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Outline 



Frames 

•   in art: frame of a painting 

•  in geometry: coordinate system  

•  in knowledge processing:  

   context for the embedding of information 
 
•   refinement of frames leads to a finer granularity 



Precision and Granularity 
Aristotle  
(Physics, book VI, 239a, 23): 
During the time when a system is 
moving, not only moving in some of 
its parts, 
 
 
  
it is impossible that the moving 
system is precisely at a certain place. 
 

Aristotle 



Einstein’s Granularity Remark 

Albert Einstein:  
„Zur Elektrodynamik bewegter Körper“  
Annalen der Physik 17 (1905): 891-921 
 

Footnote on page 893: 
„Die Ungenauigkeit, welche in dem Begriff der 
Gleichzeitigkeit zweier Ereignisse an (annähernd) demselben 
Orte steckt und gleichfalls durch eine Abstraktion überbrückt 
werden muß, soll hier nicht erörtert werden.“ 

 



 
•  Statistics 

•  Clusteranalysis 

•  Interval Mathematics 

•  Spatio-Temporal Granularity (Robotics) 

•  Granularity Reasoning 

 

Granularity in Knowledge Representations 



 
Lotfi Zadeh: Fuzzy Theory (1965) 
 
 
 
Zdzislaw Pawlak: Rough Set Theory (1982) 
 
 
 
Rudolf Wille: Conceptual Scaling Theory (1982) 
 

Recent Granularity Theories and their Founders 



 
 

  
     

Second International Conference on Rough Sets and 
Current Trends in Computing,   

Banff /Kanada, 16.-19.10.2000. 

Zadeh 

Ziarko Pawlak Wolff 

Skowron 



 
 Conceptual Knowledge Processing 

•  Formal Concept Analysis 1982 
•  Mathematizing the concept of  „concept“: 
•  Visualization of conceptual hierarchies 

•  Data Analysis 
•  Conceptual Scaling Theory 
•  Conceptual Knowledge Acquisition 

•  Contextual Logic 
•  Conceptual Relational Structures 
•  Temporal Concept Analysis  

Rudolf Wille 



 
 Conceptual Scaling 

•  Main application: Data Analysis  

•  Main idea: Embed objects into conceptual frames 

•  Conceptual frames: Formal contexts describing the values 

Adam 
20 

young old 

80 40 

not young not old   
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 Chris 
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 Examples of Scales (1) 

•  Nominal scales: 

•  Ordinal scales: 
≤ 1 2 3 

1 × × × 

2 × × 

3 × 

= 1 2 3 

1 × 

2 × 

3 × 



 
 Examples of Scales (2) 

Interordinal scales: 



 
 Examples of Scales (3) 

The definition of real numbers as concepts of  a formal context: 

R := B(Q,Q,≤) \ {,-} 

:= (Q,∅) 

-:= (∅,Q) 



 
 





 
 Applications of Scales (1) 

Data of an Anorectic Young Woman: 

derived 1rat 2emot 

SELF × 

MOTHER × 

... 

many-
valued 

1rat-2e
mot 

SELF 2 
MOTHER 5 

... 

1 2 3   4 5 6  
1rational   2emotional 

1rational 2emotional 



 
 Applications of Scales (2) 

Data of an Anorectic Young Woman: 
Beginning of treatment 



 
 Applications (3) 

Data of an Anorectic Young Woman: End of treatment 



 
 Applications (4) 

The point of 
view of the 
therapist: 



Conceptual Interpretation of 
Fuzzy Theory 

Lotfi A. Zadeh (1965): 
Fuzzy Theory:  
„theory of graded concepts“  
„in which everything is a matter of degree  
or to put it figuratively,  
everything has elasticity.“  
 
1995 IEEE Medal of Honor 



Membership Function (Fuzzy Set) 

Def.: Let X be a set and f: X → [0,1]. Then f is called a  
         membership function (or a fuzzy set) on X. 
 
         „graded concepts“ are described by  
         the linear order on [0,1] 
 
There is no formal object representation in Fuzzy Theory!  



The cut-context of a Fuzzy set 

Def.: The cut-context of a membership function f: X → L 
         Kf := (L, X, If) 
         where α If x :⇔ f(x) ≥ α . 
 
Lemma: The concept lattice of the cut-context is a chain 
               which determines f uniquely. 
 



Linguistic Variables: 
Zadeh (1975):  
  
“By a linguistic variable we mean a variable  
whose values are words or sentences  
in a natural or artificial language.  
 
For example, Age is a linguistic variable  
if its values are linguistic rather than numerical,  
i.e., young, not young, very young, quite young, old,  
not very old and not very young, etc.,  
rather than 20, 21, 22, 23,....” 
 



Linguistic Variables: Example 
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Scaling the membership values! 
 



The Context of a Linguistic Variable:  
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The Realized Scale: „If an object comes in...“ 

  

 

  

 
age 
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20 
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40 
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80 

 
Scaling the age values! 
 
Second scaling! 
 



L-Fuzzy Sets for an ordered set (L,≤) 

  

 

Definition: 
Let X be a set and (L, ≤) an ordered set.  

F(X,L) := { f | f: X → L } 

is called the set of all L-Fuzzy sets  

(or L-membership functions) on X.  

 
The cut-context of an L-Fuzzy set is defined in the same 
way as for classical Fuzzy sets. 

Definition: The product of two L-Fuzzy sets 
Let f ∈ F(X,L), f ´ ∈ F(X´,L´) 
(f × f ´)(x, x´) := ( f(x),  f ´(x´) ) ∈ L × L´  
f × f ´  ∈ F(X × X´, L × L´). 
(L × L´, ≤×) 
is the usual product order. 



Linguistic Variables over an Order Set (L,≤) 

Definition: 
 

A linguistic variable (over an ordered set (L, ≤ ))   
is a quintupel  (X, V, µ, L, ≤),  

where X is a set (called the domain),   

V is a set (of linguistic values),   

(L, ≤ )  is an ordered set and  

µ: V → F(X, L) is a mapping  
which represents each linguistic value  v  by an L-Fuzzy set µv := µ(v) on X. 
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Now with values in L! 



Realized Linguistic Variables  
over an Ordered Set (L,≤) 

  

 

Definition: 
Let λ = (X, V, µ, L, ≤) be a linguistic variable,  

G a set (of "objects") and  

m: G → X  (a "measurement").  
Then  

(G,m,λ) := (G,m, X, V, µ, L, ≤) 

is called a realized linguistic variable.  



Products of Realized Linguistic Variables  
over an Ordered Set (L,≤) 

  

 

Let  ρ := (G, m, X, V, µ, L, ≤ ) and ρ´ := (G, m´, X´, V´, µ´, L´, ≤´ )   
be two realized linguistic variables on the same set G of objects.      
The mapping  m×m´ : G → X×X´  which is defined by          
(m×m´)(g) :=  ( m(g), m´(g) ) is called the                                     
 product of the two measurement functions m and m´. 
 
The mapping µ×µ´: V×V´ →  F(X×X´, L×L´) is defined by      
(µ×µ´)(v, v´) :=  µv × µ´v´ ,  where 
(µv × µ´v´ )(x, x´) := ( µv(x),  µ´v´(x´) ). 
 
Then the following tuple    
ρ×ρ´ := (G, m×m´, X×X´, V×V´, µ×µ´, L×L´, ≤× ) 
is a realized linguistic variable on the product (L×L´, ≤× ), called the 
product of ρ and ρ´. 
λ×λ´ := (X×X´, V×V´, µ×µ´, L×L´, ≤× ) is called the product of the 
corresponding linguistic variables λ and λ´. 
 
 

 



An L-Fuzzy Linguistic Variable 

  

 

with two membership functions: good, bad, and a missing value 



Problems in classical Fuzzy Theory 

  

 

 
 

 

For two classical linguistic variables over [0,1] 
their product is no longer a classical linguistic variable 
since the direct product  
 
•  [0,1] × [0,1] is not a chain! 
 
Hence in classical Fuzzy Theory 
the direct product of linguistic variables 
•  can not be defined! 
 
That and the  
•  missing object representation 
  
is the reason why so many people  
did not succeed in defining object based Fuzzy implications 
(Gaines-Rescher, Goguen, Gödel, Larsen, Lukasiewicz, 
Kleene-Dienes, Mamdani, Reichenbach, Zadeh).  



The Mamdani Implication 

If blue is big and Min(blue, red) is big, then red is big. 

Min(blue, red) 



Z. Pawlak: 	

Rough Sets: Theoretical Aspects of Reasoning About Data. 	

Kluwer Academic Publishers, 1991.	

page 3:	

“We will be mainly interested in this book with concepts 	

which form a partition (classification) 	

of a certain universe U...".	

	

Each partition yields a nominal scale and vice versa.	

	

The notion of “concept” in RST is mainly used extensionally, 
namely as a subset of the universe U. 

Conceptual Interpretation  
of Rough Set Theory (RST) 



Indiscernibility and Contingents 
Two objects are indiscernible in the sense of Rough Set Theory 
 
iff they have the same object concept. 



Knowledge Bases  
in Rough Set Theory 

Definition: (Pawlak, Rough Sets, p.3) 
A familiy of classifications over U will be called a knowledge base over U.	


We describe a knowledge base by a scaled many-valued context	


 ((G,M,W,I), (Sm | m ∈ M)) using nominal scales. 	

	


Theorem 1:	


Let (U,R) be a knowledge base. Then the scaled many-valued context 
sc(U,R) := ((U,R,W,I), (SR | R ∈ R)) is defined by: W:= { [x]R  | x ∈ U, 
R ∈ R} and (x,R,w) ∈ I :⇔ w = [x]R   and the nominal scale SR := (U/
R,  U/R,  =)  for  each  many-valued  attribute  R  ∈  R.   Then  the 
indiscernibility  classes  of  (U,R)  are  exactly  the  contingents  of  the 
derived context K of  sc(U,R).	


	




Knowledge Bases  
and Scaled Many-Valued Contexts 

Theorem 2:	

Let SC:= ((G,M,W,I), (Sm | m ∈ M)) be a  scaled many-valued context, 
and K := (G, {(m,n) | m ∈ M, n ∈ Mm }, J) its derived context. Then the 
knowledge base kb(SC) is defined by kb(SC):= (G, R), where R := 
{Rm | m ∈ M} and for m ∈ M Rm := {(g,h)∈ G×G | γm(g) = γm(h) } and 
γm is the object-concept mapping of the m-part of K; clearly, the m-part 
of K is the formal context (G, {(m,n) | n ∈ Mm }, Jm) where    J m := {(g, 
(m,n)) ∈ J | n ∈ Mm }. Then the indiscernibility classes of kb(SC) are 
exactly the contingents of the derived context K of  SC.	

	

Theorem 3:	

For any knowledge base (U, R):  kb(sc(U, R)) = (U, R). 



Thank you! 

karl.erich.wolff@t-online.de 
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