 : g(m1) = 1 ∧ ∃m′

1
: g(m′

1) = −1

Example 4.6. Suppose we knew the qualitative influences but not the underlying
interaction function for the prognostic model of Section 4.1.1. According to Table
4.1 we have:

δI→S [f ] = − ⇒ V −
gB

δT1→S[f ] =∼ ⇒ ∃m1 : gE1(m1) = 1 ∧ ∃m′

1
: gE1(m

′
1) = −1

δT2→S[f ] =∼ ⇒ ∃m1 : gE2(m1) = 1 ∧ ∃m′

1
: gE2(m

′
1) = −1

wheregB = fb − fb̄, gE1 = fe1 − fē1, andgE2 = fe2 − fē2. The results are indeed
properties of the interaction function of the prognostic model, as represented by the
Boolean expression (4.4). The first qualitative influence would, for example, preclude
choosing the AND and OR interaction functions, as both do notsatisfy propertyV −

gB
.

4.3.2 Additive Synergies

Additive synergies express how two cause variablesC andC ′ from the set of cause
variablesC jointly influence the probability of observing the effectE. Recall that
the remaining cause variables are denoted byC2 = C \ {C,C ′}. Using the general
definition of additive synergy from QPN theory, the additivesynergyδ(C,C′)→E [f ]
betweenC andC ′ given interaction functionf is determined by

δ(C,C′)→E [f ](c2) = P[f ](e | c, c′, c2) + P[f ](e | c̄, c̄′, c2)−

P[f ](e | c̄, c′, c2)− P[f ](e | c, c̄′, c2). (4.12)

The analysis requires an isolation of cause variablesC andC ′. We apply the decom-
position (4.8) twice and obtain:

P[f ](e | ĉ, ĉ′, c2) = P (m | ĉ)P (m′ | ĉ′)P[h](e | c2) + P[fm̄,m̄′ ](e | c2) +

P (m | ĉ)P[fm,m̄′ − fm̄,m̄′ ](e | c2) +

P (m′ | ĉ′)P[fm̄,m′ − fm̄,m̄′ ](e | c2), (4.13)

where the functionh : B
n−2 → {−2,−1, 0, 1, 2} is defined as

h(m2) = fm,m′(m2) + fm̄,m̄′(m2)− fm̄,m′(m2)− fm,m̄′(m2). (4.14)
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The functionh is also sometimes indicated byhM,M ′ . By inserting Eq. (4.13) into
(4.12) we obtain

δ(C,C′)→E [f ](c2) = (P (m | c)− P (m | c̄)) (P (m′ | c′)− P (m′ | c̄′))P[h](e | c2).

Under the assumptions thatP (m | c) > P (m | c̄) andP (m′ | c′) > P (m′ | c̄′),
which holds under the assumption of accountability, we may write

δ(C,C′)→E[f ](c2) ∝ P[h](e | c2).

We take a similar approach as for qualitative influences and use an ordering on con-
figurations ofM2 andC2 which now range fromm1 to m2n−2 and fromc1 to c2n−2

respectively.
The structure of the expression for qualitative influences and additive synergies

is essentially the same, where the only difference is that wesum over2n−2 instead
of 2n−1 configurations andg is replaced byh. If we consider the proofs of Lemmas
4.9–4.13 and Propositions 4.1–4.6 in the previous section,then we find that none,
with the exception of Lemma 4.13, are dependent upon these two differences. Due to
the analogy between qualitative influences and additive synergies, we state the results
in terms of the difference functionh without proof.

A necessary and sufficient condition for observing a zero additive synergy is ea-
sily found.

Proposition 4.7. δ(C,C′)→E[f ] = 0⇔ h = 0.

Again, interaction functionsf and their negations¬f lead to opposite contribu-
tions to the qualitative sign.

Lemma 4.14. δ(C,C′)→E(c2) > 0⇔ δ(C,C′)→E [¬f ](c2) < 0.

We next investigate the implications of function values of the functionh, as de-
fined above in Eq. (4.14), using Def. 4.8, for the qualitativeproperties. Here we take
b = 2. An analysis of positive and negative contributions to the sign of the additive
synergy is given by Lemmas 4.15 and 4.16.

Lemma 4.15. For every CI model with interaction functionf it holds that

V +
h ⇒ ∃c2 : δ(C,C′)→E [f ](c2) > 0.

Lemma 4.16. For every CI model with interaction functionf it holds that

V −
h ⇒ ∃c2 : δC,C′(c2)[f ] < 0.

Non-monotonic additive synergies are identified by Proposition 4.8.

Proposition 4.8. V +
h ∧ V

−
h ⇒ δ(C,C′)→E[f ] =∼ .
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Positive additive synergies are identified by Proposition 4.9 and ambiguous ad-
ditive synergies (either non-monotonic or positive signs)are identified by 4.10. We
can always choose parameters such that this ambiguous additive synergy reduces to a
non-monotonic or positive additive synergy. The proof is similar to the proof in case
of qualitative influences and is omitted here.

Proposition 4.9. If V +
h and∀m2h(m2) ∈ {0, 1, 2} thenδ(C,C′)→E [f ] = +.

Proposition 4.10. If V +
h and∃m2 : h(m2) ∈ {−2,−1} thenδ(C,C′)→E[f ] =?.

Symmetric results are obtained for negative additive synergies in Proposition
4.11, where Proposition 4.12 identifies ambiguous additivesynergies which can be
either non-monotonic or negative, depending on the parameters.

Proposition 4.11. If V −
h and∀m2h(m2) ∈ {−2,−1, 0} thenδ(C,C′)→E [f ] = −.

Proposition 4.12. If V −
h and∃m2 : h(m2) ∈ {1, 2} thenδ(C,C′)→E [f ] =?.

We use the results of Ref. (Lucas, 2005) to verify some of our results.

Example 4.7.For the AND operator, we haveδ(C,C′)→E[f ] = + since the difference
functionh(m2) = fm,m′(m2)+fm̄,m̄′(m2)−fm̄,m′(m2)−fm,m̄′(m2) must be non-
negative and positive for at least one configuration ofm2. On the other hand, for the
OR operator we haveδ(C,C′)→E [f ] = − sinceh is non-positive and negative for at
least one configuration ofm2.

We can recast properties of the difference functionh in terms of properties of the
interaction functionf as we have the identityh = fm,m′+fm̄,m̄′−fm̄,m′−fm,m̄′ . We
illustrate the results concerning additive synergies by means of the running example,
shown in Figure 4.3.

Example 4.8. With regard to the additive synergy between the treatmentsT1 andT2,
we havefe1,e2 ≡ ⊥, fē1,ē2 ≡ ¬B andfē1,e2 ≡ fe1,ē2 ≡ ⊤. We then haveh(b) =
−2 andh(b̄) = −1 such thatδ(T1,T2)→S [f ] = − according to Proposition 4.11.
This agrees with the observation that the administration ofone of both treatments is
optimal, whereas administration of both treatments yieldsa suboptimal result. With
regard to the additive synergy betweenI andT1, we havefb,e1 ≡ ¬E2, fb̄,ē1

≡ ⊤,
fb̄,e1

≡ ¬E2 andfb,ē1 ≡ E2. We then have thath(e2) = 0 andh(ē2) = 1 such that
δ(I,T1)→S [f ] = + according to Proposition 4.9. We also haveδ(I,T2)→S [f ] = + by
symmetry. This is in agreement with the fact that when a treatment is administered
to an ill person, or when no treatment is administered in the absence of the illness
improves survival in comparison to when a non-ill person is treated or when treatment
is not given to an ill person. The additive synergies are depicted in Figure 4.6.
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I: illness T1: treatment 1 T2: treatment 2

S: survival

+ -

+

Figure 4.6: Additive synergies with respect to patient survival.

So far, we have only considered the qualitative behavior of agiven interaction
function. Again, we infer properties of interaction functions that should hold when
an additive synergy is known. These properties are shown in Table 4.2 and have
straightforward derivations due to the correspondence between qualitative influences
and additive synergies. An example is again provided by considering the qualitative
properties of the prognostic model.

Table 4.2: Properties of interaction functions given an additive synergy.

Additive Synergy Property of the Interaction Function
0 h = 0
+ V +

h

− V −
h

∼ ∃m2 : h(m2) ∈ {1, 2} ∧ ∃m′

2
: h(m′

2) ∈ {−2,−1}

Example 4.9. Suppose we knew the additive synergies but not the underlying inter-
action function for the prognostic model. According to Table 4.2 we have

δ(T1,T2)→S [f ] = − ⇒ V −
hE1,E2

wherehE1,E2 = fe1,e2 +fē1,ē2−fē1,e2−fe1,ē2. This is indeed a property of Boolean
expression (4.4) that represents the prognostic model, as may be verified. This con-
straint would, for example, exclude the AND Boolean function, as it does not satisfy
propertyV −

hE1,E2
.

4.3.3 Product Synergies

Product synergies describe the created dependence betweentwo causes when the
value of the effect variable is observed. The signδê

(C,C′)→E
[f ] of a product synergy

betweenC andC ′ with respect tôe whenf is the chosen interaction function, is
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determined by

δê
(C,C′)→E[f ](c2) = P[f ](ê | c, c′, c2)P[f ](ê | c̄, c̄′, c2)−

P[f ](ê | c̄, c′, c2)P[f ](ê | c, c̄′, c2).

This can be rewritten forE = ⊤ (presence of the effect has been observed) to:

δe
(C,C′)→E[f ](c2) = P (m | c)P (m′ | c′)

(

P[h](e | c2)P[fm̄,m̄′ ](e | c2)−

P[fm,m̄′ − fm̄,m̄′ ](e | c2)P[fm̄,m′ − fm̄,m̄′ ](e | c2)
)

,

where againh = fm,m′ + fm̄,m̄′ − fm̄,m′ − fm,m̄′ . Under our standard assumption
of accountability, this yields:

δe
(C,C′)→E[f ](c2) ∝ P[h](e | c2)P[fm̄,m̄′ ](e | c2)−

P[fm,m̄′ − fm̄,m̄′ ](e | c2)P[fm̄,m′ − fm̄,m̄′ ](e | c2).

This can be alternatively written as:

δe
(C,C′)→E [f ](c2) ∝ P[fm,m′ ](e | c2)P[fm̄,m̄′ ](e | c2)−

P[fm̄,m′ ](e | c2)P[fm,m̄′ ](e | c2).

Using the distributive law of arithmetic, we obtain:

δe
(C,C′)→E [f ](c2) ∝ P[fm,m′ ](e | c2)P[fm̄,m̄′ ](e | c2)−

P[fm̄,m′ ](e | c2)P[fm,m̄′ ](e | c2)

=
(

∑

m2

fm,m′(m2)P (m2 | c2)
)(

∑

m2

fm̄,m̄′(m2)P (m2 | c2)
)

−

(

∑

m2

fm̄,m′(m2)P (m2 | c2)
)(

∑

m2

fm,m̄′(m2)P (m2 | c2)
)

=
∑

m2,m′

2

r(m2,m
′
2)P (m2 | c2)P (m′

2 | c2)

where the functionr : B
n−2 × B

n−2 → {−1, 0, 1} is defined as follows:

r(m2,m
′
2) = fm,m′(m2)fm̄,m̄′(m′

2)− fm̄,m′(m2)fm,m̄′(m′
2). (4.15)

We will also sometimes use the notationrM,M ′ . From the expression above, it follows
that the behavior of the product synergy is determined by thefunctionr.

It appears that it suffices to carry out the analysis forE = ⊤ (the effect has been
observed to be present), as application of the following lemma renders the analysis
of the qualitative behavior of the product synergy forE = ⊥ (absence of the effect
has been observed) a straightforward exercise.
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Lemma 4.17. δe
(C,C′)→E

[¬f ] = δē
(C,C′)→E

[f ].

Proof.

δe
(C,C′)→E[¬f ](c2) ∝ P[¬fm,m′ ](e | c2)P[¬fm̄,m̄′ ](e | c2)−

P[¬fm̄,m′ ](e | c2)P[fm,m̄′ ](e | c2)

= (1− P[fm,m′ ](e | c2))(1− P[fm̄,m̄′ ](e | c2))−

(1− P[fm̄,m′ ](e | c2))(1− P[fm,m̄′ ](e | c2))

= P[fm,m′ ](ē | c2)P[fm̄,m̄′ ](ē | c2)−

P[fm̄,m′ ](ē | c2)P[fm,m̄′ ](ē | c2)

∝ δē
(C,C′)→E[f ](c2)

which completes the proof.

Hence, if δe
(C,C′)→E

[¬f ](c2) has a particular sign for configurationc2 then

δē
(C,C′)→E

[f ](c2) will have the same sign. Therefore, the sign of the product sy-
nergy forE = ⊤ with interaction function¬f will be the same as that forE = ⊥
with interaction functionf . Due to this relationship between the signs of the product
synergy forE = ⊤ andE = ⊥, we will only consider the case whereE = ⊤.
Recall that by Lemma 4.1, we have the following interesting relationship between
product synergies and additive synergies, which offers an alternative way to com-
pute the product synergyδē

(C,C′)→E
[f ](c2), based on the associated additive synergy

δ(C,C′)→E [f ](c2) and the associated product synergyδe
(C,C′)→E

[f ](c2):

δē
(C,C′)→E[f ](c2) = δe

(C,C′)→E[f ](c2)− δ(C,C′)→E[f ](c2).

Lemma 4.1 is useful for constructing tables of signs for particular Boolean functions,
as it saves constructing one of these tables.

Example 4.10. Ref. (Lucas, 2005) includes tables for Boolean functions defined in
terms of the 16 binary Boolean functions. Consider the AND operator,∧; its additive
synergy is equal toδ(C,C′)→E [∧] = +, whereas its product synergy forE = ⊤ is
equal toδe

(C,C′)→E
[∧] = 0. Lemma 4.1 tells us that the product synergy forE = ⊥

is equal toδē
(C,C′)→E

[f ] = −, which is indeed the value for the product synergy for
E = ⊥ in Table 12 in (Lucas, 2005).

In the following, we derive sufficient conditions for observing particular qualita-
tive behavior in terms of product synergies.

Proposition 4.13. δe
(C,C′)→E

[f ] = 0 if it holds that

∀m2,m′

2

[

(fm,m′(m2) ∧ fm̄,m̄′(m′
2))⇔ (fm̄,m′(m2) ∧ fm,m̄′(m′

2))
]

.
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Proof. Note that if the premise holds, then, according to Def. 4.15 of the functionr,
we have thatr(m2,m

′
2) = 0, for eachm2,m

′
2, and thusδe

(C,C′)→E
[f ] = 0.

A special case of this proposition, is the following condition:

(fm,m′ ≡ ⊥ ∨ fm̄,m̄′ ≡ ⊥) ∧ (fm,m̄′ ≡ ⊥ ∨ fm̄,m′ ≡ ⊥),

i.e., if at least one Boolean function at both sides of the negation of Def. 4.15 is equal
to falsum, then a zero product synergy results.

We again determine conditions under whichδe
(C,C′)→E

[f ](c2) is positive or ne-

gative. Similar to previous sections, we use the notationsV +
r andV −

r , this time in
terms of the functionr defined above; for exampleV +

r means that

∃m2,m′

2

[[

r(m2,m
′
2) = 1

]

∧ ∀m′′
2 < m2,m

′′′
2 < m′

2

[

r(m′′
2 ,m

′′′
2 ) ∈ {0, 1}

]]

Lemma 4.18. For every CI model with interaction functionf we have

V +
r ⇒ ∃c2 : δe

(C,C′)→E [f ](c2) > 0.

Proof. Simply note that if r is initially non-negative, we have a positive
δe
(C,C′)→E

[f ](c2) for at least one valuec2 by definition.

An example of a positive value ofδe
(C,C′)→E

[f ](c2) is demonstrated in Figure
4.7.

fm,m′ :

fm̄,m̄′ :

fm̄,m′ :

fm,m̄′ :

c2

Figure 4.7: Similar to Figure 4.4, the horizontal bars represent the outcome forfm,m, fm̄,m̄,
fm̄,m andfm,m̄ for configurationsm1

2 to m2n−2

2 of M2. The vertical line represents a con-
figurationc2 of C2. Due to a choice forc2 the onlyreachableconfigurations are contained
within the dashed region, which must lead to a positive sign of δe

(C,C′)→E
[f ](c2).

A similar result holds for negative values ofδe
(C,C′)→[f ](c2).

Lemma 4.19. For every CI model with interaction functionf we have

V −
r ⇒ ∃c2 : δe

(C,C′)→E [f ](c2) < 0.

Proof. Analogous to the proof of Lemma 4.18.

Proposition 4.14. If bothV +
r andV −

r hold thenδe
(C,C′)→E

[f ] = ∼.
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Proof. This follows from the definition of a non-monotonic product synergy.

It also follows directly from Lemmas 4.18 and 4.19 that ifV +
r holds andV −

r does
not hold, then the sign of the product synergy is either positive or non-monotonic.
Conversely, ifV −

r holds andV +
r does not hold, then it follows that the sign of the

product synergy is either negative or non-monotonic. The following two propositions
identify under which conditions the sign of a product synergy is known to be positive
or negative, respectively.

Proposition 4.15. If ∃m2,m′

2
: r(m2,m

′
2) = 1 and∀m2,m′

2
[r(m2,m

′
2) ≥ 0] then it

holds thatδe
(C,C′)→E

[f ] = +.

Proof. This is just the general case of Lemma 4.18, where we ensure that the con-
ditions listed for configurationsm′′

2 < m2,m
′′′
2 < m′

2 such thatr(m′′
2 ,m

′′′
2 ) ≥ 0

not only hold for configurations smaller thanm2,m
′
2, but for all configurations

m′′
2 6= m2,m

′′′
2 6= m′

2.

Proposition 4.16. If ∃m2,m′

2
: r(m2,m

′
2) = −1 and∀m2,m′

2
[r(m2,m

′
2) ≤ 0] then

it holds thatδe
(C,C′)→E

[f ] = −.

Proof. This is the generalized case of Lemma 4.19.

The cases that are not covered by the above propositions willbe categorized as
ambiguous.

Proposition 4.17. If none of Propositions 4.13–4.16 hold thenδe
(C,C′)→E

[f ] = ?.

Proposition 4.17 collects those cases for which no sufficient conditions for ob-
serving a particular sign of a product synergy have been derived. In such cases, the
sign can still be positive, negative or non-monotonic, depending on the parameters
and depending on the structure of the interaction function.It is important to realize
that due to Lemma 4.17, the above results equally hold for thecase whereE = ⊥
whenever we replace each occurrence off by ¬f .

We illustrate the results concerning product synergies again by means of the prog-
nostic model, depicted in Figure 4.3.

Example 4.11.We first focus on the case where we hypothesize that the patient will
survive, i.e.,S = ⊤. With regard to the product synergy between treatmentsT1 and
T2, we have thatfe1,e2 ≡ ⊥, fē1,ē2 ≡ ¬B

′ andfē1,e2 ≡ fe1,ē2 = ⊤. Condition 3
of Proposition 4.16 is satisfied sincer(B,B′) = −1 for each value ofB,B′, and
thusδs

(T1,T2)→S
[f ] = −. This agrees with the observation that we expect that one of

both treatments was administered given that we observe patient survival. With regard
to the product synergy betweenI andT1, we have thatfb,e1 ≡ ¬E2, fb̄,ē1

≡ ⊤,
fb̄,e1

≡ ¬E2 and fb,ē1 ≡ E′
2. Condition 1 of Proposition 4.15 is satisfied since

r(ē2, ē
′
2) = 1, whereasr(E2, E

′
2) = 0 for any value ofE2, E′

2, with the exception
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of E2 = ⊥ andE′
2 = ⊥; thusδs

(I,T1)→S
[f ] = +. Hence, it is likely that treatment

T1 is administered given disease progression and patient survival and that treatment
T1 is not administered given no progression and patient survival. It is less likely
that treatmentT1 is administered given no progression and patient survival and that
treatmentT1 is not administered given disease progression and patient survival. The
same holds for the product synergy betweenI andT2 by symmetry. The results are
summarized by Figure 4.8.

I: illness T1: treatment 1 T2: treatment 2

s: survival=⊤

+ −

+

Figure 4.8: Product synergies with respect to patient survival.

As has been proved in Lemma 4.17, we can use also the derived propositions for
E = ⊥ by replacingf with ¬f . With regard to the product synergy betweenT1 and
T2, we have that¬fe1,e2 ≡ ⊤, ¬fē1,ē2 ≡ B and¬fē1,e2 ≡ ¬fe1,ē2 = ⊥. Condition
3 of Proposition 4.15 is satisfied, sincer(B,B′) = B, thus δs̄

(T1,T2)→S
[f ] = +.

With regard to the product synergy betweenI andT1, we have that¬fb,e1 ≡ E2,
¬fb̄,ē1

≡ ⊥, ¬fb̄,e1
≡ E2 and¬fb,ē1 = ¬E′

2, thusr(E2, E
′
2) = −(E2 ∧ ¬E

′
2). We

classify the product synergy asδs̄
(I,T1)→S

[f ] = −. The same holds for the product
synergy betweenI andT2 by symmetry. The results are summarized by Figure 4.9.

I: illness T1: treatment 1 T2: treatment 2

s̄: survival=⊥

− +

−

Figure 4.9: Product synergies with respect to patient death.

Again, we look at the converse analysis from qualitative specification to con-
straints on interaction functions using the propositions and lemmas that have been de-
rived. Properties of product synergies with the effect observed to be present (E = ⊤)
are shown in Table 4.3 and are derived by negating the properties for opposite signs
whenE = ⊤. For example, sinceV +

r with E = ⊤ implies that there is a con-
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figurationc2 of cause variables such thatδe
(C,C′)→E

[f ](c2) > 0 (Lemma 4.18), we

know that¬V +
r must hold for negative product synergies withE = ⊤. Likewise,

¬V −
r must hold for positive product synergies withE = ⊤. For the same reason,

¬V +
r ∧ ¬V

−
r must hold for zero product synergies withE = ⊤. For non-monotonic

product synergies it holds that Propositions 4.15 and 4.16 must both be false. Since,
according to Proposition 4.13, it cannot be the case that∀m2,m′

2
[r(m2,m

′
2) = 0], it

must hold that both∃m2,m′

2
: r(m2,m

′
2) = 1 and∃m2,m′

2
: r(m2,m

′
2) = −1. Prop-

erties of product synergies withE = ⊥ are obtained using Lemma 4.17 by replacing
the functionr with the function

r̄(m2,m
′
2) = ¬fm,m′(m2)¬fm̄,m̄′(m′

2)− ¬fm̄,m′(m2)¬fm,m̄′(m′
2).

Table 4.3: Properties of interaction functions given a product synergy for E = ⊤.

Product Synergy Property of the Interaction Function
0 ¬V +

r ∧ ¬V
−
r

+ ¬V −
r

− ¬V +
r

∼ ∃m2,m′

2
: r(m2,m

′
2) = 1 ∧ ∃m2,m′

2
: r(m2,m

′
2) = −1

In order to demonstrate this converse analysis, we look at the product synergy
between treatmentsT1 andT2 of the prognostic model.

Example 4.12.Suppose we knew the product synergies but not the underlyinginter-
action function for the prognostic model. For the product synergy between treatment
T1 andT2 with the effect assumed to be present (E = ⊤), we have

δe
(T1,T2)→S

[f ] = − ⇒ ¬V +
rE1,E2

whereas its product synergy for the effect assumed to be absent (E = ⊥) is given by

δē
(T1,T2)→S

[f ] = + ⇒ ¬V −
r̄E1,E2

Note that here we use the complementary functionr̄E1,E2. Again, it may be verified
that these are properties of the Boolean expression (4.4) that underlies the prognostic
model. For example, these properties are not satisfied by theAND function, which,
therefore, cannot be selected as a basis for a prognostic model that satisfies the given
qualitative constraints.

4.4 Summary

In this chapter, causal independence models that employ Boolean interaction func-
tions have been analyzed. In contrast to previous work, (Lucas, 2005), the chapter
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offers a characterization of causal independence models based on Boolean functions
in general, and it can, thus, be used as a foundation for the analysis of any of such
causal independence models. It was shown that QPN theory canbe applied to these
models in order to characterize model behavior in terms of influences and synergies.
By making use of difference functions and an order on Booleantuples we were able
to derive both the conditions under which positive, negative, zero, non-monotonic
and ambiguous signs for qualitative influences, additive synergies and product syner-
gies are observed and the constraints these signs impose on the underlying interaction
functions.

In conclusion, we believe that the theory can aid in Bayesiannetwork construc-
tion, where the prognostic model served as an example to illustrate the usefulness of
the theory in practice. If the causal independence assumptions hold then the appro-
priateness of an interaction function can be determined without the need to specify
the parameters in advance and properties of the interactionfunction can be derived
from a qualitative specification.





Chapter 5

Dynamic Decision Making
with DLIMIDs

According to the norms dictated by utility theory, rationalclinical decision ma-
king implies the maximization of patient benefit, while simultaneously minimizing
the cost of treatment (Von Neumann and Morgenstern, 1947). For instance, in our
research, we have focused on finding treatment strategies for high-grade carcinoid
tumors; an aggressive type of neuroendocrine tumor (Zuetenhorst and Taal, 2005).
For these tumors, it is of the utmost importance that chemotherapy is administered
at the right moments in time. Treating a patient too early, ortoo long, may cause an
unnecessary deterioration in general health status, whereas treating a patient too late,
or too short, may fail to stop or reverse tumor progression. Solving suchdynamic
decision problems(Magni and Bellazzi, 1997) is a difficult task, since it requires the
physician to take appropriate action at each point in time, by taking into account the
patient’s history, in a world that is characterized by uncertainty.

The selection of strategies that lead to optimal patient treatment has received
considerable attention from both the Operations Research and Artificial Intelligence
communities, where it is known asstochastic controlandplanning respectively. In
recent years, emphasis has been placed on the similarities and differences between
stochastic control anddecision-theoreticplanning, where probability theory and util-
ity theory are used to represent decision-making under uncertainty (Dean and Well-
mann, 1991; Boutilier et al., 1996a). In this work, we introduce dynamic limited-
memory influence diagrams(DLIMIDs) which inherit characteristics from both ap-
proaches to decision making under uncertainty. They can be represented compactly
as atemporal limited-memory influence diagram(TLIMID) and allow the modeling
of dynamic decision problems that are only partially observable and may go on for
an unbounded amount of time. We also introduce a number of algorithms that ap-
proximate the optimal strategy for dynamic decision problems that are modeled as a
DLIMID. This is demonstrated by a DLIMID that models high-grade carcinoid tumor

This chapter is based on (van Gerven et al., 2006a; van Gervenand Dı́ez, 2006; van Gerven et al.,
2006b).
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pathophysiology and has been constructed in collaborationwith an expert physician
at the Netherlands Cancer Institute (NKI).

This chapter proceeds as follows. In Section 5.1, we describe the perspectives on
dynamic decision making that are offered by stochastic control and decision-theoretic
planning, in order to make clear the differences and similarities between the two
approaches. DLIMIDs and algorithms that approximate optimal strategies are defined
in Sections 5.2 and 5.3 respectively. Section 5.4 describesthe construction of the
oncological model, and Section 5.5 describes experimentalresults concerning the
strategies found for the model, using the described algorithms. We end with some
concluding remarks in Section 5.6.

5.1 Perspectives on dynamic decision making

Stochastic control and decision-theoretic planning both offer a different approach to
dynamic decision making. Stochastic control is often realized by means ofMarkov
decision processes, whereas decision-theoretic planning is often realized bymeans
of (dynamic) influence diagrams. In this section we describe both approaches, their
solution strategies, and their respective strengths and weaknesses.

5.1.1 Markov decision processes

One way to model dynamic decision problems is by means of the theory ofMarkov
decision processes(MDPs) (Howard, 1960). MDPs are extensions ofMarkov chains,
defined as follows (Grimmett and Stirzaker, 1992).

Definition 5.1. LetS be adiscrete-time random process, that is, a family of random
variables {S(t) : t ∈ T} that take values fromΩS and are indexed by some set
T = {0, . . . , N}, whereN denotes thehorizon. A Markov chainis a discrete-time
process that satisfies theMarkov condition:

P (S(n)=sn | S(1)=s1, . . . , S(n − 1)=sn−1) = P (S(n)=sn | S(n − 1)=sn−1)

for n ≥ 1 ands1, . . . , sn ∈ ΩS .

The Markov condition ensures that the future state is independent of the past
state given the current state of a random process. A Markov decision process ex-
tends a Markov chain by allowingactionsand rewardsto incorporate both choice
and motivation (Fig. 5.1).

Definition 5.2. A Markov decision process(MDP) is a tuple(S,A, P,R), whereS
is the state space,A is the action space,P (s′ | s, a) is the probability that the system
ends up in states′ at timet+ 1, given that actiona was performed in states at time
t, andR(s, a) ∈ R is the reward for taking an actiona in states.
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Figure 5.1: A Markov decision process, where shading indicates observability of the state.

Markov decision processes have proven very useful for cost-effectiveness analy-
sis in medicine (Sonnenberg and Beck, 1993; Kuntz and Weinstein, 2001). The goal
of a rational decision maker is to maximize expected reward

E

(

∑

t∈T

γtR(st, at)

)

whereγ ∈ [0, 1] is a discount factor. Usually γ < 1, which implies that delayed
rewards are less valuable to the decision maker. The expected reward is maximized
by choosing an optimal sequence of actions for allt ∈ T , as represented by apolicy
πt : S → A, which maps states to actions at each decision momentt ∈ T . This
mapping can be eitherstochastic, allowing for randomness in the actions, ordeter-
ministic, defining a fixed mapping between states and actions. If the index setT is
finite then we speak of afinite-horizonMDP and if it is infinite then we speak of an
infinite-horizonMDP.

An important result is that for infinite-horizon MDPs, the optimal policy issta-
tionary (independent oft) and deterministic, whereas for finite-horizon MDPs the
optimal policy is typically non-stationary (Howard, 1960). Let Vπ,t(s) denote the
expected value of starting in states, when there are stillt steps to go, while executing
policy π. In the finite-horizon case, the expected value that is gained by using the
optimal policyπ∗, is given by the Bellman equations:

Vπ∗,1(s) = max
a∈A
{R(s, a)}

Vπ∗,t(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s′ | a, s)Vπ∗,t−1(s
′)

}

, t > 1

with π∗ = {π∗t : t ∈ T}. In the infinite-horizon case, we simply have

Vπ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s′ | a, s)Vπ∗(s′)

}

since both policy and expected reward are independent oft. Finding (approximations
to) optimal policies for MDPs is relatively straightforward. In the finite-horizon case,
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the standard method is to perform a backward recursion on theBellman equations,
whereas in the infinite-horizon case, we may use techniques such asvalue iteration
(Bellman, 1957) orpolicy iteration(Howard, 1960).
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Figure 5.2: A partially-observable Markov decision process, where shading indicates ob-
servability.

MDPs assume that the state of the process is completely observable. In practice,
however, we often have incomplete state information. For instance, in medicine,
progression of a disease can often only be determined by observable symptoms or
laboratory findings. This brings us into the realm ofpartially observable Markov
decision processes(Aström, 1965; Monahan, 1982), as shown in Fig. 5.2.

Definition 5.3. A partially observable Markov decision process(POMDP) is a tuple
(S,A,O, P,R,Q), such that(S,A, P,R) defines a Markov decision process,O is a
finite set ofobservations, andQ(o | a, s) is the probability of observingo given that
we landed in states at timet+ 1, while performing actiona at timet.

In order to make optimal decisions, POMDPs take into accountall past observa-
tions by maintaining abelief statewith respect to the (hidden) state of the process
(Smallwood and Sondik, 1973). Letb(s) denote the current belief of the decision-
maker that the process is in states. Givenb(s), an observationo and executed action
a, we estimate the next belief state from Bayes’ rule as:

b′(s′) = α ·Q(o | a, s′)
∑

s∈S

P (s′ | a, s)b(s) (5.1)

whereα is a normalizing constant. We define thestate estimator: P (b′ | a, b, o),
which assigns a probability of one to the belief state that iscompatible with Eq. (5.1)
and zero to all other belief states. The corresponding Bellman equation for infinite-
horizon POMDPs is then given by:

Vπ∗(b) = max
a∈A

{

R(b, a) + γ
∑

b′

P (b′ | a, b)Vπ∗(b′)

}

where
R(b, a) =

∑

s∈S

b(s)R(s, a)
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and
P (b′ | a, b) =

∑

o∈O

P (b′ | a, b, o)P (o | a, b) ,

with state estimatorP (b′ | a, b, o), andP (o | a, b) =
∑

s∈S Q(o | a, s)b(s).
By reformulating the POMDP in terms of an MDP in belief space (Aström, 1965;

Smallwood and Sondik, 1978), the POMDP can be solved by applying dynamic pro-
gramming techniques to the corresponding MDP. The difficulty is, however, that a
belief is a point in then-dimensional simplex, wheren is the number of states. This
implies an infinite number of belief states, and requires theconstruction of a policy
that maps this infinite number of states to actions. It has been shown that, in the finite-
horizon case, the optimal value function is piecewise-linear and convex (Smallwood
and Sondik, 1973), thus requiring only a finite mapping of situations to actions. In
the infinite-horizon case, however, the optimal value function no longer consists of a
finite number of linear elements, although it can be approximated arbitrarily closely
by a finite horizon-value function (Smallwood and Sondik, 1978). This being said,
even approximating the optimal strategy to a sufficient degree is computationally
very costly (Papadimitriou and Tsitsiklis, 1987; Lusena etal., 2001), and finding op-
timal strategies is feasible only for small decision problems (Boutilier et al., 1996a).
Another problem associated with the use of (partially-observable) Markov decision
processes for modeling dynamic decision problems, is the fact that the state spaceS
quickly becomes unmanageably large for realistically sized decision problems. This
leads to problems, both during specification of the decisionprocess (Magni and Bel-
lazzi, 1997), as well as at computation time (Boutilier et al., 1996a).

5.1.2 Dynamic influence diagrams

An alternative point of departure for modeling the types of decision problems de-
scribed above is by means of dynamic influence diagrams (Tatman and Shachter,
1990). They extend standard influence diagrams (Howard and Matheson, 1984b) in
order to represent finite-horizon decision processes, by decomposing the global util-
ity function into a set of local utility functions. Adynamic influence diagram(DID)
is a tuple(C,D,U,A, P ), whereN = C∪D∪U is a set of nodes that is partitioned
into chance variablesC, decision variablesD, andutility functionsU, A is a set of
arcs such thatG = (N,A) forms an acyclic directed graph (ADG), andP is a family
of probability distributions. When a DID is used to model a dynamic decision prob-
lem, chance variables, decision variables and utility functions are indexed by times
t ∈ T .

Chance variables (graphically depicted by circles), are random variables that re-
present the stochastic component of the model. Decision variables (graphically de-
picted by squares), are ordinary variables that represent the actions that may be per-
formed by a decision maker. Utility functions (graphicallydepicted by diamonds),
represent the utility of being in a certain state, as defined by configurations of chance
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and decision variables. The graphG = (N,A) represents the qualitative structure of
the decision problem. The meaning of an arc(X,Y ) ∈ A is determined by the type
of Y . If Y ∈ C then the conditional probability distribution associatedwith Y is con-
ditioned byX. If Y ∈ D thenX represents information that is available to the deci-
sion maker prior to deciding uponY ; we call the parentsπ(Y ) = {X : (X,Y ) ∈ A}
of decisionY its informational predecessors. We also require that there exists a di-
rected path between all decisionsD ∈ D in G, which represents the order in which
decisions are made. Decisions that are made later in time must always inherit the
informational predecessors of decision that are made earlier in time, which is known
as theno-forgettingprinciple. If Y ∈ U thenX takes part in the specification of the
utility function Y such thatY : Ωπ(Y ) → R. Utility functions must either have a sub-
set of the chance and decision variables, or other utility functions, as their parents.
In the latter case, we call the utility functionU a super-value node, where we re-
quire that the global utility function is decomposed into a set of local utility functions
which combine additively:

U(x1, . . . , xn) =
n
∑

i=1

ui(xi) .

The family of probability distributionsP is a set{P (C | π(C)) : C ∈ C}, such that
we have for each configurationd ∈ ΩD a distribution:

P (C : d) =
∏

C∈C

P (C | π(C)) (5.2)

that represents the distribution overC when the decision maker has setD equal to
d (Cowell et al., 1999). Hence,C is not conditioned onD, but rather parameterized
by D.1 Figure 5.3 shows an example of a DID for three consecutive time-slices.
A stochastic policyfor decisionsD ∈ D is a distributionP (D | π(D)) that maps
configurations ofπ(D) to a distribution over alternatives forD. If P (D | π(D))
is degenerate (i.e. consisting of ones and zeros only) then we say that the policy is
deterministic. LetV denoteC∪D. A strategyis a set∆ = {P (D | π(D)) : D ∈ D}
of policies that induces the following joint distribution over the variables inV:

P∆(V) = P (C : D)
∏

D∈D

P (D | π(D)) . (5.3)

We may then compute the expected utility of a strategy∆ as:

EU(∆) =
∑

v

P∆(v)U(v) . (5.4)

The aim of any rational decision maker is then to maximize theexpected utility by
finding an optimal strategy∆∗ ≡ arg max∆ EU(∆).

1This is equivalent to Pearl’sdooperator (Pearl, 2000).
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Figure 5.3: A dynamic influence diagram. The dashed arcs emphasize the directed path
between decision nodes, which stands for the decision sequence. If a node is an informational
predecessors of a decision node, then its use as an informational predecessor for decision
nodes occurring later in the sequence, is left implicit in the diagram. The super-value nodeU
combines the local utility functions.

In order to solve a DID, we can resort to a graph reduction algorithm that corre-
sponds to the dynamic programming technique used to solve finite-horizon Markov
decision processes (Tatman and Shachter, 1990). There are,however, some salient
differences between DIDs and Markov decision processes. The main advantage of
(dynamic) influence diagrams over Markov decision processes is the fact that they
make use of a factorization of the state-space defined by the variables in the domain.
This often allows for more efficient probabilistic inference, the estimation of fewer
parameters, and a more meaningful specification in terms of cause-effect relations
(Druzdzel, 1997; Owens et al., 1997). A second difference isthe way in which par-
tial observability is handled in DIDs. As described, optimal policies for POMDPs
are found by solving an MDP in belief space. DIDs follow an alternative strategy,
where each decision variable is conditioned by all past observations. Since a belief
state follows uniquely from an initial belief state together with a sequence of observa-
tions, the approaches give equivalent results. However, DIDs replace the problem of
making optimal decisions for an infinite number of belief states, by making optimal
decisions for each possible configuration of past observations. Since this becomes in-
feasible for long decision processes, DIDs are limited to short finite-horizon decision
processes.

One way to manage a factorized representation of infinite-horizon Markov deci-
sion processes is to specify the state transition matrix, going from timet to timet+1,
in terms of an influence diagram-like structure. For example, influence views, as in-
troduced by Leong as part of her DynaMol framework for dynamic decision analysis
(Leong, 1994; Cao et al., 1998), provide, for each possible action, a factorized re-
presentation of the transition matrix. Since the influence view distinguishes between
state variables, which explicitly denote the informational predecessors of a decision
node, andevent variables, which play a supporting role in the representation of the
transition matrix, the computational burden of solving a dynamic decision problem
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can be reduced (Magni and Bellazzi, 1997). Magni et al. have demonstrated that
influence views are suitable for the modeling of realistic dynamic decision problems
in medicine (Magni, 1998; Magni et al., 2000). The solution of a dynamic deci-
sion problem by means of influence views proceeds by transforming the factorized
representation into a normal MDP and applying value iteration. Consequently, the
technique is restricted to completely observable MDPs. A similar approach was ad-
vocated by Boutilier et al. (Boutilier et al., 1996a), who factorized stationary and
completely observable MDPs in terms of a so-calledtwo-stage temporal Bayes net
(2TBN) (Dean and Kanazawa, 1989). This leads not only to gains in representational
efficiency, but also allows for the efficient computation of transition probabilities by
means of probabilistic inference over the factorized representation. Boutilier and
Poole have used this same factorized representation in order to solve POMDPs in
terms of a factorized MDP in belief space (Boutilier and Poole, 1996), and approx-
imate solution techniques have been developed for these factorized representations
(Guestrin et al., 2001). The use of POMDPs as factorized MDPsin belief space for
clinical decision making has been discussed in (Peek, 1999), and has been applied to
the treatment of ischemic heart disease in (Hauskrecht and Fraser, 2000).

5.1.3 LIMIDs

In this chapter, instead of representing a POMDP as a factorized MDP in belief space,
we take influence diagrams as our point of departure. We describe an alternative re-
presentation that crucially depends on the limited-memoryassumption that strategies
based on a limited amount of memory for each decision will be able to approximate
the optimal strategy.Limited-memory influence diagrams(LIMIDs) (Lauritzen and
Nilsson, 2001) incorporate this assumption, and are otherwise defined analogous to
DIDs.2 The limited-memory assumption allows us to drop the requirement that a
complete order is defined over decisions, thereby increasing the variety of decision
problems that can be handled (Fig. 5.4).

C1

C2

D1

D2

C3

Figure 5.4: A LIMID allows the decisionsD1 andD2 to be made in parallel and with
different informational predecessors, thereby increasing the variety of decision problems that
can be handled.

The algorithm that approximates the optimal strategy in LIMIDs, as described in
(Lauritzen and Nilsson, 2001), is much more efficient than the algorithms that find

2A dynamic influence diagram is just the special case of a LIMIDthat takes all past observations
into account.
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the optimal strategy in standard influence diagrams. The latter keep track of all past
observations, which becomes infeasible when many (subsequent) decisions need to
be made. However, in case of infinite-horizon decision processes, finding approxi-
mately optimal strategies in LIMIDs becomes infeasible as well, since decisions are
represented explicitly at each point in time.

5.2 Dynamic limited-memory influence diagrams

In order to enable the representation of infinite-horizon POMDPs in terms of LIM-
IDS, we define dynamic LIMIDs, that can be represented compactly by means of
temporal LIMIDS. In Section 5.3, we introduce a number of algorithms that approx-
imate the optimal strategy for a dynamic LIMID.

5.2.1 Constructing DLIMIDs

A dynamic LIMID(DLIMID) is defined as a LIMID(C,D,U,A, P ), that models a
dynamic decision problem, such that chance variables, decision variables, or utility
functions at timet can only depend on other chance variables or decision variables at
timesKt = {t−K, . . . , t}. Hence, a DLIMID is a factorized representation of aK-th
order POMDP. If a DLIMID is explicitly defined at timesK0 = {0, . . . ,K − 1} and
has fixed structure and parameters for allt ∈ {K, . . . ,N}, whereN is the horizon,
then a DLIMID can be represented more compactly as atemporalLIMID. In the
following, we omit time indices when clear from context.

Definition 5.4. A temporal LIMID (TLIMID) is a pair of LIMIDs (L0,Lt) that re-
spects the following conditions:

• Theprior modelL0 = (C0,D0,U0,A0, P0) is defined for timesK0 where for
all arcs (X(u), Y (v)) ∈ A0 it holds thatu ≤ v, and

P0 = {P (X | π(X)) : X ∈ N0}

with N0 = C0 ∪D0 ∪U0.

• Thetransition modelLt = (Ct,Dt,Ut,At, Pt) is defined for timesKt where
for all arcs (X(u), Y (v)) ∈ At it holds thatu ≤ v andv = t, and

Pt = {P (X | π(X)) : X ∈Nt}.

with Nt = Ct ∪Dt ∪Ut.

A TLIMID allows for the representation of (infinite-horizon) POMDPs. The prior
model is used to represent the initial distributionP (C0 : D0) and utility functions
U ∈ U0 at the firstK time slices. The transition model is not yet bound to any
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specifict, but if bound to somet ∈ {K, . . . ,N}, then it is used to represent the con-
ditional distributionP (Ct : Dt−K , . . . ,Dt) and utility functionsU ∈ Ut for some
t ≥ N . The graphG = (Nt,At) does not depend ont, and normally it is assumed
thatPt does not depend ont either. This is not a strict requirement however, which
allows the representation of non-stationary POMDPs where probability distributions
are a function oft. Figure 5.5 shows an example of a TLIMID as a factorized repre-
sentation of aK-th order POMDP.
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Figure 5.5: Representation of aK-th order POMDP by a TLIMID, where chance nodes
are shown as circles, decision nodes as squares and utility nodes as diamonds. The prior
modelL0 depicts the situation for the initialK time points, whereas the transition modelLt

depicts how the situation at a timet depends on the previousK time points. In this particular
case, we have a model where the decisionD has no effect in the prior model, whereas in the
transition model it influencesC′

t throughDt−1, and hasCt−K , . . . , Ct−1 as its informational
predecessors.

Given a horizonN , we mayunroll a TLIMID for N −K time-slicesin order to
obtain a DLIMID with the following joint distribution:

P (C : D) = P (C0 : D0)
N
∏

t=K

P (Ct : Dt−K , . . . ,Dt) . (5.5)

Let V again denoteC ∪ D, and let∆t = {P (D | π(D)) | D ∈ Dt} denote
the strategy for timet. Given a strategy∆0 =

⋃

t∈K0
∆t, L0 defines the following

distribution over the variables inV0:

P∆0(V0) = P (C0 : D0)
∏

D∈D0

P (D | π(D)) , (5.6)

and given a strategy∆t =
⋃

t∈Kt
∆t, with t ≥ K, Lt defines the following condi-

tional distribution over the variables inVt:

P∆t(Vt | It) = P (Ct : Dt−K , . . . ,Dt)
∏

D∈Dt

P (D | π(D)) (5.7)
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whereIt = {X(t′) : t′ < t, (X(t′), Y (t)) ∈ At} is the interfaceof the transition
model, representing the variables that have a direct influence on variables inVt.

Combining Eqs. (5.6) and (5.7), given a horizonN and strategy∆ =
⋃

t∈T ∆t,
a TLIMID induces the following distribution over variablesin V:

P∆(V) = P∆0(V0)
N
∏

t=K

P∆t(Vt | It) . (5.8)

Let Ut =
∑

U∈Ut
U denote the joint utility for a time-slicet. We define the joint

utility function for a dynamic LIMID as

U =
N
∑

t=0

γtUt (5.9)

with discount factorγ ∈ [0, 1], such that the expected utility of a strategy∆ is given
by EU(∆) =

∑

v P∆(v)U(v).

5.2.2 Representing observed history

As remarked before, if decisions are allowed to depend on allpast observations,
then a DLIMID becomes computationally intractable for all but small finite-horizon
decision processes. Therefore, we can only hope to find (approximations to) the
optimal strategy, where each policy is based on a limited number of past observa-
tions.3 It is clear from Fig. 5.5 that, if we use a TLIMID, policies take into ac-
count at mostall chance and decision variables inK subsequent time-slices since
π(Dt) ⊆ Vt−K ∪ · · · ∪Vt (cf. Eq. (5.5)). Observations made earlier in time will
not be taken into account and as a result, states that are qualitatively different can ap-
pear the same to the decision maker, leading to suboptimal policies. In reinforcement
learning, this phenomenon is known asperceptual aliasing(Whitehead and Ballard,
1991), indicating that active perception of the world can have as a consequence that
the agent’s internal representation confounds external world states. In order to allevi-
ate the problem of perceptual aliasing, there are a number ofways to relax the strong
limited-memory assumption implied by TLIMIDs. One way to resolve this problem
is by using a large value forK. This still allows us to represent large decision pro-
cesses, and asK approachesN , we will find better approximations to the optimal
strategy∆∗ in general.

An alternative way to deal with perceptual aliasing, as usedin this chapter, is
to assume that the first-order Markov assumption that the future is independent of
the past given the present holds (K = 1), and to represent part of the observational
history by means ofmemory variablesM ⊆ C. As shown in Fig. 5.6, one way to

3In the context of POMDPs, methods that rely on the use of a finite history are common, and can be
dated back to (Brown, 1972).
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maintain memory concerning chance and decision variables,is to associate a unique
memory variableM ∈ M with each informational predecessorV ∈ π(D) for all
D ∈ D. The TLIMID is then redefined by using memory variablesM as the infor-
mational predecessors ofD, and by requiring that(V (0),M(0)) is an arc inA0, and
both(V (t),M(t)) and(M(t-1),M(t)) are arcs inAt.

Figure 5.6: Dealing with perceptual aliasing by introducing memory variables (black cir-
cles). Memory variables are used instead of associated observed variables (shaded circles),
as the informational predecessor for a decision variable (squares).

Memory about the past is maintained by means of distributionsP (M(0) | V (0))
andP (M(t) | M(t-1), V (t)). For example, suppose we would like to maintain a
memory about the past two time-slices. Then it suffices to define

ΩM(t) = ΩV (t) ∪ ΩV (t) × ΩV (t−1) ∪ΩV (t) × ΩV (t−1) × ΩV (t−2) ,

which represents all possible observational histories of length three, and to use the
distributions to maintain changes in the observational history. Note that such an
explicit enumeration of all observational histories leadsto a huge state space forM .
Therefore, we normally represent the observational history of V more compactly by
partitioning all possible observational histories into a small set of states. In this way,
we useaggregation(Boutilier et al., 1996a) to group states that are indistinguishable
from the point of view of the decision maker. The choice of thestates ofM is
problem dependent, and we will not further address this issue in this chapter. Instead,
it is assumed that their definition is based on available domain knowledge.

In Section 5.4 we define a TLIMID for a dynamic decision problem in medicine
that uses two memory variablestreathist andbmdhist. Here,treathist is a short-term
memory variable that represents the three latest observations, whilebmdhist is a long-
term memory variable that indicates whether the patient hasever had bone-marrow
depression.

5.3 Improving strategies in infinite-horizon DLIMIDs

In the previous section we have shown how a DLIMID, constructed from a TLIMID,
can represent an infinite-horizon Markov decision process.We proceed by exploring
techniques for approximating the optimal strategy.
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5.3.1 Computing expected utility

In order to compute the expected utility for a TLIMID, we resort to an indirect ap-
proach, where we make use of the fact that given∆, an influence diagram(N,A, P )
may be converted into a Bayesian network, which can subsequently be used as a
computational architecture for decision making under uncertainty (Cooper, 1988;
Shachter and Peot, 1992). Since a strategy∆ induces a distribution over variables
in V (cf. Eq. (5.8)), we can use∆ to convert decision variablesD ∈ D into random
variablesX ∈ X, with parentsπ(D) such that:

P (X | π(X)) = P (D | π(D)) .

Additionally, utility functionsU ∈ U may be converted into random variablesX ∈
X, with parentsπ(U). We define the distributionP (X | π(X)) with ΩX = {0, 1}
by means of a transformation:

P (X=1 | x′) =
U(x′)−minx U(x)

maxx U(x)−minx U(x)

with x,x′ ∈ Ωπ(U), as defined in (Cooper, 1988). This allows us to compute the
expected utility EU(∆) given a strategy∆ directly, by using the Bayesian network
to compute the posterior probability ofX, and performing the reverse transformation
on the probability ofX. We useB(L,∆) to denote the conversion of a LIMIDL,
given a strategy∆, into a Bayesian networkB.

Given∆, we may convert a TLIMID(L0,Lt) into the pair(B0,Bt) with B0 =
B(L0,∆0) andBt = B(Lt,∆t), the latter of which is also known as a two-stage
temporal Bayes net. The pair(B0,Bt) is often used to construct adynamic Bayesian
network (DBN)(Dean and Kanazawa, 1989; Boutilier et al., 1996a). The transforma-
tion of a TLIMID into (B0,Bt) and of a DLIMID into an unrolled DBN are depicted
in Fig. 5.7.

As the figure suggests, one way to do probabilistic inferenceis to unroll(B0,Bt)
into one big static network and to use a standard inference algorithm, such as the
junction tree algorithm (Cowell et al., 1999). However, although the complexity of
inference is determined by the size of the largest clique that is obtained after tri-
angularization of the graph underlying the static network (Dechter and Rish, 1994),
space complexity also grows linearly in the horizonN , and therefore this approach
is unsuitable for large horizons. For online inference, more efficient inference algo-
rithms exist that operate directly on(B0,Bt). We have used theinterface algorithm,
which uses a triangulation method such that the space and time taken to compute
P (X(t) | X(t-1)) does not depend on the number of time-slices (Murphy, 2002).
As the size of the model grows, exact inference may become infeasible, and then we
may resort to deterministic or stochastic approximate inference schemes like loopy
belief propagation (Murphy et al., 1999) or particle filtering (Doucet et al., 2001).
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Figure 5.7: Converting between different representations for the special case that the
TLIMID represents a first-order POMDP (K = 1), as assumed throughout the remainder
of this chapter.

In order to compute an approximation to the expected utilitygiven∆, we assume
that the TLIMID (L0,Lt) represents a first order POMDP (K = 1), and∆ can be
expressed as a pair(∆0,∆t), where∆0 is the strategy att = 0 and∆t is a statio-
nary strategy that does not depend ont for t > 0. Recall that the optimal strategy
is deterministic and stationary for infinite-horizon Markov decision processes (Ross,
1983). However, in the partially observable case, we can only expect to find approx-
imations to the optimal strategy by using memory variables that represent part of the
observational history (Meuleau et al., 1999). The approximation EUκ(∆) to the ex-
pected utility is made by computing the discounted expectedutility (γ < 1) using
(B(L0,∆0), B(Lt,∆t)) for a finite number of time-slicesκ. Here,κ may be chosen
based on the problem characteristics, or based on some errorcriterionǫ. For instance,
by choosing

κ = logγ(ǫ(1 − γ)/2umax),

whereumax stands for the maximum utility obtainable during one time-slice, we
ensure that at mostǫ/2 error is introduced into the approximation (Ng and Jordan,
2000).

5.3.2 Single policy updating

One way to improve strategies in standard LIMIDs is to use an iterative procedure
calledsingle policy updating(SPU) (Lauritzen and Nilsson, 2001). Let

∆0 = {p1, . . . , pn}

be an ordered set representing the initial strategy, wherepj with 1 ≤ j ≤ n stands
for a (randomly initialized) policyPDj

. We saypj is the local maximum policyfor
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a strategy∆ at decisionDj if EU(∆) cannot be improved by changingpj . In SPU,
each cycle iterates over all decision variables to find localmaximum policies, and
reiterates until no further improvement in expected utility can be achieved. SPU
converges in a finite number of cycles to alocal maximum strategy∆ where each
pj ∈ ∆ is a local maximum policy. Note that this local maximum strategy is not
necessarily the global maximum strategy∆∗. Let

∆0 = ∆0 ∪∆t

be the initial strategy, with∆0 = {p1, . . . , pm} and∆t = {pm+1, . . . , pn}, where
m is the number of decision variables inL0 andn − m is the number of decision
variables inLt. Following (Lauritzen and Nilsson, 2001), we definep′j ∗ ∆ as the
strategy obtained by replacingpj with p′j in ∆. SPU based on a TLIMIDT with
initial strategy∆0 is then defined by Algorithm 5.1.

Algorithm 5.1 Single policy updating for TLIMIDs.

input: TLIMID T , initial random strategy∆0, stopping criterionκ
∆ = ∆0, euMax= EUκ(∆0).
repeat

euMaxOld= euMax
for j = 1 to n do

for all policiesp′j for ∆ atDj do
∆′ = p′j ∗∆
if EUκ(∆′) > euMaxthen

∆ = ∆′ and euMax= EUκ(∆′)
end if

end for
end for

until euMax= euMaxOld
return ∆

In case of a (non-temporal) LIMID, a locally optimal policy can be found by
optimizing each single rule independently of the others, such that we need to evaluate
kmr different policies at each decision variableD, wherek denotes the cardinality
of ΩD, andr is the number of informational predecessors ofD, assuming that the
cardinality ofΩVj

equalsm for all Vj ∈ π(D). However, in case ofdynamicLIMIDs
with stationary policies, the optimal rule for a certain scenario at timet depends
on the policies applied at future times, which leads to a coupling of the rules. The
number of policies that need to be evaluated at each decisionvariableD therefore
grows ask(mr), such that it becomes impossible in practice to iterate overall possible
policies forD.
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5.3.3 Single rule updating

For reasons exposed in the previous section, we use a hill-climbing search for DLIM-
IDs, calledsingle rule updating(SRU), that is equivalent to single policy updating
for LIMIDs. A deterministic policy can be viewed as a mappingpj : Ωπ(Dt

j)
→ ΩDt

j
,

describing for each configuration of the informational predecessors of a decision
variableDt

j an actiona ∈ ΩDt
j
. We call (x, a) ∈ pj a decision rule. Instead of

exhaustively searching over all possible policies for eachdecision variable, we try to
increase the expected utility by local changes to the decision rules within the policy.
I.e., at each step we change one decision-rule within the policy, accepting the change
when the expected utility increases. We use(x, a′) ∗ pj to denote the replacement of
(x, a) by (x, a′) in pj. Similarly to SPU, we keep iterating until there is no further in-
crease in the expected utility. Using single rule updating,we decrease the number of
policies that need to be evaluated in eachlocal cycle for a decision node to onlykmr,
where notation is as before, albeit at the expense of replacing the exhaustive search
by a hill-climbing strategy, which increases the risk of ending up in a local maximum,
and having to run local cycles until convergence. SRU based on a TLIMID T with
initial strategy∆0 is then defined by Algorithm 5.2.

Algorithm 5.2 Single rule updating for TLIMIDs.

input: TLIMID T , initial random strategy∆0, stopping criterionκ
∆ = ∆0, euMax= EUκ(∆0)
repeat

euMaxOld= euMax
for j = 1 to n do

repeat
euMaxLocal= euMax
for all configurationsx of π(Dj) do

for all actionsa′ ∈ ΩDj
do

p′j = (x, a′) ∗ pj

∆′ = p′j ∗∆
if EUκ(∆′) > euMaxthen

∆ = ∆′ and euMax= EUκ(∆′)
end if

end for
end for

until euMax= euMaxLocal
end for

until euMax= euMaxOld
return ∆

The local maximum strategies returned by SRU (and occasionally also SPU) may
differ from the global maximum strategy,∆∗, as can be seen in the following exam-
ple.
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Figure 5.8: A DLIMID for treatment of patients that may or may not have adiseaseD. The
disease can be identified by afindingF , which is the result of alaboratory testL, having
an associated cost that is captured by the utility functionU . Based on the finding, we decide
whether or not to performtreatmentT . If the patient does not have the disease then this has
an associated utilityU ′.

Example 5.1. Suppose the best strategy for the DLIMID shown in Fig. 5.8 is to
always test, to treat when the outcome is positive, and not totreat when the outcome
is negative. Suppose the initial strategy∆0 is to never test and always treat. Trying to
improve the policy for the laboratory testL we find that performing the test will only
decrease the expected utility since the test has no informational value (we always
treat) but does have an associated cost. Conversely, tryingto improve the policy for
treatment we find that, as the test has not been performed, it is safer to always treat.
Hence, SPU and SRU will stop after one cycle, returning the proposed strategy as the
local optimal strategy.

5.3.4 Simulated annealing

In order to improve upon the strategies found by SRU, we resort to simulated an-
nealing (SA), which is a heuristic search method that tries to avoid getting trapped
into local maximum solutions found by hill-climbing techniques such as SRU (Kirk-
patrick et al., 1983). SA chooses candidate solutions by looking at neighbors of the
current solution as defined by aneighborhood function. Local maxima are avoided
by sometimes accepting worse solutions according to anacceptance function. In this
chapter, we have chosen the acceptance function

P (a(∆′) = yes| eu,eu′, t) =

{

1 if eu′ > eu

e
eu’−eu
T (t) otherwise

wherea(∆′) stands for the acceptance of the proposed strategy∆′, eu’ = EUκ(∆′),
eu = EUκ(∆) for the current strategy∆, andT represents the temperature in an
annealing scheduledefined as

T (t+ 1) = α · T (t)

whereT (0) = β with α < 1 andβ > 0. The annealing schedule ensures that ini-
tially a random search through the space of strategies is performed, which gradually
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changes into a hill-climbing search. We refer to (Eglese, 1990) for a discussion about
choices that can be made for SA parametersα andβ. With respect to strategy finding
in dynamic LIMIDs, we propose an initial simulated annealing scheme and a sub-
sequent application of SRU in order to greedily find a local maximum solution. Let
θ denote a random variable that is repeatedly chosen uniformly at random between
0 and 1, and letTmin stand for the minimum temperature for which we perform the
annealing. SA based on a TLIMIDT with initial strategy∆0 is then defined by
Algorithm 5.3.

Algorithm 5.3 Simulated annealing for TLIMIDs.
input: TLIMID T , initial random strategy∆0, stopping criterionκ,

annealing scheduleT , minimum temperatureTmin

∆ = ∆0, t = 0, eu = EUκ(∆)
repeat

select a random decision variableDj

select a random decision rule(x, a) ∈ pj

select a random actiona′ ∈ ΩDj
, a′ 6= a

p′j = (x, a′) ∗ pj

∆′ = p′j ∗∆
eu’ = EUκ(∆′)
if θ ≤ P (a(∆′)=yes| eu, eu′, t) then

∆ = ∆′

eu = eu′

end if
t = t+ 1

until T (t) < Tmin

return SRU(T ,∆, κ)

In Section 5.5, we illustrate the application of the simulated annealing algorithm
to a real-world problem in oncology that is described in the following section.

5.4 A dynamic decision problem in medicine

We have applied DLIMIDs to the problem of treatment selection for high-grade car-
cinoid tumor patients.4 A carcinoid tumor is a type of neuroendocrine tumor that is
predominantly found in the midgut and is normally characterized by the production
of excessive amounts of biochemically active substances, such as serotonin (Modlin
et al., 2005). These neuroendocrine tumors are often differentiated according to the
histological findings (Capella et al., 1995) and in a small minority of cases tumors are
of high-grade histology, which, although biochemically much less active than low-

4Although a patient’s life-span is bounded, it is useful to describe a treatment selection problem as
an infinite-horizon POMDP, where the process has an exponentially decreasing but non-zero probability
of continuing at each time-slice.
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grade carcinoids, show much more rapid tumor progression. Therefore, carcinoid
treatment that concentrates on reducing biochemical activity is not considered appli-
cable, and more aggressive chemotherapy in the form of an etoposide and cisplatin-
containing scheme is the only remaining treatment option (Moertel et al., 1991). The
dynamic decision problem then becomes whether or not to administer chemother-
apy at each decision moment. Our aim is to validate if the treatment strategy that is
used in practice will also be found by a TLIMID as a formal domain model, thereby
confirming the quality of the employed strategy.

In order to solve this problem, we have constructed a TLIMID as a model of high-
grade carcinoid tumor pathophysiology in collaboration with an expert physician.5

Figure 5.9 depicts the structure of the model, where shaded variables are observable.
Since patients return to the clinic for follow-up every three months, we assume that
each time-slice represents the patient status at three-month intervals, at which time
treatment can be adjusted.
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Figure 5.9: A TLIMID for high-grade carcinoid tumor pathophysiology. Chemotherapy has
not yet been given at the initial time, which renders the tumor response to chemotherapy
(RESP) independent of all other variables atL0.

In the model, the patient’sgeneral health status(ghs) is of central importance.
In oncology, one way to estimate the general health status isby means of theper-
formance status(Oken et al., 1982), which is distinguished intonormal (0), mild
complaints(1), ambulatory(2), nursing care(3), intensive care(4), anddeath(5).
Modeling the evolution ofghs is a non-trivial task; it depends on the current gen-
eral health status, and on patient properties such asage, andgender, since these are
risk factors that may lead to patient death due to causes other than the disease. Fur-
thermore,ghs is influenced by the tumor mass (mass) and the treatment strategy.
Tumor mass has a negative influence on the general health status and is the first cause

5The model was developed with Hugin DeveloperTM : http://www.hugin.com.
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of death for patients with high-grade carcinoid tumors. Hepatic metastases normally
account for the majority of the tumor mass, and the primary localization does not nor-
mally contribute significantly to the tumor mass. Tumor massis expressed in terms
of standard units, ranging from a patient with just a primarylocalization (mass = 0)
to a patient that shows the maximal amount of metastases (mass = 16), as depicted
in Fig. 5.10.

0
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3 4
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8

severe extreme

16

Figure 5.10: Tumor mass.

Most patients with high-grade tumors have extensive metastatic disease when
admitted to the hospital, and if there is no tumor response due to treatment, then the
physician estimates an exponential growth in tumor mass:

x(t) = x0 · e
1.41t.

If there is a tumor response due to treatment then we will see areduction in tumor
mass according to Table 5.1. If no chemotherapy is given, then we usent (no treat-
ment) to denote the absence of tumor response. Finally, ifdghs = deadthen there is
no change in tumor mass.

Table 5.1: The WHO criteria for tumor response.

Tumor Response Criteria
Complete remission (cr) Disappearance of all lesions.
Partial remission (pr) More than50% decrease in tumor mass.
Progressive disease (pd) More than25% increase in lesions, or a new lesion.
Stable disease (sd) Neitherpr norpd.

Chemotherapy (chemo), with Ωchemo = {none, reduced, standard}, is the only
available treatment to reduce tumor growth, where a reduceddose is at 75% of the
standard dose. We usetreathist, with Ωtreathist = {0, 1, 2, 3}, as a memory variable
to represent the patient’s relevant treatment history, such thattreathist = i represents
continued chemotherapy over the pasti trimesters. Reductions in tumor mass due to
chemotherapy are often described by means of the WHO criteria for tumor response
(resp), as defined in Table 5.1. In (Moertel et al., 1991), given chemotherapy, 17%
of patients showed complete regression, 50% showed partialregression and the re-
maining 33% of patients showed stable disease. Hence, a patient did not experience
progressive disease if he had not been treated previously. For reduced chemotherapy
we estimate that 5% of patients show complete regression, 45% show partial regres-
sion and the remaining 50% of patients show stable disease. If a patient has been
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treated previously, then the effectiveness of treatment changes. In caseresp(t-1) is
either pr or cr, then it is assumed that continued chemotherapy will lead tostable
disease (sd). If, on the other hand,resp(t-1)= sd then continued chemotherapy will
become less effective. Even when chemotherapy is discontinued, we expect some
residual effect of chemotherapy due to the knock-out effecton tumor-cells. It is es-
timated that after three months, the effect of chemotherapyis at 70% of its normal
effectiveness.

Note that chemotherapy may have both positive and negative effects on general
health status. Positive due to reductions in tumor mass, andnegative due to severe
bone-marrow depression (bmd) and damage associated with prolonged chemothe-
rapy. Severe bone-marrow depression may cause patient death due to associated
neutropenic sepsis and/or internal bleeding and it has beenreported that 5 out of 45
patients experienced grade 4 leucopenia due to chemotherapy (Moertel et al., 1991).
We therefore estimate that 11% of patients will experience life-threatening forms of
bone-marrow depression when given standard chemotherapy.When reduced dose
chemotherapy is administered, we estimate that in the orderof 3% of patients will
be affected. We usebmdhist, with statesno-bmdandbmd, as a memory variable to
represent whether or not the patient has experiencedbmd in the past. No decision
variable has been defined that determines whether or not to assessbmd status, since
this status is assumed to be given by routine laboratory tests.

The global utility is defined as a discounted additive combination of thequality
of life (qol) and the cost of chemotherapy (cost):

U =

n
∑

t=0

γt (qol(t)(ghs(t)))− cost(t)(chemo(t)))) .

Our measure of quality of life is based onquality-adjusted life-years, or QALYs
(Weinstein and Stason, 1977), which simultaneously captures gains in quantity and
quality of life (Drummond et al., 2005). QALYs are computed by multiplying a
quality-adjustment weightfor each health state by the discounted time spent in this
state. We associate quality-adjustment weights with the states ofghs based on the
quality of well-beingscale (Kaplan and Anderson, 1988), taking into account that
each time-slice stands for a three-month period (Table 5.2). We have associated a
small economical cost with chemotherapy, that is regarded insignificant compared
with the benefit gained in terms of quality of life.

Table 5.2: Quality-adjustment weights forghs.

ghs 0 1 2 3 4 5
weight 0.214 0.184 0.168 0.121 0.109 0.000

In our model, we used a discounting factor of0.95 as suggested in (Haddix et al.,
1996), such that the three-month discount factor isγ ≈ 0.987. The expected utility
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then becomes:

EU(∆) = E∆

(

n
∑

t=0

γtqol(t)(ghs(t)))

)

−

E∆

(

n
∑

t=0

γtcost(t)(chemo(t)))

)

. (5.10)

The first term in Eq. (5.10) is the discounted quality-adjusted life expectancy (QALE)
and the second term is the discounted expected cost of treatment. The goal of our
model then is to find a policy for chemotherapy that maximizesthis expression.

The physician has indicated that the informational predecessors ofchemo are
given by ghs, treathist and bmdhist, where bothtreathist and bmdhist are used as
memory variables within the model. Changes in treatment history are specified as
follows. Given thatchemo equalsstandardor reduced, treathist increases fromx to
x + 1 until the maximum of3 is reached, and given thatchemo = none, treathist
decreases fromx to x − 1 until the minimum of0 is reached. In order to represent
whether or not a patient has ever experienced bone-marrow depression, we assume
that bmdhist(t) = no-bmdif bmd(t) = no andbmdhist(t-1) = no-bmd. Otherwise, it
is assumed thatbmdhist(t) = bmd. Note that in this case, we represent memory of
infinite length by restricting ourselves to the event whether or not severe bone-marrow
depression has occurred. Contrary to what may be expected,cga, as a correlate of
tumor mass, is not regarded to be an informational predecessor by the physician,
since a patient who is known to have a high-grade carcinoid tumor is treated as often
as possible, irrespective of the current state of the tumor.

5.5 Experimental results

Our aim is to find a treatment strategy for high-grade carcinoid tumors using the
developed model and the described algorithms. We have applied the simulated annea-
ling scheme, followed by SRU, as suggested in Section 5.3.6 Since the informational
predecessors are equal forchemo in L0 andLt, we assume that∆0 = ∆t. We use
∆ to denote this strategy, containing a stationary policy forchemo. The number of
possible policies forchemo is then given by:

Ω
Ωghs·Ωtreathist·Ωbmdhist
chemo = 35·4·2 ≈ 1.22 · 1019 .

Note that single policy updating would require an exhaustive search through this
space of possible policies, which is clearly computationally intractable. For our
model, we have usedκ = 40 as the stopping criterion for the approximation to

6The proposed algorithms have been implemented using Intel’s Probabilistic Networks Library
(PNL): http://www.intel.com/technology/computing/pnl.
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the expected utility, based on the observation that ten-year survival is rarely attained
for this aggressive form of cancer. After some initial experiments, we have chosen
α = 0.995, β = 0.5 andTmin = 1.225 ·10−3 for the simulated annealing parameters.
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Figure 5.11: Change in EUκ(∆) for the treatment strategies, selected during simulated an-
nealing, followed by single rule updating at the end.

The SA algorithm was repeated twenty times, starting from random initial strate-
gies. It consistently found the same treatment strategy∆, with an expected utility
of 1.795. Figure 5.11 shows the subsequent values of EUκ(∆) of the strategies
found during one of these experiments. The figure depicts howthe initial explorative
behavior of the simulated annealing scheme gradually changes into a hill-climbing
strategy. The application of single rule updating after thesimulated annealing phase
caused a small increase in expected utility from 1.795 to 1.798. For this particu-
lar example, the solution found by simulated annealing (followed by SRU) was the
same as the solution found by SRU alone, although this does not hold in general (cf.
Example 5.1).

One way to depict the found strategy is by means of apolicy graph, which is
a finite state machine that represents state-transitions based on observations and ac-
tions associated with the nodes (Smallwood and Sondik, 1973). The policy graph
for the found treatment strategy is shown in Fig. 5.12 and canbe interpreted as an
abstract representation of a treatment protocol. Arrows onthe left-hand side of the
figure depict the starting state, which depends on the initial observations. Each state
has an associated action and the next state is chosen based onthe next observation.
The protocol states that we treat once if the health status isgood enough (ghs ≤ 3),
where patients with severebmd receive reduced chemotherapy. Then we wait to let
the patient recover and treat again, depending on whether ornot the general health
status is good enough. According to the expert physician, the found strategy was in
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chemo = standard

chemo = none

chemo = reduced
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Figure 5.12:Policy graph for the best strategy that was found by simulated annealing, where
o1 = ghs > 3, o2 = ghs ≤ 3 ∧ bmdhist = no-bmdando3 = ghs ≤ 3 ∧ bmdhist = bmd.

agreement with the treatment protocol that is used in clinical practice, even though
in exceptional cases, patients are given chemotherapy for more than three consecu-
tive months. Hence, our formal domain model validates the treatment protocol that
physicians use to treat carcinoid patients.

5.6 Summary

We have defined DLIMIDs, represented as TLIMIDs, as a framework for dynamic
decision-making under uncertainty and used them as the basis for a pathophysiolog-
ical model for high-grade carcinoid patients. Although therepetitive structure of a
TLIMID has been used implicitly in (Lauritzen and Nilsson, 2001), the explicit use of
a TLIMID and its transformation into a pair of Bayesian network fragments allows
for the representation of infinite-horizon POMDPs. This benefit comes at the ex-
pense of using strategies that may suffer from perceptual aliasing, which we resolve
by means of memory variables that represent part of the observed history.

We have demonstrated that reasonable strategies can be found for infinite-horizon
DLIMIDs, where both SRU and SA do not suffer from the intractability of SPU
when the number of informational predecessors increases. The approach does require
that good strategies can be found using a limited amount of memory, since other-
wise, found strategies will fail to approximate the optimalstrategy. This requirement
should hold especially between time-slices, since the state-space of memory variables
can become prohibitively large when a large part of the observed history is required
for optimal decision-making. Although this restricts the types of decision problems
that can be managed, DLIMIDs, as constructed from a TLIMID, allow the represen-
tation of large or even infinite-horizon decision problems that cannot be managed by
standard influence diagrams.

Our approach is particularly useful in the case of problems that cannot be properly
approximated by a short number of time-slices, which was shown for a toy problem
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in (van Gerven and Dı́ez, 2006). Application of the theory tothe selection of a treat-
ment strategy for high-grade carcinoid tumors has demonstrated the usefulness of
our approach for real-world medical problems. The theory provides a formal basis
for the validation of existing treatment strategies and mayactually be used to modify
existing treatment strategies when more optimal solutionsare found.





Chapter 6

A Probabilistic Model
for Carcinoid Prognosis

An important task in clinical patient management is to determine a prognosis
for a patient that suffers from a disease, where prognosis isdefined as:the predic-
tion of the future course of a disease process conditional onpatient history and a
projected treatment strategy. This prediction is non-trivial since the physician often
has incomplete information and treatment itself can have a multitude of uncertain
effects. As a result, predictions made by the physician can be poor (Lee et al., 1986;
Knaus et al., 1991b; Christakis and Lamont, 2000) or miscalibrated (Glare et al.,
2003). Therefore, patient management can benefit greatly from the development of
prognostic models that aid the physician in this task. Next to its use in clinical de-
cision making, prognostic models can also be of value to the patient (notification,
quality-of-life decisions), as well as to the policy-maker(comparative audit, patient
selection for clinical trials, development of treatment protocols) (Wyatt and Altman,
1995; Abu-Hanna and Lucas, 2001).

Various approaches to develop a prognostic model exist. Traditionally, a prognos-
tic model consists of simple decision rules that are based ona prognostic score and
classify patients into different risk categories (Mazumdar and Glassman, 2000). Such
scores are often based on clinical variables, and have been constructed for the general
patient population (Knaus et al., 1991a; Le Gall et al., 1993) as well as for specific pa-
tient subgroups (Schuchter et al., 1996; Groeger et al., 1998). Survival analysis takes
a different approach, and models survival rate by taking into account patient-specific
covariates, such as by means of the proportional hazards model (Cox, 1972; Cox
and Oakes, 1984; Collett, 2003). In decision analysis, stochastic processes which
evolve over time, known as Markov decision processes, are used as the basis for
prognostic models (Beck and Pauker, 1983; Sonnenberg and Beck, 1993). More re-
cently, techniques such as decision-trees, neural networks, support vector machines,
and Bayesian networks, as developed by the artificial intelligence community, have
become popular as prognostic models (Cruz and Wishart, 2006; Delen et al., 2005;

This chapter is based on (van Gerven and Taal, 2006; van Gerven et al., 2007b).
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Ohno-Machado, 1997; Abu-Hanna and Lucas, 2001).

The above techniques have all proven their worth as prognostic models in
medicine, but they are not always applicable. Although sophisticated techniques,
such as neural networks and support vector machines, generally improve upon the
performance of simple decision rules, they also require theavailability of large
amounts of high-quality data. Unfortunately, this data is not always available, which
renders the methods inapplicable. Another perceived deficiency is the fact that most
of the described techniques do not provide insight intohowa certain prognostic con-
clusion is reached; they are so-calledblack-boxmodels, which is an undesirable pro-
perty of clinical decision support systems (Hart and Wyatt,1990). For instance, even
though the proportional hazards model has an interpretation in terms of the patient-
specific covariates that modulate patient hazard, the modelcannot give a causal ex-
planation of how the covariates interact and influence patient survival.

Bayesian networks (Pearl, 1988) do allow for an interpretation in terms of causes
and effects, and have the additional benefit that they can be constructed from avai-
lable expert knowledge. If a Bayesian network incorporatestime, then it is known
as adynamicBayesian network (DBN), and if it includes decision making,as is of-
ten needed for accurate prognostication (Hilden and Habbema, 1987), then it can
be regarded as a factorized representation of a partially-observable Markov decision
process. The usefulness of such a representation for clinical patient management
has already been discussed in (Peek, 1999), but, to date, there are only few systems
for clinical patient management that were built using this approach (Hauskrecht and
Fraser, 2000; Charitos et al., 2005). As will be shown, representation of a prognostic
model in terms of a DBN is beneficial, since they allow for a causal explanation, can
be constructed from data and/or expert knowledge, and allowfor flexible query an-
swering. However, DBNs constructed from expert knowledge are difficult to develop,
which is thought to be one of the main reasons for their limited use at present.

In this chapter, our aim is to describe the construction and validation of a DBN for
prognosis of patients that present with low-grade carcinoid tumors; a neuroendocrine
tumor that displays a complex symptomatology. This is a difficult task, since the do-
main requires the incorporation of decision-making and therepresentation of tempo-
ral interactions. We proceed by describing the clinical problem, carcinoid pathophy-
siology, and carcinoid treatment in Section 6.1. Section 6.2 describes the prognostic
model, which we call, henceforth, the carcinoid model. The carcinoid model is vali-
dated in Section 6.3 by means of a database that has been collected at the Netherlands
Cancer Institute (NKI). In order to obtain insight into the quality of the model, we
use a number of techniques, where we focus not only on prognostic accuracy, but
also on the intelligibility of the prognostic conclusions.We end with a discussion of
the results in Section 6.4.
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6.1 Prognosis of carcinoid tumors

6.1.1 Problem description

Low-grade carcinoid tumors are a type of neuroendocrine tumor that can produce
high levels of serotonin, kinins, prostaglandins, and other vasoactive peptides. They
are most commonly found in the midgut (Taal and Smits, 2005) and typically be-
have less aggressively than conventional adenocarcinomas(van Eeden et al., 2002).
During the early stages, carcinoid tumors often remain undiagnosed, where vague ab-
dominal pain is commonly ascribed to irritable bowel or spastic colon (Bast-Jr et al.,
2000). Progressive carcinoid disease is often accompaniedby the carcinoid syn-
drome. This syndrome is mainly characterized by diarrhea caused by increased bowel
motility due to serotonin overproduction (Öberg et al., 1987), periodical flushing at-
tacks due to the synergistic interaction between histamine, kinins, and prostaglandin
released by the tumor into the general circulation, and lessfrequently wheezing
(Zuetenhorst et al., 1999). Extreme cases of the carcinoid syndrome are known as
a carcinoid crisis, which may lead to cardiovascular collapse and ultimately death.
Often, only if symptoms of the carcinoid syndrome are present, a carcinoid tumor is
suspected and the patient is sent to the hospital. Since the clinical department of the
Netherlands Cancer Institute(NKI) acts as a referral centre, most patients that are
admitted are already diagnosed to have carcinoid disease, most often of the midgut
type. Hence, for physicians at the NKI, diagnosis of carcinoids is not of primary con-
cern. However, due to the complex nature of carcinoid disease, and recent advances
in carcinoid treatment, the need for appropriate prognostication has increased.

6.1.2 Pathophysiology of carcinoid tumors

The midgut is the region in which carcinoids are predominantly found, and neuroen-
docrine tumors that derive from other sites often show markedly different behavior
and hence need alternative models for prognostication (Zuetenhorst and Taal, 2005).
Carcinoid tumor histology is determined by mitotic activity and tissue necrosis, and
distinguished into well differentiated, orlow-grademalignancies, and poorly differ-
entiated, orhigh-grademalignancies (Capella et al., 1995). A minority of patients
presents with high-grade tumors, which grow faster but are biochemically less active,
and therefore require a different prognostic model. We restrict ourselves to carcinoids
of the midgut with a low-grade histology.

As mentioned, the most prominent clinical sign of carcinoiddisease is the car-
cinoid syndrome, which is caused by high levels of circulating bioactive substances
(Zuetenhorst et al., 1999). Although many of these substances are thought to play
a role in the disease, the exact interactions are as yet unclear, and in practice, di-
agnosis relies on the assessment of serotonin overproduction by measuring urinary
5-hydroxyindole-3-acetic acid (5-HIAA) levels, which we distinguish intonormal,
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elevated, andextreme. Serotonin overproduction is caused by the carcinoid tumor
in the presence of particular metastases. Hormones released by carcinoid tumors are
often destroyed by the liver before they reach the general circulation to cause symp-
toms, and therefore, only liver metastases or metastases that release hormones di-
rectly into the general circulation such as gonad (ovary or testes) or lung metastases,
can produce the carcinoid syndrome. Most of the hormone-producing tumor-mass
is accounted for by the liver, and consequently carcinoids are often accompanied by
widespread hepatic metastases. Plasmachromogranin A(CgA) levels can be used
as a marker of tumor load, in terms of neuroendocrine activity (Nobels et al., 1998)
and tumor mass (D’Herbomez and Gouze, 2002). We distinguishnormal, elevated,
andextremeCgA levels, and patients with extreme CgA levels have a significantly
poorer 5-year survival than patients with elevated CgA levels (Janson and̈Oberg,
1996). The production of CgA and serotonin is determined by tumor activity and
tumor extensiveness.

Sometimes, excessive release of bioactive substances leads to a carcinoid crisis,
which is characterized by severe flushing, severe diarrhea,and vomiting. A crisis
may lead to dehydration, acute hypotension and may ultimately cause cardiovascular
collapse, which is a life-threatening situation. It is thought to arise from an excessive
release of vasoactive substances into the general circulation (Sutton et al., 2003).
Serotonin is known to cause diarrhea and is used as a correlate of the vasoactive
substances that cause flushing. Which substances are exactly responsible for flushing
remains unclear.

A major complication of carcinoid tumors is carcinoid heartdisease (CHD),
which is a consequence of enlargement and distortion of the endocardium and suben-
docardium of the tricuspid valve, leading to tricuspid insufficience and decompensa-
tio cordis. CHD may lead to right heart failure which is the cause of death in approxi-
mately half of carcinoid patients (Taal et al., 1999); as thepump function of the heart
deteriorates the patient’s health deteriorates rapidly. Atrend can be seen between the
degree of right atrium dilatation, and the level of thebrain natriuretic peptide(BNP);
especially its biologically inactive N-terminal fragmentNT-pro-BNP (Zuetenhorst
et al., 2004). This level is distinguished intonormalandelevated. CHD-related mor-
tality is dependent on the progression of CHD in the patient,which is defined as
tricuspid valve thickening with additional severe or extreme regurgitation. Mesente-
rial fibrosis is another major complication of carcinoid tumors, where small-bowel
tumors cause shrinkage and fibrosis of the mesentery, leading to bowel obstruction
and/or ischaemia, with finally necrosis and perforation of the bowel wall, which is
frequently accompanied by acute abdominal pain (Modlin et al., 2004).

6.1.3 Treatment of carcinoid tumors

Treatment is distinguished intointerventionsandsystemic treatments. We disregard
symptomatic treatment since this does not influence diseaseprogression.
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Interventions

Treatment of a carcinoid tumor often amounts to surgical intervention, and can be
either curative or palliative. Although curative surgicalremoval of the primary tumor
is the treatment of choice for small localized tumors, it is almost impossible in the
presence of intra-abdominal or hepatic metastases. In the context of the prognostic
model, it is assumed that the patient has already received appropriate primary tumor
surgery. The remaining applicable interventions are shownin Table 6.1. These inter-
ventions also present a risk to the patient since they cause patient death in a minority
of cases.

Table 6.1: Interventions for carcinoid tumors.

Intervention Usage
bowel resection Performed in case of severe mesenterial fibrosis.
cardiac surgery Performed in case of carcinoid heart disease.
partial liver resection Treatment of mild liver metastases.
radiofrequency ablation Treatment of moderate liver metastases.
embolization Treatment of severe liver metastases.

Only when the primary tumor leads to mesenterial fibrosis, treatment in the form
of bowel resection becomes necessary (Sutton et al., 2003).Bowel resection is a
preventive palliative treatment that is performed whenever the patient experiences a
curable form of mesenterial fibrosis given an acceptable health status.

If a patient suffers from carcinoid heart disease then, given that the patient has
an acceptable health status, cardiac surgery is performed.This normally amounts to
tricuspid valve replacement, reducing tricuspid valve thickening and regurgitation.
Unfortunately, cardiac surgery has a relatively high associated mortality rate.

In case of hepatic metastases one may opt for one of the hepatic treatments:
partial liver resection(PLR), radiofrequency ablation(RFA), or hepatic artery em-
bolization (Meij et al., 2005). Hepatic metastases are operable only ifthere are no
more than three localized metastatic regions, and, according to the physician, PLR
can be administered at most two times, given an acceptable health status. If PLR
fails, then hepatic metastases may be treated by RFA when there are no more than
six metastatic localizations, each region being less than 4cm in diameter. RFA heats
tumors and thereby kills the cancer cells. The procedure hasa low complication rate,
can be performed without major open surgery, only involves overnight hospitaliza-
tion, and can be administered at most three times, given an acceptable health status.
Embolization is a method to treat diffuse carcinoid localizations in the liver. Selec-
tive embolization leads to occlusion of the liver artery, cutting off blood supply to the
tumor, depriving it of oxygen and nutrients. Embolization of the liver arteries leads
to the post-embolization syndrome, which is characterizedby temporary fever and
pain, and may cause life-threatening complications (Eriksson et al., 1998; Meij et al.,
2005). According to the physician, embolization can be administered at most two
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times, and is performed only in case of diffuse hepatic metastases, when systemic
treatment has failed and given an acceptable health status.The effect of hepatic treat-
ment is a reduction in hepatic tumor mass, and can be interpreted in terms of the
tumor response, as depicted in Table 6.2.

Table 6.2: The criteria for tumor response.

Tumor Response Criteria
Complete remission (cr) Disappearance of all lesions.
Partial remission (pr) > 50% decrease in tumor mass.
Progressive disease (pd) > 25% increase in lesions, or appearance of a new lesion.
Stable disease (sd) Neitherpr norpd.

Systemic treatment

Systemic treatment focuses on reducing overall tumor activity and tumor growth, and
can be distinguished into the treatments shown in Table 6.3.Systemic treatment is
administered in case of biochemically active metastases inconjunction with extreme
5-HIAA levels and/or both severe diarrhea and flushing. We call these conditions the
systemic conditions.

Table 6.3: Systemic treatment of carcinoid tumors.

Systemic treatment Description
farmacological somatostatin Synthetic forms of native somatostatin.
interferon Synthetic form of an immune system stimulant.
radiolabeled somatostatin Radioactive somatostatin usedfor autoradiation therapy.
radiolabeled MIBG Radioactive MIBG used for autoradiationtherapy.
farmacological MIBG Inhibitor of mitochondrial respiration.

Reductions in tumor growth are captured by the tumor response of Table 6.2,
whereas reductions in tumor activity are captured by the biochemical response, as
quantified by means of the criteria in Table 6.4. In general, systemic treatment is
characterized by positive effects (such as tumor reductionand reduction of biological
activity), and possible side-effects, such as bone-marrowdepression.

Table 6.4: The criteria for biochemical response.

Biochemical response Criteria
Complete remission (cr) Normal biochemical activity.
Partial remission (pr) > 50% decrease in biochemical activity.
Progressive disease (pd) No treatment response.
Stable disease (sd) < 50% decrease or< 25% increase in biochemical activity.
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Somatostatin is a peptide that has widespread inhibitory effects and leads to a
reduction in the release and production of serotonin and vasoactive substances by the
tumor. It binds to the somatostatin receptors which are expressed on more than 80%
of the carcinoid tumors. Native somatostatin has limited use by its short half life, but
a number of longer acting somatostatin analogues have been developed. Octreotide
(Lamberts et al., 1996) is a somatostatin analogue, that often induces symptomatic
improvement, although this is not always accompanied by a reduction in 5-HIAA
excretion. Somatostatin analogues have been reported to inhibit tumor growth, but a
reduction in tumor volume is seldom observed (Zuetenhorst and Taal, 2005). We refer
to this form of medication asfarmacological somatostatin(f-soma). Farmacological
somatostatin may induce increased bowel motility, and overtime, farmacological so-
matostatin efficacy decreases due to somatostatin receptordown-regulation. A tracer
dose of radiolabeled octreotide is used to detect somatostatin receptors by means of
a so-calledoctreoscan, and in order to treat withf-soma, the octreoscan must be po-
sitive. Once started, we increase the dosage when the disease becomes progressive
despite treatment, until the highest dosage is reached and maintained.

Interferon-α (ifn) is a synthetic copy of a substance that is produced naturally by
monocyte/ macrophages and is considered after failure off-soma treatment. Due to
binding of ifn to interferon receptors a complex series of signal transduction events
takes place, resulting in the production of a multitude of proteins with different ac-
tions. ifn works directly on cancer cells by interfering with cells growth and multi-
plication, and stimulates the immune system, by encouraging killer T cells and other
cells that attack cancer cells (Öberg and Eriksson, 1991). Side-effects amount to
flu-like symptoms, diarrhea, general sickness, tiredness,loss of appetite, and a tem-
porary drop in bone marrow functioning. Due to these side-effects,ifn is administered
for at most a year. Note that the health status should be acceptable, and bone-marrow
depression must be absent, in order to give treatment.

Once interferon treatment has failed, we may use either177Lu-labeled Oc-
treotide (Lutetium), or 131I-labeled MIBG, to invoke autoradiation. Meta-
Iodobenzylguanidin (MIBG) resembles noradrenalin and serotonin, and it is taken
up in the carcinoid tumor cells and stored in the neurosecretory granules. We refer
to the respective treatments asradiolabeled somatostatin(r-soma) andradiolabeled
MIBG (r-mibg) treatment.R-soma has a strong tumor reducing effect, and is only
administered once in a series of four treatments with two month intervals. Observed
toxicities of r-soma autoradiation therapy are nausea and vomiting, haematological
toxicity and renal function impairment (Zuetenhorst and Taal, 2005), and therefore, a
good renal function is required, and bone-marrow may not be severely depressed. Re-
nal failure may arise due to various causes such as medication, vascular obstruction,
or hypertension.

Radiolabeled MIBG is also used for scanning purposes (mibgscan), and a posi-
tive mibgscan is a prerequisite forr-mibg treatment. Predosing withf-mibg leads to
improved tumor targeting ofr-mibg sincef-mibg has the capacity to render a negative
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mibgscan positive. Radiolabeled MIBG treatment consists of two 200 mCi dosages
within a six to eight week interval, and can be administered at most twice due to
radiation damage, leading to severe bone-marrow depression in a minority of cases.

Farmacological MIBG (f-mibg) is administered when other treatments have
failed. The cytotoxic effect off-mibg is related to inhibition of mitochondrial res-
piration, resulting in enhanced glucose consumption, increased lactic acid produc-
tion, inhibition of oxygen consumption and decreased adenosine triphosphate levels
(Zuetenhorst et al., 1999).F-mibg treatment requires a normal blood pressure since
it induces changes in blood pressure (Zuetenhorst et al., 1999). The treatment stra-
tegy for f-mibg is to treat for three months, to stop for six months and then torepeat
treatment if previous results were positive.

6.2 Structure of the carcinoid model

We proceed with a description of the architecture of the carcinoid model, which is
specified in terms of a dynamic Bayesian network.

6.2.1 Dynamic Bayesian networks

A Bayesian networkB = (G,P ) is a pair whereG is an acyclic directed graph,
with nodes corresponding to a set of random variablesX, andP is a joint probability
distribution (JPD) of variables inX, which factorizes as:

P (X) =
∏

X∈X

P (X | π(X))

whereπ(X) denotes the parents ofX in G. The representation of a JPD by a
Bayesian network generally reduces the number of parameters that need to be es-
timated and allows for efficient probabilistic inference. In case we are dealing with
problems of a temporal nature, we explicitly include time within a Bayesian network,
by reasoning over random processesX = {X(t) : t ∈ T} instead of random vari-
ables. The resulting model is known as adynamic Bayesian network, and if it is
assumed that the Markov property holds, which states that the future is independent
of the past, given the present, we obtain the following factorization:

P (X) =
∏

t∈T

∏

X(t)∈X(t)

P (X(t) | π(X(t)))

with X(t) = {X(t) : X ∈ X}.
In this work, we will focus on discrete-time and discrete-space random processes,

which implies thatT ⊆ N andP (· | ·) can be specified by a finite look-up table. If
the structure of the dynamic Bayesian network is invariant for all timest ∈ {1, 2, . . .}
then it can be specified in terms of:
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• a prior modelP (X(0)), specifying the initial distribution of the joint process,
and

• a transition modelP (X(t) | π(X(t))), specifying how the process evolves as
we go from timet to timet+ 1 for t ∈ {1, 2, . . .}.

In the following, we describe the structure of the carcinoidmodel, focusing first on
pathophysiology (Section 6.2.2), and second on treatment (Section 6.2.3). The prior
model and transition model together consist of 218 variables and 74 342 CPT entries.
In order to compute distributions of interest, we use the exact junction tree algorithm
(Lauritzen and Spiegelhalter, 1988) and approximate particle filtering (Doucet et al.,
2001) where appropriate. For a more complete description ofthe model and its re-
quired parameter estimates, we refer to (van Gerven and Taal, 2006).

6.2.2 Architecture of the pathophysiological component

The shaded nodes in Fig. A.2 in Appendix A are an abstract representation of carci-
noid tumor pathophysiology as it is embodied in the carcinoid model. It is depicted
how health is influenced by carcinoid disease, through the tumor, its biochemistry,
and its major complications of carcinoid crisis, carcinoidheart disease, and mesente-
rial fibrosis in the bowel. Observable symptoms arise due to the biochemistry, bowel
problems, and tumor progression. Furthermore, it is shown that health is influenced
by patient specific risk factors.
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Figure 6.1: Representation of tumor progression.

Figure 6.1 depicts the progression of the tumor in detail. Asdescribed, the tu-
mor may lead to various metastases, some of which may be biochemically active.
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Furthermore, hepatic metastases are distinguished into different types, since hepa-
tic treatment depends on this. The variablehepatic response captures the effect of
hepatic treatment, whereas the variabletumor response captures the tumor effect of
systemic treatment. We only represent primary tumor localization and not its size,
since disease progression is mainly determined by metastatic disease. Active meta-
stases and total metastatic tumor mass are represented by variablesactive mass and
tumor mass. Parameter estimates are based on clinical expertise and Ref. (Skinazi
et al., 1996).
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Figure 6.2: Representation of tumor biochemistry.

Carcinoid tumor biochemistry is captured in Fig. 6.2. Here,it is shown that
all metastases determine CgA production, whereas biochemically active metastases
determine the release of various biochemical compounds. One of these compounds is
serotonin, whose product 5-HIAA can be measured in a urine sample. Note that the
release of CgA and other biochemical compounds is influencedby the biochemical
response of systemic treatment. Parameter estimates are based on clinical expertise
and Ref. (Nehar et al., 2004). The release of biochemical compounds may in severe
cases lead to a carcinoid crisis through a cascade of events.Since our interest is not
in modeling this cascade, we simply capture this by assuminga dependence between
release at time t and crisis at time t + 1, where parameters were estimated by an
expert physician.
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Figure 6.3: Representation of carcinoid heart disease.

The release of biochemical compounds is also responsible for the development
of carcinoid heart disease, as shown in Fig. 6.3. Note that thickening is a prerequisite
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for regurgitation, and CHD is defined in terms of both as follows:

P (chd | thickening, regurgitation) = 1thickening=yes∧ regurgitation>moderate

where1X is the indicator function, which is equal to one ifX evaluates totrue,
and equal to zero ifX evaluates tofalse. Even though CHD is fully determined
by thickening and regurgitation, it is still useful to represent the variable CHD in
the model, as it facilitates subsequent parameter estimation. For example, NT-pro-
BNP concentrations are normally expressed conditional on the absence or presence
of CHD (e.g., (Zuetenhorst et al., 2004)).

Bowel-related problems are another complication of carcinoid tumors (Fig. 6.4).
Mesenterial fibrosis is induced by biochemically active small-bowel primary tumors,
and may lead to ischaemia and/or obstruction. Abdominal pain is a symptom of these
complications, but may also be caused by other metastases orincreased bowel moti-
lity, for instance due to serotonin overproduction. Increased bowel motility leads to
diarrhea, and cessation of diarrhea may be experienced in case of bowel obstruction.
Parameter estimates are based on clinical expertise and Ref. (Taal and Visser, 2004).
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Figure 6.4: Representation of bowel-related problems.

The core part of the carcinoid model is formed by modeling howa patient’s health
status is influenced by the disease, by risk factors independent of the disease, and by
possible treatment complications. In oncology, one way to represent the patient’s
health status is in terms of theperformance status(Oken et al., 1982), which is dis-
tinguished intonormal (0), mild complaints(1), ambulatory(2), nursing care(3),
intensive care(4), anddeath(5), where we say that the health status is acceptable if
health < 3. Figure 6.5 depicts the influences on patienthealth, where the variables
age andgender are major risk factors that determine patient death independent of
the disease. Their influence has been estimated from demographic data collected by
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theCentral Bureau of Statisticsfor the period 2000–2004 (Centraal Bureau voor de
Statistiek, 2005).
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Figure 6.5: Representation of patient health.

The large number of conditioning variables that (partially) determine patient
health, makes estimation of conditional probabilities forthis variable very difficult.
However, a large subset of these variables are risk factors that influence health due to
the fact that they may cause immediate patient death. If we let the variableendurance
with Ωendurance = {yes,no} stand for survival of such risk factors, then we obtain
a much simpler model, as given in Fig. 6.6.

endurance chd bmd
tumor
mass

health health

Figure 6.6: A simplified representation of patient health.

The structure which we associate with the variableendurance can be interpreted
as a causal interaction model (Meek and Heckerman, 1997). Here, endurance is
indirectly influenced by risk factorsCi ∈ C through intermediate variablesXi ∈ X,
as modulated by patient health. The influences are then combined by a logical OR,
and we obtain

P (endurance= true | C, health(t-1)) = 1−
∏

Ci∈C

P (Xi = false| Ci, health(t-1))

(6.1)

with causesC = {{age, gender}, obstruction, ischaemia, crisis, bowel resection,
cardiac surgery, plr, rfa, embolization }, whereage andgender condition the same
intermediate variable, as they together quantify death risk in the general population.

As can be seen in Eq. (6.1), the variablehealth also plays an important role if our
interest is in computing posteriors for other variables. Wehave found it useful to use
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the notion of adefault influence, in order to facilitate the estimation of how health
influences various risk factors. Consider for instance the influence of patient health
on the risk of dying from a carcinoid crisis:P (crisis-death(t) = yes | crisis(t-1) =
yes, health(t-1)= g). SinceΩhealth = {0, . . . , 5}, we need to estimate six different
probability values. It is assumed thathealth has a default influence on the various
risk factors, which is accomplished by assuming that the influence ofhealth on a risk
factorx can be written as:

P (yes| yes,g)

P (no | yes,g)
=

P (yes| yes, 1)
P (no | yes, 1)

· θhealth(g) (6.2)

where

θhealth(g) =
P (yes| yes,g)

P (no | yes, 1)

represents the change in the odds forx death(t)=yesgiven a change in health. This
change is estimated by the physician as

θhealth = {(0, 0.99), (1, 1), (2, 1.75), (3, 10), (4, 100), (5, 0)} ,

where the choice of0 for health = 5 represents the fact that a risk factor has no
influence whenever the patient is already dead. This use of default influences of
health leads to a six-fold decrease in the number of probabilities that need to be
specified for variables that are conditioned onhealth, since we can use Eq. (6.2) to
compute probabilities forhealth 6= 1. In the following, conditioning of risk factors
by patient health is left implicit.

6.2.3 Architecture of the treatment component

A prognostic model also requires the representation of decisions and their outcomes.
For each treatment, we need to specify its negative and positive effects, and the treat-
ment protocol; i.e., under which conditions the various treatments are applied.

Treatment effects

Negative treatment effects have already been shown in Figs.6.5 and 6.6, where bone-
marrow depression (bmd) may be caused byifn, r-soma, or r-mibg treatment. Positive
treatment effects are modeled as follows. The interventioncardiac surgery(t-1) sim-
ply conditions tricuspid valvethickening(t), where it is assumed thatthickening(t) =
absentgiven thatcardiac surgery(t-1) = yes. The interventionbowel resection(t-1)

conditionsmesenterial fibrosis(t), where it is assumed thatmesenterial fibrosis(t) =
absentgiven thatbowel resection(t-1)=yes.

Hepatic treatments influence thehepatic metastases through the hepatic
response(t), which represents the combined effect of all hepatic treatments. An ex-
ample is given in Fig. 6.7, which models the positive effect of an arbitrary hepatic
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treatment. Note that the effect of hepatic treatment is modulated by the metastatic
type, which can belocalized, multiple, or diffuse. The total hepatic response can be
modeled by means of the following causal interaction model:

P (hepatic response = e | C, type(t-1)) =
∑

x : max(x)=e

∏

Ci∈C

P (xi | Ci, type(t-1))

(6.3)
with C = {plr(t-1), rfa(t-1), embolization(t-1)}. States ofhepatic response are or-
dered:progressive disease≺ stable disease≺ partial response≺ complete response.
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Figure 6.7: The positive effect ofhepatic treatment on hepatic metastases.

Figure 6.8 depicts the tumor and biochemical response of thevarious systemic
treatments. The effect of some of these treatments is modulated by other variables
(not shown).
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Figure 6.8: The tumor and biochemical response of systemic treatment.
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For f-soma, we condition tumor and biochemical response on a variableincrease,
which captures if thef-soma dosage has recently been increased, since an increase
in dosage induces a stronger response. The tumor and biochemical response of both
f-soma andr-soma is modulated by theoctreoscan (since these treatments have no
effect in case the octreoscan is negative). Similarly, the tumor and biochemical re-
sponse ofr-mibg is conditioned by themibgscan. The combined effects can again be
modeled by means of a causal interaction model, similar to that of Eq. (6.3), where
the current responses are also modulated by the previous responses. The positive
effect of tumor response(t) andbiochemical response(t) has already been shown in
Figs. 6.1 and 6.2, with states as given by Tables 6.2 and 6.4.

Treatment protocol

The protocol for the various treatments was mentioned in passing in Section 6.1.3.
Bowel resection is applied in case of curable mesenterial fibrosis and/or obstruction
due to other causes, together with an acceptable health status (Fig. 6.9).
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Figure 6.9: The treatment strategy for bowel resection.

A similar situation holds for cardiac surgery, where we treat in case of carcinoid
heart disease given an acceptable health status (Fig. 6.10).

cardiac
surgery

healthchd

Figure 6.10: The treatment strategy for cardiac surgery.

For the hepatic treatments, the strategy is determined by the extensiveness of
hepatic metastases, the type of hepatic metastases, healthstatus, and the history of
treatment. Additionally, for embolization, we require that autoradiation treatments
have failed (Fig. 6.11). For the systemic treatments, the strategies are more complex.
Consider for instance the treatment strategy forf-soma (Fig. 6.12). The figure depicts
that the systemic conditions must be present and the octreoscan must be positive in
order to administerf-soma. It is also shown that if biochemical and tumor responses
are absent despitef-soma treatment, then there is tumor progression despite treatment
(f-soma progression). This progression determines whetherf-soma treatment dosage
is increased, or whetherf-soma treatment fails. Finally, if the patient comes in with
severe or extreme amounts of tumor mass, then the patient receivesf-soma, possibly
together with other systemic treatment.
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Figure 6.11: The treatment strategies forplr, rfa, andembolization.
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Figure 6.12: The treatment strategy forf-soma.
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Figure 6.13: The treatment strategy forifn.

For interferon treatment (Fig. 6.13), we additionally needto take into account
whether or notf-soma treatment has failed, sinceifn treatment is only given after
f-soma failure when the systemic conditions hold, health is acceptable, and there is
no bone-marrow depression. We also need to take into accountthe treatment history,
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since interferon may only be administered for a year.
For r-soma andr-mibg treatment, we use a similar structure, wherer-soma treat-

ment also takes into account that the patient may not suffer from renal failure. Ad-
ditionally, we need to take into account that we make a randomchoice between the
two treatments, as represented by Fig. 6.14.
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Figure 6.14: Representing the choice between two treatments.

Farmacological MIBG is administered in case of a good blood pressure when
f-mibg has failed and other treatments are not applicable for instance due to a poor
condition. The treatment history is used to represent the notion that we treat for three
months and then stop for six months (Fig. 6.15).
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Figure 6.15: The treatment strategy forf-mibg.

Once the transition model for the pathophysiological and treatment components
has been specified, we need to define a prior model. This prior model can be gene-
rated in part from the independencies that are already represented in the transition
model, although we need to take into account possible associations between random
variables. For example, patient age is conditioned by both patient gender and the
primary localization of the tumor since these variables arecorrelated at admission
time.
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6.3 Validation of the carcinoid model

In order to determine if the performance of a prognostic model is satisfactory, it is
important to validate the results that are obtained by meansof the model (Altman
and Royston, 2000). In order to validate the carcinoid model, we will use (1) a
clinical database, obtained from the Netherlands Cancer Institute, containing data
on 129 patients with a diagnosed low-grade midgut carcinoidtumor, and (2) more
extensive data on a number of individual patients. Validation of the carcinoid model
is done in a number of ways. In Section 6.3.1, we compare survival curves that
were generated by the carcinoid model with Kaplan-Meier curves that have been
constructed from the clinical database. In Section 6.3.2, quality of the prior and
transition models is determined by means of the clinical database and a particular
scoring rule, and compared with that of a proportional hazards (PH) model. Finally,
in Section 6.3.3, individual patient cases are analyzed by means of the carcinoid
model, which is in close correspondence with how the carcinoid model would be
used in clinical practice.

6.3.1 Survival curves

Let T be asurvival random variablewheret ∈ [0,∞) denotes a survival time, such
that thesurvivor function, given byS(t) = 1 − P (T ≤ t), represents the probability
of survival at timet. Let tj denote thej-th smallest survival time that occurs in the
database. An estimatêS of the survivor function is constructed from dataD by means
of the Kaplan-Meier method (Kaplan and Meier, 1958) as follows:

Ŝ(tj) =

j
∏

i=1

P̂ (T >ti | T ≥ ti) = Ŝ(tj−1) ·
risk(tj)− failure(tj)

risk(tj)
,

whereŜ(0) = 1 by definition, risk(tj) denotes the number of people at risk of dying
at timetj, andfailure(tj) denotes the number of people that has died in the period
[tj , tj+1).

Figure 6.16 depicts the Kaplan-Meier curve as estimated from data, and a survival
curve, which was generated by the carcinoid model, where we disregard patient-
specific evidence. There is a salient jump in the Kaplan-Meier curve some five years
after admission to the hospital, which the physician hypothesized to be due to the
exhaustion of treatment options at that point. The fit of the survival curve that was
generated by the model is not perfect, since it overestimates patient survival, espe-
cially for longer survival times. An analysis of the cases inthe database showed that
survival curves differed considerably for patients with orwithout hepatic metastases.

Figure 6.17 shows that patientswithouthepatic metastases have a lower survival
rate in the first few years. The physician gave the following explanation of this seem-
ingly counterintuitive result: patients that present without hepatic metastases must
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have other complications, since otherwise they would not have been sent to the re-
ferral centre in the first place. In this case, we can expect the presence of other
malignancies or metastatic disease in other locations.
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Figure 6.16: Kaplan-Meier curve (solid line) as estimated from data, andsurvival curve
(dashed line) as predicted by the model.
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Figure 6.17: Kaplan-Meier curves (solid lines) as estimated from data, and survival curves
(dashed lines) as predicted by the model, for patients that enter the hospital with hepatic
metastases (left), or without hepatic metastases (right).

We have formalized this by means of the variables in Fig. 6.18, where
other malignancy takes part as a cause in the causal interaction model forendurance
in Eq. (6.1). The survival curve that was computed from the updated model shows
a somewhat better correspondence between the Kaplan-Meiercurve and the survival
curve that was computed from the model. The improvement is not dramatic however,
due to the fact that the patient group without hepatic metastases is relatively small.
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Figure 6.18: Conditioning of variables byhepatic metastases at admission time (dashed
variables), and representation of patient death due to another malignancy (solid variables),
whereX is an intermediate variable that quantifies the effect on patient endurance.

6.3.2 Model likelihood

One way to assess model quality is by using ascoring rule(Murphy and Winkler,
1984), that penalizes a probability model based on a database D = {u1, . . . ,uN}
with instancesui = (ui

1, . . . , u
i
m). Let X ⊆ U denote the variables of interest, and

Y ⊆ U, X ∩ Y = ∅ the variables for which we have evidence. We assume that
instancesui are independently and identically distributed, and use thelogarithmic
score(Spiegelhalter et al., 1993):

S = −

N
∑

i=1

logP (xi | yi)

which incurs a penalty if a low probability is assigned to events that actually occur
(note that we have to account for the fact that the logarithmic score is undefined if
this probability is zero). We compare the logarithmic scoreS of our modelM with
the logarithmic scoreSref of a reference modelMref, where

Sref− S = log

(

P (D | M)

P (D | Mref)

)

. (6.4)

A positive sign of this quantity expresses that modelM is preferred, and a negative
sign expresses that modelMref is preferred. The quantity

P (D | M)/P (D | Mref)

is known as the Bayes factor, whereP (D | M) is the likelihood of modelM given
the data andP (D | Mref) is the likelihood of modelMref given the data. We use
Eq. (6.4) in order to determine the performance of the prior and transition models of
the carcinoid model.
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Prior model quality

For the prior model, our interest is in variables

E(0) = { gender(0), age(0), 5-hiaa(0), cga(0), diarrhea(0), flushing(0),
bowel obstruction(0), hepatic metastases(0), octreoscan(0),
mibgscan(0), primary localization(0),mesenterial fibrosis(0) }

for which evidence at the time of admission to the hospital isavailable in the clinical
database. The carcinoid model was then used in order to compute the logarithmic
score:

S = −

N
∑

i=1

log

m
∑

j=1

P (ui
j | y

i)

whereyi represents the evidence for instanceui. This logarithmic score is compared
with that of a reference model that assigns a uniform probability to each possible
value of the goal variable. The results are listed in Table 6.5, where the junction tree
algorithm was used to compute the posterior distributions.Results show that most
variables are predicted better by the carcinoid model. Exceptions are5-hiaa and
hepatic metastases, which is most likely caused by the fact that the model overesti-
mates the causal relation between the presence of hepatic metastases and increased
5-hiaa levels.

Table 6.5: Bayes factors for the prior model.

Variable Bayes factor Variable Bayes factor
gender(0) 1.7 bowel obstruction(0) 1.7 · 1014

age(0) 5.3 · 107 hepatic metastases(0) 7.0 · 10−5

5-hiaa(0) 2.2 · 10−3 octreoscan(0) 1.0
cga(0) 8.4 mibgscan(0) 14
diarrhea(0) 30 primary localization(0) 6.0 · 107

flushing(0) 4.4 · 103 mesenterial fibrosis(0) 6.4 · 102

Transition model quality

In order to determine the quality of the prediction of patient survival from patient
specific covariates by the model, we compute the logarithmicscore for the prediction
of ten-year survival (in terms of three-month follow-up times), given covariatesyi:

Ssurvival = −
N
∑

i=1

logP (survivali(0 : 40) | yi) . (6.5)

We compare this score with the score of a PH model (Cox, 1972; Cox and Oakes,
1984):SPH

survival, where baseline hazard and coefficients were estimated fromdata. The
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variable age was discretized intoage< 58 andage> 58, with 58 being the average
age of patients in the database, and an imputation scheme wasused that imputed
missing values based on their prior probability, since the large number of missing
values caused numerical instability of the algorithm. The obtained coefficients are
shown in Table 6.6.

Table 6.6: Estimated coefficientsθ of the PH modelSPH
survival.

Variable Coefficient Variable Coefficient
gender(0) 0.8660 bowel obstruction(0) 0.5314
age(0) 1.0454 hepatic metastases(0) −0.3146
5-hiaa(0) 0.0043 octreoscan(0) 1.2103
cga(0) 0.7091 mibgscan(0) −0.3952
diarrhea(0) 0.3371 primary localization(0) −0.1812
flushing(0) −0.5039 mesenterial fibrosis(0) −1.2263

Note that some of the coefficients are negative, which indicates that, contrary to
expectations, the presence of that particular “risk factor” is beneficial for patient sur-
vival according to the databaseD. The computation of Eq. (6.5) for the PH model
needs to take into account that there are missing values for some patient cases. Fur-
thermore, in order to compare with the carcinoid model, we look at discrete times
t ∈ {0, . . . , 40}. Let si

t = 1survivalit=yes
and s̄i

t = 1 − si
t. We use the following

equation, as an estimate of the logarithmic score for the PH model:

SPH
survival = −

N
∑

i=1

log

40
∏

t=0

(

1s̄i
t + (−1)s

i
t

∑

zi

S0(t)
exp (θyi)P (zi)

)1−ci
t

whereci(t) = 1 (ci(t) = 0) indicates that patienti is censored (uncensored) at time
t, andzi are instantiations of variablesZi ⊆ Yi that have missing values for patient
i. The contribution of each such instantiation is weighted byits prior probability in
the database under the assumption that missing covariates are independent. For the
carcinoid model, we simply instantiate the covariatesyi for which values are known,
and compute

Ssurvival = −

N
∑

i=1

log

40
∏

t=0

P (survivali(t) | yi)1−ci
t

using particle filtering with 3 000 particles. As a result, wehave found thatSPH
survival =

1.190 · 103 andSsurvival = 1.229 · 103, which gives a Bayes factor of1.155 · 10−17

that is significantly in favour of the PH model.
We remark that the PH model did have the advantage that its parameters were

learnt from the data on which it was tested, whereas the carcinoid model is fully
estimated from expert knowledge. Furthermore, although the carcinoid model is out-
performed by the PH model in this respect, the carcinoid model has the advantage that
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(1) it can make use of evidence that becomes available over time, (2) it may answer
other types of queries, such as the expected cause of death, or the expected future
treatment, and (3) since the carcinoid model is an explicit causal model of disease
progression, the drawn conclusions are more understandable. These features consi-
derably improve both the quality and detail of the prognosis, as will be demonstrated.

6.3.3 Patient specific predictions

In this section, we intend to show that having an explicit model of medical domain
knowledge at ones disposal has additional benefits that cannot be obtained by means
of standard proportional hazards models. In order to demonstrate this, we focus on
individual patients where data about these patients, as taken from the database, is
supplemented with more specific clinical evidence as found in the physician’s paper
records.

Patient A

Patient A is a 70 year old male that came into the hospital witha small-bowel tu-
mor and some health-related problems. The patient had elevated 5-hiaa levels, and
suffered from diarrhea, flushing, and obstruction, but it was found that the patient
was free from hepatic metastases and other malignancies. There was no indication
of carcinoid heart disease, and both the octreoscan and mibgscan were positive. The
patient eventually died of wasting five years and two months after admission.
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Figure 6.19: Predictions of patient A’s health.
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The predictions of the carcinoid model as well as the PH modelfor patient health
are shown in Fig. 6.19. According to the carcinoid model, thepatients starts with
an ambulatory health status, where over time the chance of needing nursing care
first increases and then decreases since the patient’s chance of dying increases. In
contrast, the PH model can only predict the probability of patient death over time and
due to the negative contribution of the covariates an unrealistically high probability
of patient death is assigned.

During hospitalization, the patient was given several treatments. He received
bowel resection at admission due to obstruction. After ten months, farmacological
somatostatin treatment was initiated due to the development of serotonin-producing
metastases. Thirteen months after admission, the patient received farmacological
MIBG for four months since deteriorations in health precluded other treatments. Af-
ter three years and nine months, the patient received another bowel resection due to
the development of mesenterial fibrosis.
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Figure 6.20: Predictions of treatment for patient A.

Figure 6.20 depicts the predictions of the carcinoid model for the treatments
which patient A will receive. We condition here on the evidence that is present
during admission, and on observations that are made over time; namely, the deve-
lopment of serotonin-producing metastases after one year (which we take here to be
hepatic metastases), a deterioration in health after 18 months, and the development of
mesenterial fibrosis after 45 months. The figure is in accordance with the physician’s
expectations. At admission, the model suggests bowel resection with high probabi-
lity. This probability drops to zero at 18 months (since health has deteriorated), and
shows a small increase at 45 months (due to the development ofmesenterial fibro-
sis). The model also predicts that farmacological somatostatin is administered early
on and continued indefinitely. Finally, the probability that farmacological MIBG is
administered increases when it is found that health has deteriorated.
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Figure 6.21:Predictions of tumor response and biochemical response forpatient A.

If we instantiate the projected treatment for this patient,then we can examine
the predicted tumor response and biochemical response (Fig. 6.21). Both for tumor
and biochemistry, the model predicts an initial stabilization, which over time has a
higher chance of becoming progressive. This is in agreementwith the physician’s
expectation, although progression was expected to occur more rapidly.

Patient B

Patient B is a 59 year old male that came into the hospital witha small-bowel tumor,
all the symptoms of carcinoid syndrome, and minor health-related problems. It was
found during admission that the patient suffered from cardiac valve thickening to-
gether with moderate fibrosis as well as mesenterial fibrosis. The patient eventually
died fourteen months after admission due to complications after cardiac surgery at
thirteen months. An important question, would be to determine at admission time
the probability that the patient will receive cardiac surgery. Figure 6.22 depicts this
probability for the coming five years, and shows that this probability is at a reasonably
high level after thirteen months.
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Figure 6.22: Predicting cardiac surgery for patient B.

Next to predicting future patient health and projected treatments, we may em-
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Figure 6.23: Comparing survival of patient B given cardiac surgery and nocardiac surgery.

ploy the model in order to distinguish between different scenarios. For instance, for
a patient that has developed carcinoid heart disease after one year, we may compare
the expected course of events in case the patient receives cardiac surgery between
twelve and fifteen months with the expected course of events in case the patient
never receives cardiac surgery. This comparison is shown inFig. 6.23 and moti-
vates the physician’s choice of performing cardiac surgerysince this is expected to
improve long-term survival. However, the figure also shows that performing this type
of surgery may lead to patient death in a minority of cases and, unfortunately, patient
B also died after surgery. The sudden increase in survival probability after one year
is implied by the treatment which the patient received at that time. The PH model
is unable to distinguish between the treatment and no-treatment conditions and its
estimate is located in between both scenarios.

With respect to mesenterial fibrosis, the model predicts that there is a 78% chance
that bowel resection is immediately performed. It was foundhowever that the patient
did not receive such a surgical intervention. After some deliberation with the physi-
cian, it was found that the operationalization of mesenterial fibrosis in the model
differed from that in the database. In the model, the presence of mesenterial fibrosis
indicates severe fibrosis, which warrants the intervention, whereas in the database,
presence of mesenterial fibrosis also indicates mild fibrosis, which does not warrant
such an intervention.
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Patient C

Patient C is a 68 year old male of which the primary localization is unknown. He
came in with extreme CgA levels, no signs of the carcinoid syndrome or other ma-
lignancies, and only minor health problems. The patient hada negative octreoscan
and a positive mibgscan. After five months the patient started to receive farmaco-
logical somatostatin. From eleven to fifteen months, the patient received interferon.
After fourteen months, it was found that the patient had elevated NT-pro-BNP levels.
Currently, seventeen months after diagnosis, the patient starts to receive radiolabeled
MIBG. The patient remains alive today, and we wish to predictpatient health and
projected treatment for the next five years.
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Figure 6.24: Predicting future health of patient C.

Figure 6.24 shows the predictions for patient health. Note that at seventeen
months, the carcinoid model predicts that the patient either has mild complaints, or
is ambulatory, since treatment with radiolabeled MIBG requires an acceptable health
status. Over time, the probability of being in these states decreases, and the probabili-
ty of requiring nursing care/dying increases. Five years later, the patient is predicted
to have a 34% chance of remaining alive. Note that, similar topatient A, the PH
model assigns an unrealistically high probability of patient death due to the negative
influence of the covariates.

Even if NT-pro-BNP levels were elevated, the model assigneda low probability
to the development of carcinoid heart disease. This is consistent with the physician’s
expectations, since diarrhea and flushing were absent at time of admission (indicating
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that CHD due to elevated serotonin levels is unlikely), and no cardiac surgery was
performed immediately after elevated NT-pro-BNP levels were noticed. The model
also assigned low probabilities to the development of othercomplications such as a
crisis or mesenterial fibrosis, and therefore did not require treatments specific to these
complications.
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Figure 6.25: Predicting future MIBG treatment of patient C.

For f-soma treatment, the data in the database is not consistent with the model;
since the octreoscan of the patient is negative, the model predicts that farmacological
somatostatin is not administered. In reality the patient was given this treatment since
his condition at that time precluded other treatment. Upon entering this evidence, the
model responds by giving no biochemical or tumor response, which is in accordance
with the observed progressive disease of the patient, and bythe discontinuation of
this treatment for the remaining time slices. For the same reason, the model predicts
that radiolabeled octreotide will not be administered in the future. The only remain-
ing applicable systemic treatments are then radiolabeled MIBG and farmacological
MIBG, the predictions of which are shown in Fig. 6.25. The figure shows that the
patient has a chance of receiving radiolabeled MIBG once more, where this chance
is smeared out over a longer period, since patient health should be acceptable. The
patient also has a small chance of receiving farmacologicalMIBG at each time slice,
since this does not require any conditions other than a normal blood pressure.

6.4 Discussion

In this section, the results which have been obtained from this study are discussed.
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6.4.1 Quality of the carcinoid model

In Section 6.3.2, the prior model has been shown to be of better quality than a refe-
rence model with uniform posteriors in terms of logarithmicscore. The validation
results for the transition model have shown that the carcinoid model, as constructed
from expert knowledge, is outperformed by the proportionalhazards model, in terms
of logarithmic score with respect to patient survival. It isfound that predictions by the
carcinoid model are miscalibrated in the sense that survival is often overestimated,
which is in accordance with the general observation that physicians tend to overes-
timate patient survival (Glare et al., 2003; Christakis andLamont, 2000). Since the
carcinoid model is a prototype, we expect that predictive performance can be im-
proved by refining the model and its probability estimates.

An advantage of the carcinoid model is that it is not restricted to the evidence
variables that are known at admission, since it allows for the inclusion of evidence
that becomes available as a patient progresses. This leads to more accurate predic-
tions, as was demonstrated in Section 6.3.3. Another advantage of the carcinoid
model is that it may answer queries other than patient survival, such as expectations
regarding the cause of death, health status, projected treatment, and treatment effects.
In fact, with minor modifications, the carcinoid model couldalso be used for patient
monitoring (comparing expected and observed patient status) or treatment selection.
Finally, the carcinoid model can explain its predictions interms of a semantics that
captures cause-effect relations between domain variables.

6.4.2 Characteristics of the carcinoid database

Since the treatment protocol for carcinoid tumors is still under development, the
database included sequences of treatments that were impossible according to the
model. Furthermore, some treatments that were present in the database are no longer
used in clinical practice. For instance, chemotherapy is currently considered too ag-
gressive as a treatment option for low-grade carcinoid patients. Also, sometimes the
operationalization of variables in the database was not clear, as was the case with
mesenterial fibrosis, and abdominal pain, which was excluded for this reason. Addi-
tionally, Table 6.6 shows that the presence of some risk factors had a positive effect
on patient survival in the database. The presence of mesenterial fibrosis, for instance,
had a very strong positive effect on patient survival, and was in fact the strongest
effect found. Clearly, this does not match with the carcinoid model, which predicts
that mesenterial fibrosis has a negative effect on patient survival.

6.4.3 Encountered difficulties

Even though this prototype has demonstrated that disease progression for complex
domains can be modeled succesfully by means of dynamic Bayesian networks, there
are also some lessons to be learned from this study. During the development of the
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structure of the carcinoid model, it was found that sometimes, the physician had dif-
ficulty in determining the causal structure of the domain. For example, in the early
stages of modeling, a negative octreoscan (absence of tumormass on the scan) was
associated with anegativeeffect on patient survival as based on clinical expertise.
Later on, when the causal structure of the domain was made explicit, it became clear
that a negative scan implies that radiolabeled somatostatin cannot be given as treat-
ment, therefore reducing the chances of survival. At these early stages of modeling,
it was clearly hard for the physician to structure the domain, which frequently led to
the claim thateverything is connected to everything. However, as domain variables
became consolidated, the task became easier; especially when pathophysiology was
distinguished from the treatment protocol, and modeling focused on individual sub-
models for the various complications. Another problem thatwas encountered is that
sometimes the physician was unsure of certain (in)dependencies. For example, the
formation of mesenterial fibrosis is still under debate, thereby making model con-
struction and parameter estimation difficult.

During the estimation of probabilities, it was found that the physician was not
very sure about the point estimates that she provided. Therefore, it might have
been advisable to model the physician’s uncertainty explicitly in terms of hyper-
parameters, although this would also have increased model complexity considerably.
Various kinds of biases have also been observed during the estimation process. For in-
stance, the physician sometimes claimed initially that some events never occur (while
in reality they had a small chance of ocurring) or always occur (while in reality they
had a small chance of not occurring). It seemed to be the case that the physician con-
ditioned her estimates on the average situation, without taking into account possible
exceptions. The physician also noticed that she tended to base her estimates more
strongly on patients that stood out in one sense or another. These are examples of
theavailability heuristic(Tversky and Kahneman, 1973). Another observed bias was
therecency effect(Atkinson and Shiffrin, 1971), where knowledge about patients that
were seen most recently was used disproportionally for belief estimation.

Sometimes, difficulties arose due to the discretization of continuous variables. As
a simple example, consider the variableage. By modeling age progression by means
of a small probability that patients advance one discrete state at a time (e.g., from
50-60to 60-70and from60-70to 70-80), we have the bizarre effect that a very small
patient group ends up in much older age groups after a few time-slices. Although we
can still approximate the effect of age on patient survival to a reasonable degree, this
behavior is clearly undesirable.

A general problem that was encountered is the fact that carcinoid disease as a
whole is still not well-understood and disease progressionis subject to much varia-
tion, which made model construction a difficult task. Also, due to the highly com-
plex pathophysiology of carcinoid tumors, and the large number of treatments that
are used, model complexity grew considerably, leading to a long development time.
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6.5 Summary

In this chapter, we have demonstrated that prognostic models can be constructed
with dynamic Bayesian networks that take causal, temporal,and decision-making
characteristics into account. Although the more realisticcarcinoid model does not
achieve the quality in terms of logarithmic score that was obtained by a proportional
hazards model that was learnt from data, this performance could be improved by
subsequent model refinement. The carcinoid model also has additional benefits, such
as the incorporation of evidence over time, the possibilityto answer different queries,
and an explicit representation of the problem domain. It is our hope that the discussed
carcinoid model demonstrates the potential of probabilistic models in medicine, and
guides the future development of other clinical decision support systems.





Chapter 7

Bayesian Classifiers for
Clinical Decision Support

The problem of representing and reasoning with medical knowledge has attracted
considerable attention during the last decades. In particular, ways of dealing with
the uncertainty involved in medical decision making has been identified again and
again as one of the key issues in this area and Bayesian networks are nowadays con-
sidered as standard tools for representing and reasoning with uncertain biomedical
knowledge (Lucas et al., 2004). However, although possible, manually constructing
a Bayesian network for a realistic medical domain is a laborious and time-consuming
task.

Another approach to the construction of Bayesian networks is to learn the struc-
ture and parameters of a Bayesian network from data (Cooper and Herskovits, 1992;
Buntine, 1994; Heckerman et al., 1995; Bouckaert, 1995). Parameters can be effi-
ciently computed as the maximum likelihood estimates of theparameters given the
data, but learning the correct graph structure requires a search in the space of possi-
ble acyclic directed graphs which grows superexponentially with the number of nodes
(Robinson, 1973; McKay et al., 2004), and exhaustive searchis therefore generally
infeasible.

One approach to the problem of learning a Bayesian network from data is to
search for an optimal graph structure in a restricted searchspace. Although the re-
sulting Bayesian networks are not expected to represent thejoint probability distribu-
tion over random variables accurately, they may still be used for computing a MAP
estimatex∗ = arg maxx P (x | y) as long as the (possibly inaccurate) estimate of
P (x∗ | y) exceeds the estimate ofP (x | y) for all x 6= x∗. If we regardx to be
a class assignment based on the available evidencey then this approach can be in-
terpreted as solving a classification problem. Since we use inference in a Bayesian
network with a restricted graph structure in order to solve the classification problem,
we will call these networks Bayesian classifiers. One example of Bayesian classifiers

This chapter is based on (van Gerven and Lucas, 2004a; van Gerven, 2007b; van Gerven et al.,
2007a; van Gerven and Lucas, 2007).
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are the naive Bayes classifier (Duda and Hart, 1973), where evidence variables are
assumed to be conditionally independent given the class variable.

Classification is an important concept in current medical practice. The (differen-
tial) diagnosis of disease, the selection of appropriate treatment, and the prediction
of patient survival can all be cast in a framework that selects the correct class from
a set of possible classes given observed patient data. In case of Bayesian classifica-
tion, each class has an associated posterior probability that represents the belief in
that particular class. In this chapter, we focus on Bayesianclassification for clini-
cal decision support, and address three different Bayesianclassification methods. In
Section 7.1 we describe themaximum mutual informationalgorithm and its applica-
tion to the diagnosis of liver disease. The aim here is to learn classifier structures
that retain some of the (in)dependence structure that holdsbetween variables in the
domain. In Section 7.2 we developtensor decompositionsas a novel Bayesian classi-
fication technique and show that it performs well for the diagnostic problem that has
already been addressed in Section 7.1. In Section 7.3 we analyze the semantics and
performance of thenoisy-thresholdclassifier (Jurgelenaite and Heskes, 2006) in the
context of a prognostic problem in clinical oncology. We endwith conclusions about
our research in Section 7.4.

7.1 Maximizing mutual information

Bayesian classifiers are a valuable tool for the automation of clinical tasks. However,
most Bayesian classifiers place very heavy restrictions on the form of the under-
lying Bayesian network structure. The naive Bayes classifier, for instance, allows
no freedom in the graph structure. These constraints disallow many (in)dependence
statements, such as the encoding of higher-order dependencies, where theorder of
a dependency is the size of the conditioning setπ(X) of the conditional probability
P (X | π(X)) associated with the dependency (van Dijk et al., 2003). Furthermore,
the constraints lead to classifier structures which may be unintelligible to the physi-
cian. It is felt that intelligible classifier structures mayincrease the acceptance of the
use of Bayesian classifiers in medical practice because of animproved accordance
with a physician’s domain knowledge. Classifier performance will also benefit from
such an agreement, since the physician may now aid in identifying counter-intuitive
(in)dependence statements.

Alternative classification algorithms have been devised that focus on lifting the
independence assumptions of the naive Bayes model (Spiegelhalter and Knill-Jones,
1984). The tree-augmented naive (TAN) classifier (Friedmanet al., 1997) repre-
sents correlations between evidence variables as arcs between evidence variables in
the form of a tree, the forest-augmented naive (FAN) classifier generalizes the TAN
classifier by representing correlations between evidence variables as a forest of trees
(Sacha et al., 2002; Lucas, 2004), and the limited-dependence classifier (Sahami,
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1996), allows each evidence variable to havek incoming arcs, wherek is chosen
beforehand.

In this section, we introduce a new algorithm to construct Bayesian network clas-
sifiers. This so-calledmaximum mutual information(henceforth MMI) algorithm
builds a structure which favors those features showing maximum (conditional) mu-
tual information and resembles the limited-dependence classifier in the sense that
evidence variables are allowed to have multiple incoming arcs. Next to the problems
arising from constraints on classifier structure, Bayesianclassifiers perform poorly in
the face of small databases. (In)dependence statements mayhave only little support
from the database (in terms of number of records) and yet are encoded within the
classifier structure. The MMI algorithm incorporates a solution by making use of a
heuristic during structure learning which penalizes quantities that are estimated from
few data samples.

Structure learning algorithms that use information-theoretical measures such as
mutual information are known asconstraint-basedalgorithms. They have been re-
searched extensively in the context of learning arbitrary Bayesian network structures
(Cheng et al., 2002; Spirtes et al., 1993; Chickering and Meek, 2006). In contrast, in
this research we do not aim to build arbitrary Bayesian network structures, but instead
aim to build a structure learning algorithm for Bayesian classifiers that provides a ba-
lance between the complexity issues associated with general structure learning algo-
rithms and the highly restrictive structural assumptions of classifier structure learning
algorithms. In order to determine the performance of the MMIalgorithm we make
use of a clinical dataset of hepatobiliary (liver and biliary) disorders, the reputation of
which has been firmly established. Classification accuracy of the algorithm is com-
pared with that of an existing system for diagnosis of hepatobiliary disorders, as well
as with that of FAN classifiers, of which the naive Bayes classifier and TAN classifier
are special cases.

7.1.1 Probabilistic classification

One way to determine the performance of a Bayesian classifieris to compute its
classification accuracy. LetD be a dataset consisting ofN cases and letck be the
value of the class variableC given thek-th exampleek. Theclassification accuracy
is defined as the percentage of correctly classified cases:

η(D) =
1

N

N
∑

k=1

(

1− L(ek)
)

× 100% , (7.1)

whereL(ek) is theloss function, which equals zero ifarg maxc{P (C=c |E=ek)}
= ck and equals one otherwise.

In order to assess the classification accuracy of the MMI algorithm, we com-
pare it with the classification accuracy of the forest-augmented naive (FAN) classi-
fier (Fig. 7.1). A FAN classifier is a modification of the tree-augmented naive (TAN)
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CE1 Em

E2 · · ·

Figure 7.1: A forest-augmented naive (FAN) classifier. For each evidence variableEi there
is at most one incoming arc allowed fromE \ {Ei} and exactly one incoming arc from the
class variableC. Both the naive classifier and the tree-augmented naive classifier are extreme
cases of the forest-augmented naive classifier

classifier, where the topology of the resulting graph over evidence variables is re-
stricted to a forest of trees (Lucas, 2004). The algorithm toconstruct FAN classifiers,
that is used in this chapter, is based on a modification of the algorithm to construct
TAN classifiers (Friedman et al., 1997), where the conditional mutual information, as
computed from a datasetD, is used to build a minimum cost spanning tree between
evidence variablesE = {E1, . . . , Em}.

7.1.2 The maximum mutual information algorithm

The maximum mutual information algorithm is a classifier construction algorithm
that is less restrictive than the discussed FAN algorithm. It uses both the computed
mutual information between evidence variables and the class-variable, and the com-
puted conditional mutual information between evidence-variables as a basis for con-
structing a Bayesian classifier. The mutual information (MI) between an evidence
variableE and the class-variableC is given by:

I(E,C) =
∑

e,c

P (e, c) log
P (e, c)

P (e)P (c)
, (7.2)

whereas the conditional mutual information between evidence variables, given other
evidence variables and/or the class variable is given by:

I(E,E′ | A) =
∑

e,e′,a

P (e, e′,a) log
P (e, e′ | a)

P (e | a)P (e′ | a)
(7.3)

with A ⊂ E∪{C}. Contrary to naive and TAN classifiers, the MMI algorithm makes
no assumptions about the initial network structure. It starts from a fully disconnected
graph, whereas the FAN algorithm starts with a naive classifier structure such that
(C,E) ∈ A(G) for all evidence variablesE ∈ E. Since redundant attributes are
not encoded, network structures are sparser, at the same time indicating important
information about independence between class and evidencevariables. In this sense,
the MMI algorithm can be said to resembleselective Bayesian classifiers(Langley
and Sage, 1994). The algorithm iteratively selects the arc with highest (conditional)
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mutual information from the set of candidates and adds it to the Bayesian network
B = (G,P ). It starts by computingI(C,E) for the setS = E. From this set,
the evidence variableE having highest mutual information with the class variable
C is selected. This candidate is removed fromS and(C,E) is added to the arcs in
G. Subsequently, it will construct all candidates of the form(E′, E) and add them
to (an initially empty) setA if E′ was added later toG thanE. The conditional
mutual informationI(E′, E | π(E)) is computed for these candidates. Now, the
algorithm iteratively selects the candidate ofS ∪A having the highest (conditional)
mutual information. If a candidate(E′, E) ∈ A is chosen, thenI(E′′, E | π(E)) is
recomputed for all pairs(E′′, E) ∈ A, since the parent set ofE has changed. By
directing evidence arcs to attributes that show high mutualinformation with the class
variable, we enforce that the resulting graph remains directed and acyclic. The full
algorithm is shown in Algorithm 7.1.

Algorithm 7.1 MMI construction algorithm.
input: empty graphG, databaseD,

class variableC, evidence variablesE, number of required arcsM
S← E

A← an initially empty set of pairs of evidence variables
for i = 0 toM do

letE = arg maxE′∈S {I(C,E
′)}

let (E1, E2) = argmax(E′,E)∈A {I(E
′, E | π(E))}

if I(C,E) > I(E1, E2 | π(E2)) then
S← S \ {E}
A(G)← A(G) ∪ {(C,E)}
for all E′ ∈ S do

A← A ∪ {(E′, E)}
end for

else
A(G)← A(G) ∪ {(E1, E2)}
A← A \ {(E1, E2)}

end if
end for
return G

Figure 7.2 shows an example of how the algorithm builds a Bayesian classifier
structure. The final structure incorporates feature selection, orientation of arcs in
the direction of evidence variables that show high mutual information with the class
variable, and the encoding of a third-order dependencyP (E2 | C,E1, E3).

Looking back at Eq. (7.3) a possible complication is identified. Since the set
π(E) of an evidence variableE may grow indefinitely and the number of parent con-
figurations grows exponentially withn, the network may become victim of its own
unrestrictedness. Note that since one has a finite (and oftensmall) database at ones
disposal, this means that the actual conditional probability P (E | π(E)) will become
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Figure 7.2: An example of the MMI algorithm building a Bayesian classifier structure from
the top left to the bottom right with dashed arrows representing candidate dependencies.

increasingly inaccurate when the number of parents grows; configurations associated
with large parent-sets cannot be reliably estimated from moderate size databases,
introducing what may be termedspurious dependencies. In order to prevent the oc-
currence of spurious dependencies, we make use of the following heuristic. We use

P̃ (E,E′ | a) =
Na

Na + β
P (E,E′ | a) +

β

Na + β
P (E | a)P (E′ | a) (7.4)

as the expression for the conditional probability ofE andE′ given thatA = a,
during the computation of conditional mutual informationaccording to Eq. (7.3). In
Eq. (7.4),Na is the number of times the configurationa occurs inD, andβ is a
parameter that we choose asβ = 500 throughout our experiments, unless indicated
otherwise. P (E,E′ | a), P (E | a), andP (E′ | a) are computed fromD and
smoothed using Laplace smoothing. This heuristic ensures that the conditional mu-
tual information computed according to Eq. (7.3) will be small when the number of
occurrencesNa of the conditioning case is small, since, in the limitNa → 0, we
obtain

I(E,E′ | A) =
∑

e,e′,a

P (e, e′,a) log
P̃ (e, e′ | a)

P (e | a)P (e′ | a)

=
∑

e,e′,a

P (e, e′,a) log
P (e | a)P (e′ | a)

P (e | a)P (e′ | a)
= 0.

7.1.3 The COMIK dataset

In order to validate classifier performance we made use of theCOMIK dataset, which
was collected by the Copenhagen Computer Icterus (COMIK) group and consists of
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data on 1002 jaundiced patients. The COMIK group has been working for over a
decade on the development of a system for diagnosing liver and biliary disease which
is known as the Copenhagen Pocket Diagnostic Chart (Malchow-Møller et al., 1986).
Using a setE of 21 evidence variables, the system classifies patients into one of
four diagnostic categories:acute non-obstructive, chronic non-obstructive, benign
obstructiveandmalignant obstructive. The chart offers a compact representation of
three logistic regression equations, where the probability of acute obstructive jaun-
dice, for instance, is computed as follows:P (acute obstructive jaundice| E) =
P (acute| E) · P (obstructive| E). The performance of the system has been studied
using retrospective patient data and it has been found that the system is able to pro-
duce a correct diagnostic conclusion (in accordance with the diagnostic conclusion
of expert clinicians) in about75− 77% of jaundiced patients (Lindberg et al., 1987).

7.1.4 Classification results and network interpretation

In this section we will demonstrate the usefulness of theβ parameter that was intro-
duced in Eq. (7.4), compare the classification performance of both the FAN and MMI
classifiers on the COMIK dataset and give a medical interpretation of the resulting
structures.

Table 7.1: Effects of varying parameterβ for a model consisting of30 arcs.

β η(D) F(B) β η(D) F(B) β η(D) F(B)

1 74.75 % 87 102 75.95 % 65 800 76.25 % 59
4 74.75 % 77 290 75.95 % 63 900 76.25 % 59
36 74.85 % 71 610 75.95 % 61 2000 76.25 % 57
56 75.15 % 67 660 76.25 % 61

First we present the results of varying the parameterβ in order to determine
whether this has an effect on the classification performanceand network structure
of our classifiers. To this end, we focused on a Bayesian classifier B = (G,P )
that allows 30 arcs (the parameterM in Algorithm 7.1). For this classifier, we have
determined the classification accuracy, and summed squaredfan-in

F(B) =
∑

i∈V (G)

|π(i)|2 ,

where|π(i)| denotes the cardinality of the parent set of a vertexi. Table 7.1 clearly
shows that the summed squared fan-in decreases whenβ increases; indicating that
spurious dependencies are removed. This removal also has a beneficial effect on the
classification accuracy, which rises from74.75% for β = 1 to 76.25% for β = 660.

We have compared the performance of the MMI algorithm with that of the FAN
algorithm, using leave-one-out cross-validation, usingβ = 500. Figure 7.3 shows
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Figure 7.3: Classification accuracy for Bayesian classifiers with a varying number of arcs
learnt using the FAN algorithm or the MMI algorithm for the COMIK dataset.

that both algorithms perform comparably and within the bounds of the Copenhagen
Pocket Diagnostic Chart. Both algorithms show a small performance decrease for
dense network structures, which may be explained in terms ofoverfitting artifacts.
Maximal classifier accuracy for the MMI algorithm is76.65% for a network of19
arcs versus76.45% for a network of27 arcs for the FAN algorithm.

In terms of classifier structure, one can observe that both algorithms represent
similar dependencies, with the difference that those of theMMI algorithm form a
subset of those of the FAN algorithm. The best FAN classifier has a structure with
an arc from the class variable to every evidence variable andthe following arcs
between evidence variables:biliary-colics-gallstones→ upper-abdominal-pain→
leukemia-lymphoma→ gall-bladder, history-ge-2-weeks→ weight-loss, ascites→
liver-surfaceandASAT→ clotting-factors. The MMI algorithm has leftleukemia-
lymphoma,congestive-heart-failureandLDH independent of the class-variable and
shows just the dependencyliver-surface→ ascitesbetween evidence variables.

Given our aim of learning Bayesian classifiers that not only display good clas-
sification performance, but are comprehensible to medical doctors as well, we have
carried out a qualitative comparison between two of the Bayesian networks learned
from the COMIK data: Figure 7.4 shows a FAN classifier which was learned using
the FAN algorithm described previously (Lucas, 2004), whereas Figure 7.5 shows an
MMI network with the same number of arcs. Clearly, the restriction imposed by the
FAN algorithm that the arcs between evidence variables forma forest of trees does
have implications with regard to the understandability of the resulting networks. Yet,
parts of the Bayesian network shown in Figure 7.4 can be givena clinical interpreta-
tion. Similar remarks can be made for the MMI network, although one would hope
that giving an interpretation is at least somewhat easier.
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Figure 7.4: Arcs between evidence variables for a FAN classifier containing 41 arcs. The
class variable was connected with all evidence variables (not shown).
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Figure 7.5: Arcs between evidence variables for an MMI classifier containing 41 arcs. The
class variable was connected with all evidence variables (not shown).

If we ignore the arcs between the class vertex and the evidence vertices, there are
20 arcs between evidence vertices in the FAN and 22 arcs between evidence vertices
in the MMI network. Ignoring arc orientation, 9 of the arcs inthe MMI network are
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shared by the FAN classifier. As the choice of the direction ofarcs in the FAN is ar-
bitrary, it is worth noting that in 4 of these arcs the direction is different; in 2 of these
arcs it is medically speaking impossible to establish the right direction of the arcs,
as hidden variables are involved, in 1 the arc direction is correct (congestive-heart-
failure→ ASAT), whereas in the remaining arc (GI-cancer→ LDH) the direction is
incorrect. Some of the 13 non-shared arcs of the MMI network have a clear clinical
interpretation. For example, the arcsGI-cancer→ ascites, congestive-heart-failure
→ ascitesandGI-cancer→ liver-surfaceare arcs that can be given a causal inter-
pretation, as gastrointestinal (GI) cancer and right-heart failure do give rise to the
accumulation of fluid in the abdomen (i.e. ascites), and liver metastases due to GI
cancer may change the liver surface. Observe that the multiple causes of ascites
cannot be represented in the FAN due to its structural restrictions. The pathgall-
bladder→ intermittent-jaundice→ fever in the MMI network offers a reasonably
accurate picture of the course of events of the process giving rise to fever; in con-
trast, the situation depicted in the FAN, whereleukemia-lymphomaacts as a common
cause, does not reflect clinical reality. However, the arc from upper-abdominal-pain
to biliary-colics-gallstonesin the FAN, which is correct, is missing in the MMI net-
work. Overall, the MMI network seems to reflect clinical reality somewhat better
than the FAN, although not perfectly.

7.2 Decomposed tensor classifiers

In this section, we present a novel probabilistic classification technique which is
based on the decomposition of a multiway array, also known asa tensor(de Lath-
auwer, 1997), by means of a set of components, often taking the form of vectors.
We call classifiers that use this techniquedecomposed tensor classifiers, and test
their performance by means of a database that contains data about 1002 patients that
present with hepatic disease. The goal is to diagnose the correct disease for each of
the patients from a set of four distinct diseases. The performance of this new tech-
nique is analyzed and compared with the performance of the naive Bayes classifier
(Maron, 1961).

We proceed as follows. In Sections 7.2.1 and 7.2.2 the theoretical background
of tensors and their decompositions is described. Subsequently, in Section 7.2.3, we
address how tensor decompositions can be used for probabilistic classification. The
clinical database and the techniques used to evaluate classification performance are
described in Section 7.2.5. We end with an analysis of the experimental results in
Section 7.2.6.

7.2.1 Tensors

A tensor is a concept taken from multilinear algebra which generalizes the concepts
of vectors and matrices, and is defined as follows.
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Definition 7.1. Let I1, . . . , IN ∈ N denote index upper bounds. AtensorA ∈
R

I1×···×IN is an N-way array where elementsai1···in are indexed byij ∈ {1, . . . , Ij}
for 1 ≤ j ≤ N .

We callN theorder of a tensor, such that a tensor of order one denotes a vector
a ∈ R

I1, and a tensor of order two denotes a matrixA ∈ R
I1×I2. Thenth modeof a

tensor refers to thenth dimension of a tensor. A tensor can be expressed in terms of
a matrix using the concept of a matrix unfolding.

Definition 7.2. Thematrix unfoldingA(j) ∈ R
Ij×(Ij+1Ij+2···INI1I2···Ij−1) of anN th

order tensorA ∈ R
I1×···×IN is the matrix that has elementai1···iN at row numberij

and column number
1 +

∑

1≤k≤N
k 6=j

(ik − 1)
∏

k+1≤m≤N
m6=j

Im .

Example 7.1. The matrix unfoldingA(2) of a third-order tensor

A =

(

(a, b)T (c, d)T

(e, f)T (g, h)T

)

is given byA(2) =

(

a b e f
c d g h

)

.

A tensor may be multiplied by a matrix by means of then-mode product.

Definition 7.3. Then-mode productA×nB of a tensorA ∈ RI1×···×IN and a matrix
B ∈ R

JN×IN , is a tensorC ∈ R
I1×···×In−1×Jn×In+1×···×IN with elements:

ci1···in−1jnin+1···iN =
∑

in

ai1···iN bjnin .

Example 7.2. Let A be a third-order tensor as in example 7.1 and letB denote a
square matrix withb11 = u, b12 = v, b21 = w, b22 = x. The 2-mode productA×2B

is then given by

(

(a(u+ v), b(u + v))T (c(w + x), d(w + x))T

(e(u+ v), f(u+ v))T (g(w + x), h(w + x))T

)

.

We also define, for tensorsA,B ∈ R
I1×···×IN , theinner product

〈A,B〉 ≡
∑

i1,...,iN

ai1···iN bi1···iN

and Frobenius norm||A|| ≡
√

〈A,A〉. The outer productA ◦ B of two tensors
A ∈ R

I1×···×In andB ∈ R
J1×···×Jn is defined as the tensorC ∈ R

I1×···×In×J1×···×Jn

such thatci1···inj1···jn = ai1···in · bj1···jn for all elements ofC. The rank of a tensor is
then defined as follows (Håstad, 1990).
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Definition 7.4. A tensor of orderN has rank one if it can be written as an outer
producta(1) ◦ · · · ◦ a(N) of vectors. The rank of a tensorA is defined as the minimal
number of tensorsA1, . . . ,AK of rank one such that

A =
K
∑

k=1

Ak . (7.5)

Example 7.3. The third-order tensor

A =

(

( 6,−3)T ( 8,−4)T

(−12, 6)T (−16, 8)T

)

has rank one since it can be written as the outer product of(1,−2)T , (3, 4)T , and
(2,−1)T .

7.2.2 Tensor decompositions

Equation (7.5) is known as arank-K decompositionof A. A more general kind of
decomposition is theTucker decomposition(Tucker, 1966), which can be interpreted
as a multilinear formulation of the singular value decomposition (de Lathauwer et al.,
2000a):

TJ(A) = C ×1 B(1) ×2 · · · ×N B(N) (7.6)

with J = (J1, . . . , JN ), core tensorC = (cj1···jN
) and matricesB(n) ∈ R

In×Jn .
Elements ofA are then computed as follows:

ai1···iN =





∑

j1,...,jN

cj1···jN
· b

(1)
i1j1
· · · b

(N)
iN jN



+ ri1···iN , (7.7)

where (ri1···iN ) denotes a residual tensorR. The parameters of the Tucker de-
composition can be found usinghigher-order orthogonal iteration(de Lathauwer
et al., 2000b). A special case of the Tucker decomposition isobtained when one as-
sumes that the core tensorC is a superdiagonal tensor withcj1···jN

= 0 if there are
u, v ∈ {1, . . . , N} such thatju 6= jv . Hence, we obtain:

ai1···iN =

(

K
∑

k=1

λk · b
(1)
i1k · · · b

(N)
iN k

)

+ ri1···iN (7.8)

for some suitably chosenK. Equation (7.8) is known as thecanonical decomposition
(Carroll and Chang, 1970), orparallel factors decomposition(Harshman, 1970). In
general, the decomposition of Eq. (7.8) is not necessarily minimal nor exact, and can
be interpreted as a sum of rank-1 approximations. One way of finding a rank-1 ap-
proximation is by means of thehigher-order power method(HOPM) (de Lathauwer
et al., 2000b), as shown in Algorithm 7.2.



7.2 Decomposed tensor classifiers 155

Algorithm 7.2 Higher-Order Power Method (HOPM).
input: A
initialize b(1), . . . ,b(N)

repeat
for n = 1 toN do

b̃(n) = A×1 b(1)T
×2 · · · ×n−1 b(n−1)T

×n+1 b(n+1)T
×n+2 · · · ×N b(N)T

λn = ||b̃(n)||
b(n) = b̃(n)/λn

end for
until convergence
return Â = λN · b

(1) ◦ · · · ◦ b(N)

The higher-order power method finds a tensorÂ = λ · b(1) ◦ · · · ◦ b(N), with
scalarλ and unit-norm vectorsb(n), 1 ≤ n ≤ N , that minimizes the least-squares
cost functionC(A, Â) ≡ ||A − Â||2. A greedy approach to finding the sum of rank-
1 terms in Eq. (7.8) is to apply the higher-order power methodto the residuals that
remain after obtaining a rank-1 approximation. This technique has been employed
successfully in Ref. (Wang and Ahuja, 2004) in order to achieve high compression
rates for image sequences. By definingA1 ≡ A andAk ≡ Ak−1 − HOPM(Ak−1)
the following rank-K approximation of a tensorA is obtained:1

RK(A) ≡

K
∑

k=1

HOPM(Ak) . (7.9)

In order to initialize matrices and vectors in Algorithm 7.2, various schemes can
be used. One approach is to repeat the algorithm for several random initializations
and to choose that decomposition which maximizes the fit between the original tensor
and the approximation. Another approach, which has proven to work well in practice,
is to choose the first dominant left singular vector of the matrix unfoldingA(j), as an
initial estimate ofb(j) (de Lathauwer et al., 2000b,a). The algorithm has converged
when the increase in fit between the tensor and its approximation that is gained after
one iteration drops below a small error criterionǫ. In the following section, we
will use decompositions of tensorsA ∈ [0, 1]I1×···×IN for the task of probabilistic
classification.

7.2.3 Classification with tensor decompositions

In this section, we focus on a multisetA = {a1, . . . ,an} that represents our data,
and where an instanceai = (xi

1, . . . , x
i
N ) consists of evidence(xi

1, . . . , x
i
N−1) and a

class labelxi
N . We assume that all variables are discrete and useIj with 1 ≤ j ≤ N

1This procedure is only guaranteed to find the optimal rank-K approximation if the tensorA is
orthogonally decomposable (Zhang and Golub, 2001).
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to denote the finite number of valuesxj of a variableXj . The basic idea is to obtain
an approximation of anincompletetensorA using a tensor decomposition. Letx

denote the evidence and letn(x, xN ) stand for the number of times(x, xN ) occurs in
A. We transformA into an incompletely specified tensorA ∈ [0, 1]I1×···×IN , such
that

ax1···xN
=

1

n
n(x, xN ) (7.10)

for all (x, xN ) for which some(x, j) with 1 ≤ j ≤ IN occurs inA. Hence,ax1···xN

is undefined for unseen evidencex (as indicated by∗), which implies that the tensor
is incomplete. The elementax1···xN

is used to represent an estimate of the joint
probability P (x, xN ). For incomplete tensors, we interpret undefined elements as
zero in Algorithm 7.2. Since zero elements have no contribution, we may use a
sparse representation of tensorsA ∈ [0, 1]I1×···×IN with very largeN , provided that
only some of the elements are defined.

Example 7.4. Consider a datasetA = {(1, 1, 1), (1, 2, 1), (1, 2, 1), (1, 2, 2),
(2, 1, 2), (1, 1, 2)}. By applying the transformation (7.10) to the example dataset,
we obtain the third-order tensor

A =

(

(1
6 ,

1
6)T (2

6 ,
1
6 )T

(0
6 ,

1
6)T (∗, ∗)T

)

.

The basic idea is then to obtain an approximation of anincompletetensorA using
a tensor decomposition. For incomplete tensors, we may use asparse representation,
by interpreting undefined elements as zero in Algorithm 7.2.Since zero elements
have no contribution, we may use tensorsA ∈ [0, 1]I1×···×IN with very largeN ,
provided that only some of the elements are defined.

Example 7.5. When applying the higher-order power method to our exemplary ten-
sor, we have the following matrix unfoldings:

A(1) =

(

1
6

1
6

2
6

1
6

0
6

1
6 ∗ ∗

)

A(2) =

(

1
6

1
6

0
6

1
6

2
6

1
6 ∗ ∗

)

A(3) =

(

1
6

2
6

0
6 ∗

1
6

1
6

1
6 ∗

)

Assuming thatb(1) = (a, b)T ,b(2) = (c, d)T , andb(3) = (e, f)T , one cycle of
Algorithm 7.2 for variableA1 would give us

b̃ =

(

1
6

1
6

2
6

1
6

0
6

1
6 ∗ ∗

)

×2 (c, d)T ×3 (e, f)T

=

(

1
6ce+ 1

6cf + 2
6de+ 1

6df
0
6ce+ 1

6cf + ∗de+ ∗df

)

=

(

1
6ce+ 1

6cf + 2
6de+ 1

6df
1
6cf

)
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with λ1 = ||b̃1|| =
√

(1
6ce+ 1

6cf + 2
6de+ 1

6df)2 + (1
6cf)2. Hence, zero and unde-

fined elements have no effect.

In case of probabilistic classification, our interest is in computing the posterior
probability P (xN | x) based on our estimate ofP (x, xN ). AlthoughP (x, xN ) is
approximated byRK(A)x1···xN

, we have no guarantee that the tensor approximation
represents a proper probability distribution for unseen evidence (which is the goal of
probabilistic classification), since the approximation may be unnormalized or even
lying outside the unit interval. Therefore, we use the following transform when com-
puting the conditional probability ofXN givenx:

P (xN | x) =
R+

K(A)x1···xN
∑

1≤j≤IN
R+

K(A)x1···xN−1j

(7.11)

where

R+
K(A)x1···xN

≡ RK(A)x1···xN
−min

{

0,min
j

(RK(A)x1···xN−1,j)

}

ensures that we sum over positive terms by making (small) negative terms non-
negative. Alternatively, a log transform together with a suitable prior may be used in
order to guarantee that we obtain a proper conditional probability distribution. How-
ever, experiments in that direction led to less optimal classification results.

We use the termdecomposed tensor classifierto denote a classifier that uses the
approximationRK(A)x1···xN

for the purpose of classification. In this chapter, we
use the rank-K approximation, although other tensor decompositions suchas the
Tucker decomposition could also be used. Furthermore, we require that variables
are discrete (or discretized a priori), and data is complete(or completed using an
imputation scheme). The classification procedure is shown in Algorithm 7.3.

Algorithm 7.3 Decomposed tensor classification.
input: Atrain, Atest, RK

transform the datasetAtrain into the tensorAtrain using Eq. (7.10)
learn the approximationRK(Atrain) using Algorithm 7.2
for all rows(x) ∈ Atest do

for j = 1 to IN do
computeP (j | x) using Eq. (7.11)

end for
assign class labelL(x) = arg maxj{P (j | x)}

end for
return class labelsL
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7.2.4 Graphical model interpretation

If the approximationRK(A)i1···iN is exact, then we may interpret a rank-K approxi-
mation in terms of a graphical model structure, as noticed in(Savický and Vomlel,
2006), and shown in Fig. 7.6.

· · ·A1 AN -1

H

AN

φ1 φN -1

φN

Figure 7.6: Representation of a tensor rank-K approximation as a graphical model, with
(possibly negative) real-valued functionsφj , and where the hidden variableH has states
{1, . . . ,K}.

According to Eq. (7.8), a rank-K approximation can be written as

RK(A)x1···xN
=

K
∑

h=1

λh · b
(1)
xi1h · · · b

(N)
iN k . (7.12)

We define functionsφj(xj , h) ≡ b
(j)
xjh for 1 ≤ j < N and absorbλ into the function

φN (xN , h) ≡ λh · b
(N)
xN h. We now define

P (x1, . . . , xN , h) =
1

Z

N
∏

j=1

φj(xj , h) (7.13)

with partition functionZ ≡
∑

x1,...,xN ,h

∏N
j=1 φj(xj , h) as the joint probability dis-

tribution for random variablesX1, . . . ,XN ,H. Equation (7.12) can then be inter-
preted as marginalization over the hidden variableH:

P (x1, . . . , xN ) =
1

Z

∑

h

N
∏

j=1

φj(xj , h) , (7.14)

and the computation ofP (xN | x) can therefore be interpreted in terms of proba-
bilistic inference in the graphical model of Fig. 7.6.
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7.2.5 Classifier evaluation

In order to examine the performance of decomposed tensor classifiers, we have made
use of the COMIK dataset, which was collected by the Copenhagen Computer Icterus
(COMIK) group and consists of data on 1002 jaundiced patients that may be clas-
sified into one of four diagnostic categories:acute non-obstructive, chronic non-
obstructive, benign obstructiveand malignant obstructivegiven 21 evidence vari-
ables (Malchow-Møller et al., 1986). Earlier classification studies have shown that,
typically, the correct diagnostic conclusion (in accordance with the diagnostic con-
clusion of expert clinicians) is found for about75−77% of jaundiced patients (Lind-
berg et al., 1987; van Gerven and Lucas, 2004a). As a preprocessing step, we have
computed the mutual information between evidence variables and the class variable,
and selected the eighteen evidence variables that show highest mutual information
(MI) with the class variable as the basis for classification,since the three remaining
evidence variables give relatively small contributions (Fig. 7.7).
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Figure 7.7: Mutual information between the class variable and evidencevariables.

Classification performance of the decomposed tensor classifiers is compared with
that of a naive Bayes classifier using a ten-fold cross-validation scheme. Empirical
estimates of the required probabilities are smoothed usingLaplace smoothing. The
naive Bayes classifier typically reaches high classification accuracies, and uses the
(naive) assumption that evidence variables are independent given the class label:

P (xN | x) ∝ P (xN )
N−1
∏

j=1

P (xj | xN ) .
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Since the COMIK dataset contains missing values, and the decomposed tensor classi-
fiers require complete data, we have used multiple imputation to create three complete
datasets from the incomplete dataset. Since we have no knowledge about the missing
data mechanism, we make the (admittedly unrealistic) assumption that data is miss-
ing completely at random, and use the prior probabilities ofthe evidence variables
to determine the imputed values. This allows a comparison interms of classification
performance between the naive Bayes classifier and the decomposed tensor classi-
fiers, where performance is averaged over folds and datasets.

Classification performance is quantified by means of classification accuracy and
logarithmic score. Classification accuracy is defined as thepercentage of correctly
classified cases, as in (7.1). The logarithmic score (Spiegelhalter et al., 1993) is a
scoring rule which penalizes a probability model based on a database consisting of
m instances(xi, xi

N ) wherexi denotes the evidence andxi
N denotes the class value.

Assuming that instances are independently sampled and identically distributed, the
logarithmic score is defined as:

S = −
m
∑

i=1

logP (xi
N | x

i)

which incurs a penalty if a low probability is assigned to events that actually occur.
The logarithmic score of the decomposed tensor classifier iscompared with that of
the naive Bayes classifier in order to determine how well actual posterior probabilities
are approximated.

7.2.6 Experimental results

In order to use the rank-K approximation for classification, the first question is which
initialization procedure to use in Algorithm 1. Therefore,we have conducted a pre-
liminary experiment in order to compare different initialization schemes in terms of
classification accuracy and least squares error. To this end, we have chosen the five
most informative evidence variables as the basis for classification, and compared the
performance on the test set of classifiersRK , with 1 ≤ K ≤ 30, for 1, 5, and 10
random initializations, and for the initialization with dominant left singular vectors.

The results shown in Fig. 7.8 indicate that there is not much difference in classi-
fication accuracy or least squares error for the different initialization schemes. Dif-
ferences in standard deviations were also negligible (not shown). Therefore, we have
chosen to use just one random initialization since this usesthe least computational
resources.

We have learnt decomposed tensor classifiers based on the eighteen most infor-
mative evidence variables for1 ≤ K ≤ 30 components. The comparison of the clas-
sification accuracy of the decomposed tensor classifier withthat of the naive Bayes
classifier is shown in Fig. 7.9. The highest average accuracyfor the decomposed ten-
sor classifier is reached at nineteen components with an accuracy of 76.75%, whereas
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Figure 7.8: Average classification accuracy on the test set (left) and least squares error of the
tensor approximation (right) based on five evidence variables with different initializations.

for the naive Bayes classifier, the average classification accuracy is 77.25%. At that
point, the standard deviation of the classification accuracy of the decomposed tensor
classifier is 3.24%, whereas that of the naive Bayes classifier is 3.40%. Although the
naive Bayes classifier performs somewhat better than the decomposed tensor classi-
fier in terms of classification accuracy, differences are negligible.
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Figure 7.9: Average classification accuracy and standard deviations onthe test set for the
decomposed tensor classifier (solid line) and the naive Bayes classifier (dashed line).



162 Bayesian Classifiers for Clinical Decision Support

Figure 7.10 depicts the average logarithmic scores for the decomposed tensor
classifier and the naive Bayes classifier (where we have addeda small term to
Eq. (7.11) in order to prevent numerical problems). It showsthat the logarithmic
score of the decomposed tensor classifier decreases as more components are added
and eventually becomes lower than that of the naive Bayes classifier.2
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Figure 7.10: Average logarithmic score on the test set for the decomposedtensor classifier
(solid line) and the naive Bayes classifier (dashed line).

Figure 7.11 shows a Hinton diagram, depicting the contribution of each compo-
nent for each of the four classes for a decomposed tensor classifier containing nine-
teen components. The large white block that can be found in each column indicates
that each of the components improves the approximation by focusing mainly on one
class.

Figure 7.11:Hinton diagram, showing the magnitude of positive contributions (white blocks)
and negative contributions (black blocks) of nineteen rank-1 components (horizontal axis) for
the four classes (vertical axis).

For the decomposed tensor classifier, the transform of Eq. (7.11) assigns dis-
tributions skewed towards zero for incorrect classes and skewed towards one for the

2In practice, the appropriate number of components is selected by means of cross-validation on a
hold-out set.
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correct class, although not as well as the naive Bayes classifier, as shown in Fig. 7.12.
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Figure 7.12: Distribution of posterior probabilities of correct and incorrect classes for the
decomposed tensor classifier and the naive Bayes classifier.

The analysis of the classification accuracy and the difference in logarithmic score
show that although both classifiers operate differently, they perform comparably with
respect to classification accuracy. If we inspect the classifications that were made
by the classifiers then it is interesting to see that only 254 out of a total of 2955
cases (8.60%) have been classified differently by the two classifiers. Out of these 254
cases, the naive Bayes classifier assigned 107 cases to the correct class, whereas the
decomposed tensor classifier assigned 93 cases to the correct class. Hence, the clas-
sifiers are able to classify different cases correctly, suggesting that there are certain
problems for which the naive Bayes classifier is more suitable, and other problems
for which the decomposed tensor classifier is more suitable.

7.3 Predicting CHD with a noisy-threshold classifier

In this section, we employ a novel Bayesian classifier, introduced in (Jurgelenaite
and Heskes, 2006), that facilitates medical interpretation as it explicitly provides for
a semantics in terms of cause and effect relationships (Heckerman and Breese, 1994).
This noisy-threshold classifieris based on a generalization of the well-knownnoisy-
or model, which has already been used for the purpose of text classification in (Vom-
lel, 2002). In order to demonstrate the merits of the noisy-threshold classifier in a
medical context, we apply the technique to the prediction ofcarcinoid heart disease
(chd); a serious condition that arises as a complication of certain neuroendocrine tu-
mors (Zuetenhorst et al., 2003). We demonstrate that the noisy-threshold classifier
performs competitively with state-of-the art classification techniques for this medi-
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cally relevant problem. Furthermore, an expert physician at the Netherlands Cancer
Institute (NKI) was consulted, and it is demonstrated how her knowledge concerning
chd relates to the parameters that were estimated for the noisy-threshold classifier.

7.3.1 Semantics of the noisy-threshold model

We will show how to arrive at the noisy-threshold model, by introducing a number of
assumptions that are motivated by the semantics in terms of causes and effects, that is
taken to hold for causal independence models. Causal independence is a popular way
to specify interactions among cause variables (Pearl, 1988; Heckerman and Breese,
1994; Zhang and Poole, 1996; Dı́ez, 1993; Lucas, 2005). The global structure of a
causal independence model is shown in Figure 4.2 and expresses the idea that causes
C = {C1, . . . , Cn} influence a common effectE through hidden variablesH =
{H1, . . . ,Hn} and a deterministic functionf , called theinteraction function. The
causal independence assumption does not refer to independence between causes, but
rather to the assumption that hidden variablesHi are independent of causesC\{Ci}
givenCi. Causal independence is therefore also known asindependence of causal
influenceor exception independence. In practice, causes in a causal independence
model can be dependent; for instance, when the model is embedded within a larger
network, or if there are direct dependencies between causes. However, if causes
are completely observed then it is not necessary to model thedependence structure
between cause variables.

We assume that causes are eitherpresentorabsent. We usex+ andx− forX = ⊤
(true) andX = ⊥ (false) respectively, and interpret⊤ as 1 and⊥ as 0 in an arithmetic
context. The individual contribution of a causeCi to the effectE is realized by the
parameterP (Hi | Ci) associated with the hidden variableHi; if P (h+

i | c
+
i ) < 1

thenHi is said to inhibit the causeCi. The assumption ofaccountabilitystates that
absent causes do not contribute to the effect which implies that P (h+

i | c
−
i ) = 0

(Pearl, 1988). The interaction functionf represents in which way the hidden vari-
ablesHi, and indirectly also the causesCi, interactdeterministicallyto yield the final
effectE. Since variables are binary,f reduces to a Boolean function. It is also use-
ful to introduce aleak termwhenever it is infeasible to identify all the variables that
influence the effect. We model this leak term by postulating acauseCl that is always
present and with which is associated a leak probabilityP (h+

l | c
+
l ) (Pradhan et al.,

1994). In this manner, we maintain theclosed-world assumption(Reiter, 1978). It
follows from these assumptions that the conditional probability of the effecte+ given
a configurationc of the causesC can be obtained from the parametersP (hi | ci) as
follows (Zhang and Poole, 1996):

Pf (e+ | c) =
∑

h : f(h)

n
∏

i=1

P (hi | ci) , (7.15)

wherePf (e+ | h) = 1⇔ f(h) = ⊤.
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As there are22n

different n-ary Boolean functions (Enderton, 1972; Wegener,
1987), the potential number of causal independence models that is admitted by
Eq. (7.15) is huge. However, if we assume that the order of thecause variables does
not matter, the Boolean functions becomesymmetricand the number of such func-
tions reduces to2n+1 (Wegener, 1987). An important symmetric Boolean function is
theexactBoolean functionǫm, which is defined as:

ǫm(h1, . . . , hn) = ⊤ ⇔

n
∑

j=1

hj = m.

Any symmetric Boolean function can be decomposed in terms ofthe exact functions
ǫm as follows (Wegener, 1987):

f(h1, . . . , hn) =

n
∨

m=0

ǫm(h1, . . . , hn) ∧ γm (7.16)

whereγm are Boolean constants dependent on the choice of the symmetric function
f . A particularly useful type of symmetric Boolean function is thethresholdfunction
τk, which simply checks whether there are at leastk values⊤ among the arguments,
i.e.:

τk(h1, . . . , hn) = ⊤ ⇔

n
∑

j=1

hj ≥ k .

In terms of causes and effects, the use of the threshold function as the interaction
function of a causal independence model expresses the notion that asufficientnumber
of causes should be present in order to induce the effect. Then, thenoisy-threshold
model, as defined in (Jurgelenaite et al., 2006), is given by:

Pτk
(e+ | c) =

n
∑

j=k

∑

h : ǫj(h)

n
∏

i=1

P (hi | ci) . (7.17)

To express a threshold function in terms of Eq. (7.16) we useγ0 = · · · = γk−1 = ⊥
andγk = · · · = γn = ⊤. Note that the noisy-or model, withf(h1, . . . , hn) ⇔
h1 ∨ · · · ∨ hn, corresponds to threshold functionτ1, and the noisy-and model, with
f(h1, . . . , hn) ⇔ h1 ∧ · · · ∧ hn, corresponds to threshold functionτn. Hence, these
two commonly used causal independence models are the extremes of a spectrum of
causal independence models that are defined by the noisy-threshold function.

The parametersP (h+
i | c

+
i ) of the model can be learned using anexpectation-

maximization(EM) algorithm (Dempster et al., 1977). EM is a method for find-
ing maximum likelihood estimates of parameters in probabilistic models, where the
model depends on (unobserved) hidden variables. Every iteration of an EM algorithm
consists of two steps: the expectation step (E-step), whichcomputes the expected
value of the hidden variables, and a maximization step (M-step), which computes the
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maximum likelihood estimates of the parameters given the data. To learn the para-
meters in the noisy-threshold classifier we use the EM algorithm for noisy-threshold
models (Jurgelenaite and Heskes, 2006). Generally, the expectation and maximiza-
tion steps are alternated repeatedly until convergence. However, for small data sets,
this may result in overfitting artifacts; an issue to which wereturn later.

The analysis in this section has shown that causal independence models such as
the noisy-threshold model have an interesting semantics interms of causes and effect,
and can be learned using the EM algorithm, given a symmetric Boolean interaction
function. The next section describes the medical problem that is used to illustrate the
usefulness of the noisy-threshold model as a classifier.

7.3.2 Carcinoid heart disease

Carcinoid tumors belong to the group of neuroendocrine tumors, which are known
for the production of vasoactive agents in the presence of metastatic disease; usu-
ally hepatic (liver) metastases. Among these agents, serotonin is the most important
agent, leading to the characteristic carcinoid syndrome offlushes and diarrhea. The
other main characteristic feature of neuroendocrine tumors is the slow progression of
most tumors if the histology shows a low-grade pattern (Zuetenhorst and Taal, 2005).

Figure 7.13: chd is characterized by heart valve fibrosis as shown in the overlay.

Serotonin overproduction may also cause carcinoid heart disease (chd), which
is characterized by fibrosis of the right sided heart valves as shown in Fig. 7.13.
Fibrosis induces thickening and retraction of the tricuspid valve, leading to tricuspid
insufficience and ultimately heart failure, which is the cause of death in as much
as half of carcinoid patients (Zuetenhorst et al., 2003; Zuetenhorst and Taal, 2003).
Since so many carcinoid patients die ofchd, it is important to distinguish patients
that are admitted to the clinic into patients that are prone to develop a severe form of
carcinoid heart disease, and those that do not develop this severe form. In this way,
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patients that are at risk can be given more aggressive treatment in order to reduce
the probability of the development ofchd. Hence, the classification task for this
medical problem will be to classify the patients into these two groups, depending on
the attributes that are known at the time of admission to the clinic. We use chd+

to denote the development of moderate to extreme tricuspid valve insufficience and
chd− to denote the absence, or development of mild tricuspid valve insufficience
during patient follow-up.

Table 7.2: Patient attributes that are measured at admission.

Name Definition Name Definition
hia 5-HIAA levels gil General illness
cga Chromogranin A levels bob Bowel obstruction
dia Diarrhea ibl Internal bleeding
whe Wheezing fev Fever
flu Flushing hme Hepatic metastases
apa Abdominal pain

In principle, the physician can make use of the attributes that are measured at ad-
mission (Table 7.2), in order to predict the development ofchd. However, in practice,
in order to determine the probability of developing moderate to severe tricuspid valve
insufficience, the physician makes use of the following decision rule:

P (chd+ | c) =















0.50 if hia+ ∧ dia+ ∧ hme+

0.25 if hia+ ∧ (dia− ∧ hme+ ∨ dia+ ∧ hme−)
0.10 if hia+ ∧ dia− ∧ hme− ∨ hia− ∧ dia+ ∧ hme+

0.03 otherwise.

The aim of this section, is to show that a noisy-threshold model can be used as a
Bayesian classifier where performance is compared with the physician’s classifica-
tion performance, as well as with standard classification techniques such as the naive
Bayes classifier, logistic regression, and decision-trees. Patient attributes are used as
cause variables in the definition of a noisy-threshold model, and it is assumed that
independence of causal influence, accountability, symmetry and sufficiency hold. As
required, variables are binary, and positive states of variables are perceived to be less
favorable than negative states, such that they could be responsible for carcinoid heart
disease. To train and test Bayesian classifiers for this medical problem, we have
used a clinical database consisting of fifty-four patients that suffered from a neuroen-
docrine tumor, and for which the grade of tricuspid valve insufficience was known.
Twenty-two patients developed moderate or worse tricuspidvalve insufficience du-
ring follow-up.

We have not yet touched upon the most important assumption ofcausal indepen-
dence models. That is, can the variables be regarded as causes of carcinoid heart
disease? For some attributes this is questionable. Diarrhea for instance is a symptom
of other processes and is therefore not likely to be a cause ofcarcinoid heart disease.
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Figure 7.14: A noisy-threshold model for carcinoid heart disease, where the dashed region
represents the total tumor burden for the patient. Note the use of the leak causeCl in order to
model possible hidden causes.

However, wecan interpret the attributes as risk factors that act as components of
the totaltumor burden, as depicted in Fig. 7.14. Since the causes are assumed to be
completely observed, we refrain from adding additional dependencies between cause
variables.

7.3.3 The noisy-threshold classifier

Classifier construction

Construction of a noisy-threshold classifier (NTC) proceeds as follows. We first de-
termine the cause variablesC and effect variableE that are used in the classifier. In
the context of a classifier, the cause variables stand for theattributes and the effect
variable stands for the class-variable. Secondly, we need to determine the positive
states of the variables. In thechd domain, the positive states are simply defined as
the presence of attributes that affect the presence of the class-variablechd. Once the
cause and effect variables have been defined, we need to find both the optimal va-
lues for the parametersP (h+

i | c
+
i ) using an EM algorithm, as well as the correct

threshold functionτk.
The parameters and threshold function are learned from a databaseD =

{u1, . . . ,uN} where instancesuj = {cj , ej} = {cj1, . . . , c
j
n, ej} with j = 1, . . . , N

consist of realizations of causes and the effect. LetD+ ⊆ D denote those instances
{cj , ej} for which ej = ⊤, and letD− ⊆ D denote those instances{cj , ej} for
which ej = ⊥. We define the following measures with respect to a fixed databaseD
and modelM . Let thetrue positives(tp) stand for the number of instancesuj ∈ D+

for whichP (e+ | cj) ≥ 0.5 and let thefalse negatives(fn) stand for the number of
instancesuj ∈ D+ for whichP (e+ | cj) < 0.5. Likewise, we define thetrue nega-
tives(tn) as the number of instancesuj ∈ D− for whichP (e+ | cj) < 0.5 and the
false positives(fp) as the number of instancesuj ∈ D− for whichP (e+ | cj) ≥ 0.5.
In order to learn the parameters of the noisy-threshold model, we used a training set
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Dtrain and a validation setDvalidate. The validation set is used to counterbalance the
overfitting that may occur when learning model parameters. The aim of the learning
phase is to maximize both theclassification accuracy

η(D) =
tp+ tn

tp+ tn+ fn+ fp
× 100%

as a measure of the number of correctly classified cases, and theF1 measure

F1(D) =
2πρ

π + ρ

as a measure that takes into account the tradeoff betweenprecisionπ = tp
tp+fp

and

recall ρ = tp
tp+fn

, which is also known assensitivity. We use these two measures
since the accuracy is the obvious measure but may convey the wrong intuition when
the classes are not equal in size (van Rijsbergen, 1979). Finding the optimal noisy-
threshold classifier then proceeds as follows:

1. Divide the data setD into the disjoint setsDtrain,DvalidateandDtest.

2. For all noisy-threshold modelsPτ1 , . . . , Pτn with n = |C|, use the training
dataDtrain and the EM-algorithm in (Jurgelenaite and Heskes, 2006) to learn
the parametersP (h+

i | c
+
i ).

3. Select the noisy-threshold model and the number of iterations of the EM-
algorithm that maximizesw1 ·η(Dvalidate)+w2 ·F1(Dvalidate) with equal weights
w1 = w2, as the optimal noisy-threshold classifier.

With regard to the clinical data setD we have used a leave-one-out cross-
validation scheme to implement the above algorithm.D contains too many missing
values to simply remove the instances that contain missing data. We have usedmean
substitution(Kline, 1998) as an imputation scheme, and note thatmultiple imputation
(Rubin, 1987) produced similar results.

Classifier evaluation

In order to evaluate the performance of the noisy-thresholdclassifier, we compared
its classification accuracy with the accuracy of a number of other well-known algo-
rithms. For the comparison we have used the naive Bayes classifier (NBC), for which

P (e+ | c) ∝ P (e+)

n
∏

i=1

P (ci | e
+) ,

logistic regression (LG), where the posterior probabilityof developing carcinoid heart
disease is given by

P (e+ | c) =
1

1 + e−(a0+a1c1+···+ancn)
,
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and a decision-tree learning algorithm (C4.5), as implemented by the WEKAma-
chine learning tool (Witten and Frank, 2005).3 Furthermore, we compare the per-
formance of the optimal noisy-threshold classifier with that of the noisy-or classifier
Pτ1 as a special case (Vomlel, 2002). Parameters are estimated from data and for the
probabilistic algorithms classification proceeds by selecting the class value that has
highest posterior probabilityP (e+ | c). For the decision-tree learning algorithm, no
posterior probability is computed and classification proceeds by traversing the tree
and selecting the class value that is associated with the leaf node.

As pointed out in (Salzberg, 1997), when comparing two classification algo-
rithms, the approach preferred to a standard t-test, is to use a binomial test, which
uses the number of casesn for which the two classifiers produce a different output,
and the number of casess where the output of the examined classifier was correct,
while the output of the reference classifier was wrong. Underthe null hypothesis that
the two classifiers perform equally well, we compute:

q =

n
∑

i=s

n!

i!(n − i)!
(0.5)n

for a one-tailed test, andp = 2q for a two-tailed test.
Since the classification accuracy assumes equal costs between false positives and

false negatives, we use theReceiver Operating Characteristics(ROC) curve to com-
pare the performance of some of the classifiers in terms of thetrade off betweensen-
sitivity ρ = tp

tp+fn
andspecificityσ = tn

tn+fp
for every possible cutoff (Egan, 1975),

whereρ is shown on the y-axis, and1− σ is shown on the x-axis. This performance
can be quantified by computing the area under the ROC curve (AUC), which has been
shown to equal the outcome of the Mann-Whitney U statistic (Bamber, 1975):

AUC =

∑

ci∈D+

∑

cj∈D− u(ci, cj)

|D+||D−|

where

u(ci, cj) =







1 if P (e+ | ci) > P (e+ | cj)
1
2 if P (e+ | ci) = P (e+ | cj)
0 if P (e+ | ci) < P (e+ | cj)

We can interpret this statistic as follows. We assume that there is a ranking between
instances inD such that any deviation from the perfect ranking that ranks all positive
examples higher than all negative examples leads to a decrease in the AUC (Cortes
and Mohri, 2004). IfP (e+ | ci) > P (e+ | cj) then we produce a correct ranking, if
P (e+ | ci) = P (e+ | cj) then we break ties at random and produce a correct ranking
half of the time, and ifP (e+ | ci) < P (e+ | cj) then we produce an incorrect
ranking.

3We use WEKA’s default parameter settings; the default imputation method is to interpret a missing
value forX as a separate valuex ∈ ΩX .
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7.3.4 Results

Classification performance

Table 7.3 lists the classification accuracy for noisy-threshold classifiersPτ1 to Pτ12 .
The noisy-threshold classifierPτ6 is selected, based on the validation setDvalidate,
and shows the best classification accuracy of72% on the test setDtest. Note that this
exceeds considerably the classification accuracy of54% for the noisy-or classifier
Pτ1 .

Table 7.3: Classification accuracy onDtest for noisy-threshold classifiersPτ1
, . . . , Pτ12

.

NTC η(Dtest) NTC η(Dtest) NTC η(Dtest)
Pτ1

54 % Pτ5
69 % Pτ9

59 %
Pτ2

65 % Pτ6
72% Pτ10

59 %
Pτ3

65 % Pτ7
65 % Pτ11

59 %
Pτ4

70 % Pτ8
57 % Pτ12

59 %

In order to test how well the NTC performs compared with the physician, and
with the other classification algorithms that were previously discussed, we have de-
termined the classification accuracy. Table 7.4 describes the classification accuracy
onDtest for the physician’s decision rule, NBC, LG, C4.5 and noisy-or, andp-values
for the null-hypothesis that the classifier accuracy is comparable to that of the NTC
Pτ6 .

Table 7.4: Classification accuracy andp-values for classification ofDtest.

Classifier η(Dtest) p
physician 69 % 7.0 · 10−1

LG 67 % 6.3 · 10−1

NBC 63 % 2.3 · 10−1

noisy-or 54 % 6.4 · 10−3

C4.5 44 % 6.2 · 10−5

Note that the expert physician’s classification accuracy isreasonably high, out-
performing all but the noisy-threshold classifier. The noisy-threshold classifierPτ6

shows the best classification accuracy, although the difference is significant only for
C4.5 and the noisy-or classifier at a confidence level ofp = 0.05. For the physician’s
decision rule, the naive Bayes classifier, and logistic regression, we cannot reject the
null hypothesis that the algorithms may in fact be equally accurate for this data set.

It is well-known that classifiers that show large bias tend tooutperform classifiers
that show high variance for small data sets, since this reduces the risk of overfitting.
For this reason, the naive Bayes classifier tends to perform well on many data sets
(Kohavi and Wolpert, 1996). However, although not always reflected in its classi-
fication accuracy (Domingos and Pazzani, 1997), the assumption of independence
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between attributes given the class-variable, is a strong assumption which does not
hold in general. In contrast, the noisy-threshold classifier’s assumptions are moti-
vated by a cause-effect semantics as described in Section 7.3.1, and hold for domains
where the presence of a sufficient number of causes is sufficient to induce the effect.
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Figure 7.15: ROC curve for the noisy-threshold classifier, logistic regression, and the naive
Bayes classifier, where the straight line segment in the NTC curve is a consequence of the
assumption that absent causes do not contribute to the effect.

Figure 7.15 presents the ROC curves for the physician’s decision rule, the noisy-
threshold classifierPτ6 , the naive Bayes classifier, and logistic regression, wherethe
area under the curve equals 0.66, 0.66, 0.60 and 0.59 respectively. Although the per-
formance in terms of AUC is mediocre, both the physician’s decision rule, and the
noisy-threshold classifier show a considerably better performance than the other stan-
dard classification techniques. The ROC curve does demonstrate a potential danger
of using the noisy-threshold classifier, especially when the causal assumptions are
not satisfied. Whereas the naive Bayes classifier is able to gradually increase the true
positive rate at the expense of increasing the true negativerate, the noisy-threshold
classifier fails to accomplish this for all true positive rates. This is a consequence
of the assumption that absent causes cannot contribute to the effect; the probability
Pτk

(e+ | ci) of assigning an instance to the positive class equals zero whenever the
number of present causes is less than the thresholdk.
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Medical interpretation

In this section we look at the noisy-threshold classifier forchd from a medical point
of view. Prior to presenting the resulting classifier, we have asked the physician
to indicate how important the individual attributes were felt to be with respect to
predicting the development of carcinoid heart disease.

According to the physician, progressive carcinoid diseaseis often accompanied
by the carcinoid syndrome, which is characterized by diarrhea (dia) caused by in-
creased bowel motility due to serotonin overproduction, byperiodical flushing at-
tacks (flu) due to the synergistic interaction between various vasoactive agents, and
sometimes by wheezing (whe). As discussed in Section 7.3.2, serotonin overpro-
duction is thought to play a key role in the etiology ofchd and it can be measured
indirectly by means of the urinary 5-HIAA level (hia) since this is a metabolite of
serotonin. Hence, the variables related to the carcinoid syndrome are indicative of
serotonin overproduction and ultimatelychd. It is therefore assumed that the vari-
ableshia, dia, flu and to a lesser extentwhe have a high predictive value. Serotonin
overproduction is itself caused by the carcinoid tumor in the presence of particu-
lar metastases; hormones released by carcinoid tumors are often destroyed by the
liver before they reach the general circulation to cause symptoms. Therefore, only
hepatic metastases (hme), or metastases that can release hormones directly into the
general circulation, can produce the carcinoid syndrome. According to the physician,
the presence of hepatic metastases (hme) during hospitalization is indicative ofchd
development, since this is a requirement for serotonin overproduction, The plasma
chromogranin A (cga) level is used as a general marker of neuroendocrine activity
and tumor extensiveness (Nobels et al., 1998). Although notregarded as important as
the previously discussed attributes, the physician expectedcga to have a high predic-
tive value since extensive tumors with high neuroendocrineactivity are more likely to
causechd. In contrast, the variablesibl, fev, apa andbob were not thought to predict
chd very well. Local progression of hyper-vascular primary tumors into the lumen
of the small bowel is often the cause of internal bleeding (ibl), but is not thought to
be related to metastatic disease. Fever (fev) can be caused by hepatic metastases, as
captured by the variablehme, but it is also a non-specific symptom that is not neces-
sarily caused by carcinoid disease in the first place. Abdominal pain (apa) and bowel
obstruction (bob) are often caused by complications due to the primary tumor and
were assumed to be unrelated to the development ofchd. According to the physician,
general illness (gil) could be indicative of the development of carcinoid heart disease;
a poor condition is often due to extensive metastases and therefore a high probability
of serotonin overproduction. In general, the physician expected that at least some of
the risk factors should occur together in order to causechd.

Figure 7.16 depicts the estimates of prior probabilitiesP (c+i ) and conditional
probabilitiesP (h+

i | c
+
i ) for the noisy-threshold classifier that was used for predic-

ting chd. The predictive value of the variableshia, dia, flu andwhe is reflected in



174 Bayesian Classifiers for Clinical Decision Support
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P (h+
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τ6

Figure 7.16: Estimates of priorsP (c+i ), and conditional probabilitiesP (h+
i | c

+
i ), for the

noisy-threshold classifier with threshold functionτ6.

the reasonably high associated probabilitiesP (h+
i | c

+
i ) with i ∈ {1, 3, 4, 5}, which

range from 0.67 to 0.91, where wheezing is indeed seen to be ofless predictive value
than the other attributes. The presence of hepatic metastases (hme) is also an impor-
tant predictor ofchd, as is indicated by the high probabilityP (h+

11 | c
+
11) = 0.92. No-

tice that most patients that are admitted already present with such metastases, which
is reflected by the high prior probabilityP (c+11) = 0.78. Contrary to the physician’s
expectations,cga was not a very good predictor ofchd, with P (h+

i | c
+
i ) = 0.53. In

hindsight, this may be explained by the fact thatcga overproduction does not neces-
sarily reflect serotonin overproduction, and if it does, it may be redundant information
given that we have observedhia, which is a metabolite of serotonin. Internal bleeding
(ibl) and fever (fev), with P (h+

i | c
+
i ) = 0.12 andP (h+

i | c
+
i ) = 0.13 respectively,

did not contribute much to the effect. Unexpectedly, both abdominal pain (apa) and
bowel obstruction (bob) had relatively high probability valuesP (h+

i | c
+
i ) of 0.80

and 0.84 respectively. After some deliberation, the physician gave the following pos-
sible explanation. Since abdominal pain and bowel obstruction are often caused by
complications due to the primary tumor, bothapa andbob indicate a midgut tumor
with possible mesenterial fibrosis. A midgut localization is a prerequisite for sero-
tonin overproduction, and mesenterial fibrosis is thought to be related to tricuspid
valve fibrosis (Modlin et al., 2004). Therefore, the presence of these variables could
have been indicative of the development ofchd. General illness (gil) had a high pro-
bability value ofP (h+

i | c
+
i ) = 0.93. Five out of seven patients that suffered from

general illness indeed developedchd. The threshold functionτ6 corresponds to the
physician’s opinion that the presence of just one risk factor is generally insufficient to
causechd, whereas the presence of all risk factors is much too strict arequirement as
a cause forchd; demonstrating that the noisy-threshold model as a generalization of
both the noisy-or and noisy-and model can be the proper choice for realistic domains.
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7.4 Summary

In this chapter, we have described three different probabilistic classification tech-
niques. We discuss each of the techniques seperately.

Maximizing mutual information

The MMI algorithm makes few structural assumptions and iteratively builds classi-
fier structures that reflect higher-order dependencies between evidence variables. In
this sense, the MMI algorithm resembles Sahami’s limited-dependence classifier (Sa-
hami, 1996) with the difference that we do not require the addition of an arc between
the class variable and each evidence variable. Furthermore, the heuristic that was
used during the estimation of conditional mutual information prevents the construc-
tion of overly complex network structures and the introduction of spurious depen-
dencies. As is shown, the number of higher-order dependencies will only increase
if this is warranted by sufficient data. The experimental results show that classifica-
tion performance of the MMI classifier is comparable with that of the FAN classifier
while the weaker assumptions allow for a network structure that is less ad-hoc and
somewhat better to interpret from a medical point of view.

Decomposed tensor classifiers

In this chapter, we have also shown that tensor decompositions can be used for the
purpose of probabilistic classification. The classification accuracy of this novel clas-
sification method on a problem in medical diagnosis is comparable to that of the naive
Bayes classifier and other methods which have been specifically developed to solve
this classification problem. The logarithmic score of decomposed tensor classifiers
suggests that the method is less suitable for obtaining accurate posterior probabili-
ties, although the different mode of operation, together with the results concerning
correctly classified cases, suggest that there may be particular problems for which
this new technique performs better than the naive Bayes classifier. Current limita-
tions of the technique are the requirements that data is discrete and complete, and the
fact that learning the classifiers requires more computational resources than the (easy
to learn) naive Bayes classifier.

Decomposed tensor classifiers are a new way of employing tensor decomposi-
tions, the usefulness of which we have demonstrated in this research using a classifi-
cation problem in medical diagnosis. Dealing with current limitations and validation
of the technique by means of multiple datasets are future research goals.

The noisy-threshold classifier

The noisy-threshold classifier is a novel type of classifier that has a well-defined
semantics in terms of causes and effect. Due to the independence assumptions that are
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made by the classifier, parameters can be reliably estimatedwithout needing to resort
to huge amounts of data. This is an important feature since many domains are charac-
terized by limited amounts of data, as discussed in (van Gerven and Lucas, 2004b).
Learning Bayesian classifiers from data is to be contrasted with the construction of
a full Bayesian network that captures available domain knowledge, which, although
possible, can be very resource intensive for realistic domains.

We have demonstrated that the noisy-threshold classifier performs comparably
with the decision rule that is used by an expert physician, and competitively with
state-of-the-art classifiers, on an important classification task in oncology. Further-
more, it significantly outperforms the noisy-or classifier,as a special case of the
noisy-threshold classifier, for this data set. The semantics of the noisy-threshold
classifier enables an interpretation in terms of available domain knowledge, as is il-
lustrated by the physician’s interpretation of classifier parameters. Nevertheless, one
should be cautious when defining the positive states of the cause variables since neg-
ative states cannot contribute to the effect, as reflected bythe straight line segment of
the ROC curve. The competitive classification performance and well-defined seman-
tics make the noisy-threshold classifier a promising new machine learning technique,
as was demonstrated here in the context of medical prognosis.



Chapter 8

Conclusion

The goal of this thesis has been to examine how graphical models for clinical deci-
sion support (such as Bayesian networks and influence diagrams) can be constructed
in order to deal with large and complex dynamic decision problems that require rea-
soning under uncertainty and are characterized by limited availability of data. In this
concluding chapter, we describe the scientific contributions of this thesis (Section
8.1), consider the strengths and limitations of our approach (Section 8.2), and reflect
on the subject matter of this thesis (Section 8.3).

8.1 Scientific contributions

Chapter 3: Clinical decision support with Bayesian networks

The construction of Bayesian networks for clinical decision support often proceeds
in an ad-hoc fashion. Therefore, in Chapter 3, we addressed the problem of how to
construct Bayesian networks for clinical decision supportby considering how a clin-
ical problem together with practical considerations translate into particular Bayesian
network designs. We have shown that insight into the nature of the clinical problem
can be obtained by:

• describing the clinical task in terms of abstract problem solving,

• distinguishing non-temporal and temporal forms of problemsolving,

• differentiating between a patient model and a physician model, and

• dividing clinical concepts into different categories.

Practical considerations relate to the amount of time one iswilling to spend on model
construction. The following factors reduce modeling effort at the expense of model
expressiveness:

• using restricted associative instead of unrestricted causal models,

• using non-temporal instead of temporal models,
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• taking a restricted number of clinical categories into account,

• enforcing conditional independence assumptions between clinical categories,
and

• externally imposing, instead of incorporating, a decision-making strategy.

By making the nature of the clinical task more explicit and bytaking into account pos-
sible practical considerations, we have pointed out a more principled approach when
choosing a Bayesian network design in order to solve a clinical problem. Finally,
we have shared some of the insight that has been gained duringthe development of
Bayesian networks for clinical decision support, which we have divided into variable
definition, structure specification, factor association, and parameter estimation.

Chapter 4: A qualitative characterization of causal independence

The manual construction of Bayesian networks, especially probability estimation, is
a difficult task. This motivates the development of techniques that reduce the ef-
fort when specifying a Bayesian network. In Chapter 4, we have focused on causal
independence models, which offer one way to facilitate Bayesian network construc-
tion. The theory developed in this chapter allows one to identify whether a particular
causal independence model with a chosen interaction function can fulfill the speci-
fied qualitative properties in principle. This is a useful development since without the
theory one would need to estimate the conditional probabilities P (m̂ | ĉ) for each
of the causes and exhaustively compute the influences and synergies for the model
as in Section 4.1.2. By means of the theory, the qualitative behavior can be read off
directly from the underlying interaction function. The developed theory can also be
employed for placing direct constraints on the structure ofthe underlying interac-
tion function givena qualitative specification in terms of influences and synergies,
as demonstrated by Tables 4.1, 4.2, and 4.3. These results can be used to generate
the set of interaction functions that respect the constraints which facilitates the selec-
tion of a suitable interaction function for problems that can be represented as causal
independence models. Given the fact that probability estimation is time-consuming,
and since causal independence models allow for efficient inference and have a se-
mantics that is understandable by the physician, the presented approach (i.e., using a
qualitative specification to identify a suitable causal independence model) is seen as
a valuable contribution.

Chapter 5: Dynamic decision making with DLIMIDs

Chapter 3 described the steps that need to be taken when constructing a Bayesian net-
work for clinical decision support, where it was assumed that the physician’s treat-
ment strategy is either externally imposed or explicitly represented. However, when
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dealing with (clinical) decision problems, the ultimate goal of decision theory is to
find the optimal (treatment) strategy in the first place. Thiswas the topic of Chapter 5,
where dynamic limited-memory influence diagrams (DLIMIDs) were described as a
novel approach to the representation of dynamic decision problems. DLIMIDs pro-
vide an alternative to the solution strategies offered by partially-observable Markov
decision processes (Monahan, 1982) for the solution of (infinite-horizon) dynamic
decision problems. We have developed new solution algorithms, where simulated
annealing combined with single rule updating is shown to perform well on a realistic
clinical decision problem. The alternative representation of complex dynamic deci-
sion problems together with the definition of algorithms that find acceptable solutions
motivates the usefulness of our approach.

Chapter 6: A probabilistic model for carcinoid prognosis

In Chapter 6, we embarked on the manual construction of a dynamic Bayesian net-
work (DBN) for prognosis of low-grade carcinoid tumors of the midgut. With 218
variables and 74 342 CPT entries for the prior and transitionmodel, the so-called car-
cinoid model is one of the largest DBNs for clinical decisionsupport that has been
developed to date. The resulting model was created from domain knowledge that
was provided by an expert physician at the Netherlands Cancer Institute. It captures
state-of-the-art knowledge about treatment and prognosisof carcinoid tumors. The
predictive performance of the carcinoid model was not as good as that of a propor-
tional hazards model, but it has to be noted that the latter model was allowed to learn
from the data on which it was tested. Furthermore, the quality of the database itself
can be questioned, as evident from Table 6.6 and Section 6.4.2. In Section 6.3.3, it
was shown that the carcinoid model can make very specific predictions for individual
patients, which is the carcinoid model’s projected mode of operation. Even though
the carcinoid model is an initial prototype, it has already demonstrated that DBNs
are suitable for the representation of complex pathophysiological processes as they
are influenced by the physician, whereas approximate inference allows for the online
computation of prognostic outcome at future points in time.

Chapter 7: Bayesian classifiers for clinical decision support

A different approach was taken in Chapter 7, where Bayesian networks were learnt
from data instead of expert knowledge. We focused on clinical decision making as
a classification problem and used Bayesian networks with a restricted graph struc-
ture for the purpose of probabilistic classification. In thechapter, three varieties of
these so-called Bayesian classifiers have been described. In Section 7.1 the maxi-
mum mutual information (MMI) algorithm was developed. In contrast to the limited-
dependence classifier (Sahami, 1996), the MMI classifier is aselective method that
uses a heuristic in order to automatically determine the number of incoming arcs
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for the evidence variables. The algorithm performs well on adiagnostic problem in
hepatology and allows graph structures that are more informative than that of, say,
the naive Bayes classifier. In Section 7.2, tensor decompositions (a technique taken
from multilinear algebra) were used for the purpose of probabilistic classification.
In particular cases, these decompositions can be describedin terms of a graphical
model structure. They are shown to perform about as well as the naive Bayes clas-
sifier on the diagnostic problem of Section 7.1. Its good classification performance,
along with the fact that it classifies other instances correctly when compared with
the naive Bayes classifier, warrants further research on this new and promising tech-
nique for probabilistic classification. In Section 7.3, we analyzed the performance
of a recently described type of Bayesian classifier. The noisy-threshold classifier
is a causal independence model that is employed for the purpose of classification.
It compares favorably with state-of-the-art classifiers onthe prediction of carcinoid
heart disease in carcinoid patients and due to the nice semantics in terms of causes
and effects is also more interpretable by the physician. Thedescribed techniques
offer new directions for learning Bayesian networks from a limited amount of data.
We have demonstrated their usefulness using clinical datasets, but remark that their
applicability extends beyond the medical domain.

8.2 Strengths and limitations

It is well-known that the manual construction of realistic Bayesian networks is diffi-
cult and time-consuming. Contrary to learning a Bayesian network from data (as in
Chapter 7), where general purpose algorithms can be used to automatically construct
a model, there are no off-the-shelf recipes for the manual construction of a Bayesian
network. Chapter 3 provides a partial solution to this problem by coupling problem
solving and a characterization of clinical tasks with particular Bayesian network de-
signs. However, actual model construction must still be done by the knowledge engi-
neer on a case-by-case basis. As yet, the large scale deployment of Bayesian networks
(and expert systems in general) is not realized in practice,and we view the knowledge
elicitation bottleneck as the main reason for this failure to deliver. It would therefore
be a major improvement if the knowledge engineer has access to often used network
designs. These designs may be specified at the task level, as was done in Section 3.2
and in (Murphy, 2002) for dynamic Bayesian networks, or at the level of node-node
interactions, as was done in Section 3.3.3 and in (Neil and Fenton, 2000). For clini-
cal purposes, we envision reusable network fragments for the functioning of organs,
main pathophysiological processes, and often occurring complications, that can be
reused when modeling different disorders.

The analysis of causal independence models in Chapter 4 allows for the iden-
tification of qualitative properties of a causal independence model based on its in-
teraction function. A limitation of the current approach isthat the theory is defined
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for binary variables only, and a generalization to non-binary variables would extend
the applicability of the theory. There is also a need to further research the identifi-
cation of the set of interaction functions that fulfills a given qualitative characteriza-

tion. Forn causes, there are5n · 5(
n

2) · 5(
n

2) different qualitative characterizations
(in terms of possible combinations of qualitative influences, additive synergies, and
product synergies) and the size of the the set of Boolean functions that is associated
with each qualitative characterization may become huge since we have22n

possi-
ble Boolean functions. However, preliminary results indicate that sets with many
ambiguous qualitative influences and synergies contain many functions, whereas sets
with few ambiguous qualitative influences and synergies contain few functions. Since
we expect real-world specifications to contain many unambiguous qualitative influ-
ences and synergies, the approach may still be feasible. As afinal note, since causal
independence models allow for efficient inference, it may beuseful to approximate
arbitrary probability distributions with causal independence models. By computing
the qualitative properties of the target distribution, thedescribed approach may aid in
identifying the causal independence models that offer the best approximation.

The DLIMIDs of Chapter 5 allow us to findacceptabletreatment strategies using
algorithms such as single rule updating and simulated annealing but it is not gua-
ranteed that the strategy found is theoptimalstrategy. However, alternatives such as
partially-observable Markov decision processes (POMDPs)can only find solutions
for small problems, which makes such an approach infeasiblefor complex medical
decision problems. Therefore, any strategy that is found bya DLIMID and improves
upon the accepted strategy that is used in current clinical practice (in the sense that
expected utility increases) is regarded to be acceptable.

DLIMIDs require the a priori specification of the informational predecessors (ob-
servable variables) that are assumed to influence the treatment strategy. For example,
the variablecga in Fig. 5.9 is excluded from consideration by the physician,even
though its inclusion may well lead to better treatment strategies. Therefore, an inter-
esting research direction would be to devise a procedure that adds observable vari-
ables automatically, based on the utility that is gained by its inclusion. As a specific
example, consider a memory variableM that captures the history of a findingF ,
based on which we decide to treat or not to treat a patient. Oneway to search for bet-
ter strategies is to automatically increase the length of the history that is represented
by M . There are situations in which a full history is needed to make the optimal
decision, which precludes this approach, but for real-world problems, changes in ex-
pected utility should decrease for older observations. Therefore, by focusing on more
recent observations, the size of memory variables can be kept relatively small. For
the same reason, it may be useful to adapt Algorithm 5.3 such that decision rules that
change recent observations are selected more often than decision rules that change
older observations, in order to speed up the approximation of the optimal treatment
strategy.
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In Chapter 6 we have constructed the carcinoid model for prognosis of low-grade
midgut carcinoid tumors. Although the model did not performas well as a pro-
portional hazards model when predicting survival for patients taken from a clinical
database, the model was better at making patient specific predictions due to the ex-
plicit representation of how domain variables interact. Furthermore, due to this ex-
plicit representation, the range of questions that can be answered by the carcinoid
model exceeds that of the proportional hazards model since the latter is optimized for
prediction only. The discussion of the carcinoid model in Section 6.4 has made clear
that the construction of a dynamic Bayesian network for clinical decision support is
hard. We expect that the quality of (dynamic) Bayesian networks is improved by
taking the following considerations into account:

• A clear understanding of the clinical task and the a priori selection of a suitable
Bayesian network design, based on the nature of the clinicaltask.

• A focus on clearly defined disorders that show limited variability in progres-
sion, where the treatment protocol is fixed and not subject tomuch change,
thereby facilitating model construction and parameter estimation by the physi-
cian.

• The a priori availability of a high quality database that guides the identification
of relevant domain variables, allows for automated learning of model parame-
ters, and/or makes preliminary evaluation of model components possible.

• To retain the continuous nature of random variables as much as possible, or to
use holding times in order to model that random variables remain in specific
discrete states for a prolonged time. In the latter case, theresulting dynamic
Bayesian network can be interpreted as asemi-Markovdecision process (e.g.,
(Leong, 1994; Murphy, 2002)).

• The explicit representation of a physician’s uncertainty about probability esti-
mates in terms of hyper-parameters.

In Chapter 7 we focused on learning from limited amounts of data. The developed
algorithms are not to be used for the accurate representation of a joint probability
distribution, but rather for the purpose of probabilistic classification. The maximum
mutual information (MMI) algorithm is useful when one desires to retain part of the
independence structure that is present in the domain. Contrary to Sahami’s limited
dependence classifier (Sahami, 1996), the MMI algorithm does not require an upper
bound for the number of incoming arcs to each evidence variable, since this is deter-
mined through Eq. (7.4), although it does require that we make a suitable choice for
the parameterβ, which is not straightforward.

In Section 7.2, we focused on the use of rank-K approximations as the basis
for decomposed tensor classification which, at the moment, is restricted to discrete
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and complete data. The rank-K approximation is a special case of the more general
Tucker decomposition, which may also be used for the purposeof probabilistic clas-
sification and can be learnt usinghigher-order orthogonal iteration(de Lathauwer
et al., 2000b). Preliminary results suggest that this is possible, albeit much harder,
since we are now required to search for the optimal sizes of matricesB(n) ∈ R

In×Jn ,
1 ≤ n ≤ N , as shown in Eq. (7.6). Once found, the Tucker decompositionhas the
advantage that it is a more natural decomposition since it does not necessarily require
the repeated approximation of residual tensors. The core tensorC = (cj1···jN

) of the
Tucker decomposition gives additional insight into how theoriginal tensor and hence
the problem decomposes.

We also mention that tensor decompositions such as the rank-K approximation
of Section 7.2 can be useful for approximate inference. Earlier work (Savický and
Vomlel, 2006; van Gerven, 2006) has shown that each family ofnodes in a Bayesian
network can be replaced by the graphical model equivalent ofa tensor decomposi-
tion, as shown in Fig. 7.6. This replacement leads to sparsernetworks and therefore
more efficient probabilistic inference (Fig. 8.1). The increase in efficiency depends
on the size of the hidden node, which in turn depends on the quality of the tensor ap-
proximation. This approach to approximate inference is currently under investigation
(van Gerven, 2007a).

(a) (b) (c)

Figure 8.1: Moralization of (a) leads to the dense network (b) whereas a tensor decomposi-
tion of (b) leads to the sparse network (c).

In Section 7.3 we looked at the noisy-threshold classifier. At the moment the
technique is restricted to binary variables and a thresholdfunction as the interaction
function. Various extensions that increase the applicability of the noisy-threshold
classifier are possible. One can think here of the incorporation of graded or con-
tinuous variables that allow for a more natural representation of risk factors such as
abdominal pain or fever, a focus on more general interactionfunctions, or the in-
corporation of time, analogous to the generalization of noisy-or models to temporal
noisy-or models as was realized in (Galán and Dı́ez, 2002).Furthermore, lifting the
assumption of independence of causal influence by allowing multiple causes to in-
fluence the same hidden variable may lead to more realistic models. We leave these
extensions as topics for further research.
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8.3 Concluding remarks

In this thesis, we have advocated the use of (Bayesian) probability theory as the
method of choice for reasoning under uncertainty in medicine while the decision-
theoretic notion of utility motivates the clinical decisions that are being made. This
begs the question of how physicians reason in practice. Do they act according to
probability theory when making an inference and do they act according to decision
theory when making a decision? In other words, are probability and decision theory
just normative (describing optimal problem solving for a rational agent) or descriptive
as well (describing optimal problem solving in humans)? Theliterature about the
cognitive biases and heuristics displayed in humans in general (Kahneman et al.,
1982) and physicians in particular (Chapman and Elstein, 2000; Borstein and Emier,
2001) suggests no. However, recent research has also demonstrated that some of
the biases disappear when questions are posed in a less artificial way (Cosmides and
Tooby, 1996; Gigerenzer, 2000). The emerging framework of naturalistic decision-
making (Klein et al., 1993) recognizes the importance of these observations, and
dictates that we should consider decision-making in a natural setting, where we need
to deal with stress, time pressure, fatigue, and communication patterns, as well as
with the bounded rationality of humans due to information-processing constraints
(Simon, 1955). Under that interpretation, heuristics are not viewed as erroneous, but
rather as effective strategies for real-world decision-making (Patel et al., 2002).

One particularly influential view of clinical problem solving is thehypothetico-
deductive approach(Elstein et al., 1978), which is an iterative process where hy-
potheses are generated according to the available data, andhypotheses in turn guide
the selection of new data. It is found that expert physiciansgenerate the correct hy-
pothesis early on and use the remaining time to confirm and refine the hypothesis,
whereas less experienced physicians take longer to decide upon the final hypothesis
due to an inability to eliminate incorrect alternatives (Joseph and Patel, 1990). An-
other observation is that although expert physicians have more extensive knowledge
about pathophysiological processes, they tend to make lessuse of it than non-experts,
and base themselves more on clinical experience. One explanation of this effect is the
notion ofknowledge encapsulation, which suggests that explicit pathophysiological
knowledge is represented by the expert in compiled form, while still being retrie-
vable if necessary (Boshuizen and Schmidt, 1992). The picture which emerges, is
one where expert physicians rapidly recognize the correct hypothesis (possibly aided
by heuristics) while still being able to give a causal explanation of how they arrive at a
hypothesis. Our experiences during the construction of thecarcinoid model of Chap-
ter 6 suggest that expert physicians may indeed operate in this way. During the initial
phase of knowledge elicitation the physician often jumped to conclusions, associa-
ting findings with expected outcomes, whereas after requiring a causal explanation,
it became possible to explain these associations in terms ofcause-effect relations.

These two modes of operation also relate to the difference between Bayesian clas-
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sifiers and causal Bayesian networks, which has been stressed throughout this thesis.
This distinction between associative and causal models hadalready been recognized
by knowledge engineers of the 1970s, where early associative expert systems such
as Internist-1 (Miller and Pople, 1982) were observed to suffer from the lack of
pathophysiological knowledge (Schwartz et al., 1987), leading to the development
of causal expert systems such as CasNet/Glaucoma (Weiss et al., 1978b; Kulikowski
and Weiss, 1982). The distinction between associative and causal modes of opera-
tion also has computational consequences. Associative models have the benefit that
they can be both learnt as well as operated more efficiently than causal models, albeit
at the expense of offering a less accurate representation ofthe underlying domain
knowledge. This suggests a computational strategy for Bayesian networks, where
a Bayesian classifier is used to quickly generate a small set of possible hypotheses
which can be subsequently fed into a causal Bayesian networkof higher complexity
in order to generate more accurate probability estimates. In fact, the strategy of rea-
soning at multiple levels of detail has already been used in the Abel expert system
(Patil, 1981; Szolovits and Pauker, 1993). In earlier work (van Gerven and Lucas,
2004b), we have shown how the causal Bayesian network depicted in Fig. 3.7 can be
transformed into a forest-augmented naive Bayes classifier(Lucas, 2004); a process
reminiscent of knowledge encapsulation in domain experts.

From the point of view of knowledge engineering, we emphasize once more that
the translation of a physician’s knowledge into a graphicalmodel is difficult and time-
consuming, which implies a trade-off between the amount of time one is willing to
spend and the quality of the resulting system. When one believes intervention to be
the ultimate goal of clinical reasoning, associative models can perform as well as
causal models provided that they lead to the same actions. Associative models, such
as those of Section 3.2 and Chapter 7, can show acceptable performance and can be
constructed with minimal effort. However, expert systems research has shown that
not just intervention but also theexplanationof intervention is a necessary ingredient
of clinical decision support systems, since drawn conclusions must be justifiable to
the physician who is responsible for patient care (Teach andShortliffe, 1984). Fur-
thermore, it is a characteristic of associative models thatthey are difficult to extend
as new knowledge becomes available (Schwartz et al., 1987).Therefore, if the aim
is to create a flexible system that represents domain knowledge with a high degree of
detail, then one should consider building a causal model andfollow the construction
steps of Section 3.3 as illustrated by the carcinoid model ofChapter 6.

At the start of the twenty-first century, artificial intelligence finds itself in an ex-
citing position, where the traditional analysis of human problem solving can finally
be combined with mathematically sound inference techniques in order to create high-
quality expert systems for complex domains. This thesis presented ideas concerning
the use of decision-theoretic principles for the purpose ofclinical decision support. It
is hoped that these ideas find their way from proof of concept to the actual improve-
ment of quality of life.





Appendix A

The Carcinoid Model

In this appendix, we show a full representation of the carcinoid model of Chapter 6.
In order to depict the full model, we use an object-oriented representation. Figure
A.1 makes clear that such a representation becomes a necessity for complex do-
mains, since otherwise model construction becomes infeasible. Figure A.2 shows
this object-oriented representation of the carcinoid model. The 62 depicted nodes
encapsulate a total of 218 variables and 74 342 CPT entries.

Figure A.1: Fragment of the carcinoid model.
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Figure A.2: The carcinoid model, as given by an object-oriented representation of the prior
and transition model, where shaded nodes represent the pathophysiological component and
unshaded nodes represent the treatment component of the carcinoid model.
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A., editors,Advanced in Probabilistic Graphical Models, StudFuzz 213, pages
377–396. Springer-Verlag, Berlin Heidelberg.

van Gerven, M. A. J., Lucas, P. J. F., and van der Weide, T. P. (2005). A qualita-
tive characterisation of causal independence models usingBoolean polynomi-
als. InSymbolic and Quantitative Approaches to Reasoning with Uncertainty,
volume 3571 ofLecture Notes in Computer Science, pages 244–256, Berlin,
Germany. Springer.

van Gerven, M. A. J., Lucas, P. J. F., and van der Weide, T. P. (2006c). A
qualitative characterization of causal independence.Internat J Approx Reason.
Accepted for publication.

van Gerven, M. A. J. and Taal, B. G. (2006). Structure and parameters of a
Bayesian network for carcinoid prognosis. Technical Report ICIS-R6033,
Radboud University Nijmegen, Nijmegen, The Netherlands.



212 References

van Gerven, M. A. J., Taal, B. G., and Lucas, P. J. F. (2007b). Aprobabilistic
model for carcinoid prognosis.J Biomed Inform. Submitted for publication.

van Rijsbergen, C. J. (1979).Information Retrieval. Butterworths, London, UK,
2nd edition.

Vomlel, J. (2002). Exploiting functional dependence in Bayesian network infer-
ence. In Boutilier, C. and Goldszmidt, M., editors,Proceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligence, pages 528–535,
San Francisco, CA. Morgan Kaufmann.

Von Neumann, J. and Morgenstern, O. (1947).Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ.

Wald, A. (1950).Statistical Decision Functions. John Wiley & Sons, New York,
NY.

Wang, H. and Ahuja, N. (2004). Compact representation of multidimensional
data using tensor rank-one decomposition. InInternational Conference on
Pattern Recognition, pages 44–47. IEEE.

Warner, H. R., Toronto, A. F., Veasy, L. G., and Stephenson, R. (1961). A
mathematical approach to medical diagnosis: Application to congenital heart
disease.J Am Med Informat Assoc, 177:177–183.
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Samenvatting

De klinische praktijk wordt gekenmerkt door complexe takenals diagnose, be-
handeling en prognose, waarbij de arts op ieder moment de juiste beslissing dient te
nemen in onzekere situaties. Door de toenemende complexiteit van de hedendaagse
geneeskunde en het streven naar doeltreffend en efficiënt medisch handelen, bestaat
er behoefte aan systemen die de arts ondersteunen bij het nemen van beslissingen.

De afgelopen decennia zijn er steeds geavanceerdere technieken ontwikkeld die
een basis kunnen vormen voor beslissingsondersteunende systemen. In dit proef-
schrift richten we ons op zogenaamde Bayesiaanse netwerken; grafische modellen
die gebaseerd zijn op kansrekening en een mogelijkheid bieden om te redeneren met
onzekere kennis. Het is bekend dat optimale modellen automatisch geleerd kunnen
worden mits men over veel tijd en een grote hoeveelheid relevante data beschikt.
De klinische praktijk wordt echter gekenmerkt door een beperkte hoeveelheid data.
Dit impliceert dat het leren van optimale modellen vaak nietmogelijk is. Hier staat
tegenover dat artsen beschikken over een grote hoeveelheidspecialistische kennis die
gebruikt kan worden om Bayesiaanse netwerken handmatig te construeren. In dit
proefschrift worden verschillende technieken ontwikkelddie Bayesiaanse netwerken
geschikt maken voor beslissingsondersteuning in de klinische praktijk. Met behulp
van deze technieken kunnen modellen opgebouwd worden uit beschikbare medische
kennis en bruikbare modellen geleerd worden uit een beperkte hoeveelheid data.

Na een beschouwing over de medische en wiskundige conceptendie van be-
lang zijn voor het onderzoek, beginnen we in hoofdstuk 3 met de beschrijving van
medische beslissingsondersteuning in termen van abstracte probleemoplossing. Een
duidelijke definitie van het medische probleem in combinatie met de specificatie van
restricties op het te gebruiken model, geven al enig inzichtin de uiteindelijke struc-
tuur van het te bouwen Bayesiaanse netwerk. Vervolgens wordt een handleiding ge-
boden voor het bouwen van Bayesiaanse netwerken op basis vanbeschikbare medi-
sche kennis welke onder andere gebaseerd is op eerder opgedane modelleerervaring.

In hoofdstuk 4 ontwikkelen we een concrete techniek die tot doel heeft om medi-
sche kennis te representeren in termen van speciale Bayesiaanse netwerk structuren.
Het idee is dat causale (oorzaak-gevolg) relaties die gespecificeerd zijn op een kwali-
tatieve manier in combinatie met een aantal voor de hand liggende aannamen, leiden
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tot een theorie die het toestaat om automatisch een model (ofverzameling modellen)
te identificeren die aan de kwalitatieve specificatie voldoet. Dit biedt onder andere
de mogelijkheid om het ontwikkelen van Bayesiaanse netwerken op basis van expert
kennis te vereenvoudigen.

Hoofdstuk 5 behandelt een ander probleem; namelijk het leren van een opti-
maal behandelingsmodel als we de beschikking hebben over een model van de on-
derliggende ziekte. Dit is een complex probleem aangezien behandeling het nemen
van de juiste beslissingen op ieder moment in de tijd vereist. We beschrijven een for-
malisme waarin dit soort problemen gerepresenteerd kunnenworden en ontwikkelen
een aantal technieken die het leren van (bij benadering) optimale behandelingsmo-
dellen mogelijk maakt. De bruikbaarheid van de technieken wordt gedemonstreerd
aan de hand van een model van hoog-gradige carcinoı̈de tumoren.

In hoofdstuk 6 beschrijven we de ontwikkeling van een model van laag-gradige
carcinoı̈de tumoren waarin zowel de ziekte alsmede haar behandeling centraal staan.
Met 218 variabelen en 74 342 kans-schattingen is dit zogenaamde dynamische
Bayesiaanse netwerk een van de grootste in zijn soort. Het nut van dit soort mo-
dellen wordt gedemonstreerd aan de hand van een aantal casussen.

De hoofdstukken drie tot en met zes richten zich voornamelijk op behandeling en
maken gebruik van aanwezige medische kennis. In hoofdstuk zeven richten we ons
op diagnose en prognose, waarbij de modellen automatisch geleerd worden uit een
beperkte hoeveelheid data. We demonstreren de prestaties van het maximum mutual
information algoritme, decomposed tensor classifiers en noisy-threshold classifiers in
de context van medische diagnose en prognose.

Hoofdstuk 8 geeft een algemene beschouwing over de ontwikkelde technieken.
We concluderen dat de behandelde technieken hun nut hebben bewezen en een solide
basis vormen voor beslissingsondersteuning in de klinische praktijk.
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