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Bayesian networks

� A Bayesian network is a triplet (V, G, P). V is a set 

of variables, G is a connected DAG whose nodes 
correspond one-to-one to members of V such that 
each variable is conditionally independent of its non-
descendants given its parents.

Denote the parents of v∈V in G by π(v). P is a set of 
probability distributions:

P = { P(v|π(v)) | v ∈ V}.
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Knowledge representation and inference

� Bayesian networks (BNs) are a graphical model for 
uncertain knowledge representation

� Can be constructed based on expert knowledge

� Can be learnt from data

� BNs are a graphical model for reasoning about the 
state of the problem domains

� An interpretation to the world, e.g. the posterior 
probabilities of some variable given evidence

� To support automated decision making
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Qualitative structure and quantitative distributions

� A BN consists of two parts, structure and parameters

� The graphical structure encodes conditional dependencies

� Qualitatively

� The probability distribution parameters specify the strength 
of such dependencies

� Quantitatively

� This allows us to first focus on qualitative structure 
and then quantitative strength of dependencies in 
construction
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Causal relationship makes BNs sparse

� BNs constructed based on causal (natural) 
relationship tends to be sparse

…
s1 s2 s3 sn

d

…
s1 s2 s3 sn

d

Following non-causal 
relationship between disease 
d and symptoms s1, s2, …, sn

Following causal 
relationship from disease d
to symptoms s1, s2, …, sn

If you specify a 
probability 
distribution 
table, it has 
size at least 2n

n small 
tables to 
specify, 
which is 
linear
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Conditional independent

� Let X, Y, and Z be disjoint sets of variables. X and Y
are conditionally independent give Z, denoted I(X, 
Z, Y), iff for every x ∈ DX, y ∈ DY, z ∈ DZ such 
that P(y, z) > 0, the following holds:

P(x|y, z) = P(x|z)

When Z is empty, X and Y are marginally 
independent, denoted by I(X, ∅, Y)

P(x|y) = P(x)

Degenerate 
when Z is ∅
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Conditional independent example

0.711

0.301

0.710

0.300

P(X|Y)XY

If P(X|Y) = P(X), 
whether P(Y|X) = P(Y) ?

P(X|Y) = P(X)

This pattern repeats
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Conditional independent example

0.2111

0.8011

0.9101

0.1001

0.2110

0.8010

0.9100

0.1000

P(X|Y,Z)XZY

This pattern repeats

P(X|Y,Z) = P(X|Z)
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Decomposition over structures

� A Bayesian network is a triplet (V, G, P). V is a set 

of variables, G is a connected DAG whose nodes 
correspond one-to-one to members of V such that 
each variable is conditionally independent of its non-
descendants given its parents.

Denote the parents of v∈V in G by π(v). P is a set of 
probability distributions:
P = { P(v|π(v)) | v ∈ V}.

� By chain rule: P(V) = ))(|( vvP
Vv

π
∈

∏
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Decomposition over structures

P(C, S, R, W) = P(W|S,R,C)P(S,R,C)=P(W|S,R,C)P(S,R|C)P(C)
= P(W|S,R,C)P(S|R,C)P(R|C)P(C)
= P(W|S,R,C)P(S|C)P(R|C)P(C)
= P(W|S,R)P(S|C)P(R|C)P(C)

C
h
a
in

 ru
le

D
e
co

m
p
o
se

If no structure, i.e. solid

P(S|C,R,W)P(C,R,W),
P(R|S,C,W)P(S,C,W), or
P(C|S,R,W)P(S,R,W)

or

c

S R

W

Equivalent 
structure
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Cut a structure through

a

d

b

f

c

g

e
h

i

j

k

Not through Through

By cut through, we divide and conquer
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Markov blanket

� A Markov blanket of a node includes its parents, children, and 
children’s parents. Given a Markov blanket, the node is 
independent of all other nodes.

a

d

b

f

c

g

e
h

i

j

k

Given b, c, d, e, a is 
independent of the rest of 
the structure f, g, h, i, j, k 

Given a Markov 
blanket, a graph 
can be cut through 
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Why children’s parents - v structure

s

d1 d2

Two diseases d1 and d2 can both cause symptom 
s. Before we know a patient has symptom s, d1 and 
d2 could be independent, e.g. headache or fever 
could be caused by many independent diseases. 
How if we know a patient has symptom s?

This is also the reason why 
deductive reasoning can 
generally only be done in 
one direction
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When two arcs meet

� In a directed graph, when two arcs meet in a path, 
the shared node can be in one of the three possible 
cases: tail-to-tail, head-to-tail or head-to-head, as 
the node v2 shown below.

v2

v1 v3

v2

v1 v3

v2

v1 v3
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Path open or closed

� Let X, Y and Z be disjoint subsets of nodes (vertices) in a 
DAG G. 

A path ρ between nodes x ∈ X and y ∈ Y is rendered 
closed by Z whenever one of the two conditions is true: 

I. There exists z∈Z that is either tail-to-tail or head-to-tail on ρ

II. There exists a node w that is head-to-head on ρ and neither w
nor any descendant of w is in Z. If both conditions are false, 
then ρ is rendered open by Z
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Graphical separation

� If every path between x and y is closed by Z, then x
and y are said to be separated by Z. X and Y are said 
to be separated by Z if every pair x ∈ X and y ∈ Y
are separated by Z. We use the notation < X|Z|Y >G
to denote that X and Y are separated by Z in graph G
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Graphical separation & independence

� A DAG is an I-map (or called independence map) of a 
probability distribution P(V) over a set of variables V , 
if there is a one-to-one correspondence between 
nodes in G and variables in V and for every disjoint 
subsets X, Y and Z, we have

< X|Z|Y >G⇒ I(X, Z, Y )M
� A graph is a minimal I-map if all links in it are 

necessary for it to remain an I-map
� When an I-map is minimal, there would be no nonwarranted

dependency claims
� Therefore, it is sparser and computation is more efficient
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Relationship between structure and distribution

� In a BN, its structure should be an I-map (better if 
minimal I-map) of its P(V)

< X|Z|Y >G⇒ I(X, Z, Y )M

If X and Y are separated by Z in G, then X and Y
should be independent given Z in P(V).

Reversely, if X, Y are dependent in P(V), then 
X and Y should be dependent in its structure G

Equivalent

A complete 
graph is an 
I-map of any 
distribution
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Perfect map

� If it is only an I-map, there is no guarantee that 
independencies in P(V) will have corresponding 
separation in the structure

� Similarly, if it is only an I-map, there is no guarantee 
that non-separations in the structure indicates 
dependencies in P(V) 

� To make both guaranteed, the structure should be a 
perfect-map of P(V), the structure should also be a 
D-map of P(V), but may not always be possible 


