CSE4403 3.0/CSE6602E - Soft Computing Winter 2011

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Lecture 13

Discussion on Bayesian Networks

Guest lecturer: Xiangdong An xan@cs.yorku.ca

Bayesian networks

A Bayesian network is a triplet (V, G, P). V is a set of variables, G is a connected DAG whose nodes correspond one-to-one to members of V such that each variable is conditionally independent of its nondescendants given its parents.

Denote the parents of $v \in V$ in G by $\pi(v)$. \mathcal{P} is a set of probability distributions:

 $\mathcal{P} = \{ \mathsf{P}(\mathsf{v} \mid \pi(\mathsf{v})) \mid \mathsf{v} \in \mathsf{V} \}.$

Knowledge representation and inference

- Bayesian networks (BNs) are a graphical model for uncertain knowledge representation
 - Can be constructed based on expert knowledge
 - Can be learnt from data
- BNs are a graphical model for reasoning about the state of the problem domains
 - An interpretation to the world, e.g. the posterior probabilities of some variable given evidence
 - To support automated decision making

Qualitative structure and quantitative distributions

- A BN consists of two parts, structure and parameters
 - The graphical structure encodes conditional dependencies
 - Qualitatively
 - The probability distribution parameters specify the strength of such dependencies
 - Quantitatively
- This allows us to first focus on qualitative structure and then quantitative strength of dependencies in construction

Causal relationship makes BNs sparse

 BNs constructed based on causal (natural) relationship tends to be sparse

Following non-causal relationship between disease d and symptoms $s_1, s_2, ..., s_n$

Following causal relationship from disease d to symptoms $s_1, s_2, ..., s_n$

n small

tables to

specify,

Conditional independent

• Let X, Y, and Z be disjoint sets of variables. X and Y are *conditionally independent* give Z, denoted I(X, Z, Y), iff for every $x \in D_X$, $y \in D_Y$, $z \in D_Z$ such that P(y, z) > 0, the following holds:

$$P(x|y, z) = P(x|z)$$
Degenerate
when Z is \emptyset
When Z is empty, X and Y are marginally
independent, denoted by $I(X, \emptyset, Y)$
 $P(x|y) = P(x)$

Conditional independent example

 $\mathsf{P}(\mathsf{X}|\mathsf{Y}) = \mathsf{P}(\mathsf{X})$

Y	Х	P(X Y)	
0	0	0.3] [-
0	1	0.7	\int
1	0	0.3	2
1	1	0.7	

If
$$P(X|Y) = P(X)$$
,
whether $P(Y|X) = P(Y)$?

Conditional independent example

P(X|Y,Z) = P(X|Z)

Y	Z	Х	P(X Y,Z)
0	0	0	0.1
0	0	1	0.9
0	1	0	0.8
0	1	1	0.2
1	0	0	0.1
1	0	1	0.9
1	1	0	0.8
1	1	1	0.2

Decomposition over structures

A Bayesian network is a triplet (V, G, P). V is a set of variables, G is a connected DAG whose nodes correspond one-to-one to members of V such that each variable is conditionally independent of its nondescendants given its parents.

Denote the parents of $v \in V$ in G by $\pi(v)$. \mathcal{P} is a set of probability distributions:

 $\mathcal{P} = \{ \mathsf{P}(\mathsf{v} \mid \pi(\mathsf{v})) \mid \mathsf{v} \in \mathsf{V} \}.$

• By chain rule:
$$P(V) = \prod_{v \in V} P(v \mid \pi(v))$$

Decomposition over structures

10

Cut a structure through

Through

By cut through, we divide and conquer

Markov blanket

 A Markov blanket of a node includes its parents, children, and children's parents. Given a Markov blanket, the node is independent of all other nodes.

Given b, c, d, e, a is independent of the *rest* of the structure f, g, h, i, j, k

Why children's parents - v structure

Two diseases d1 and d2 can both cause symptom s. Before we know a patient has symptom s, d1 and d2 could be independent, e.g. headache or fever could be caused by many independent diseases. How if we know a patient has symptom s?

When two arcs meet

In a directed graph, when two arcs meet in a path, the shared node can be in one of the three possible cases: tail-to-tail, head-to-tail or head-to-head, as the node v₂ shown below.

Path open or closed

Let X, Y and Z be disjoint subsets of nodes (vertices) in a DAG G. A path ρ between nodes $x \in X$ and $y \in Y$ is rendered *closed* by Z whenever one of the two conditions is true:

- I. There exists $z \in Z$ that is either tail-to-tail or head-to-tail on ρ
- II. There exists a node w that is head-to-head on ρ and neither w nor any descendant of w is in Z. If both conditions are false, then ρ is rendered *open* by Z

Graphical separation

• If every path between x and y is closed by Z, then x and y are said to be separated by Z. X and Y are said to be *separated* by Z if every pair $x \in X$ and $y \in Y$ are separated by Z. We use the notation $< X|Z|Y >_G$ to denote that X and Y are separated by Z in graph G

Graphical separation & independence

A DAG is an *I-map* (or called *independence map*) of a probability distribution P(V) over a set of variables V, if there is a one-to-one correspondence between nodes in G and variables in V and for every disjoint subsets X, Y and Z, we have

 $< X | Z | Y >_{G} \Rightarrow I (X, Z, Y)_{M}$

- A graph is a *minimal I-map* if all links in it are necessary for it to remain an I-map
 - When an I-map is minimal, there would be no nonwarranted dependency claims
 - Therefore, it is sparser and computation is more efficient

Relationship between structure and distribution

 In a BN, its structure should be an I-map (better if minimal I-map) of its P(V)

$$< X|Z|Y >_{G} \Rightarrow I(X, Z, Y)_{M}$$

A complete graph is an I-map of any distribution

Equivalent If X and Y are separated by Z in G, then X and Y should be independent given Z in P(V). Reversely, if X, Y are dependent in P(V), then X and Y should be dependent in its structure G

Perfect map

- If it is only an I-map, there is no guarantee that independencies in P(V) will have corresponding separation in the structure
- Similarly, if it is only an I-map, there is no guarantee that non-separations in the structure indicates dependencies in P(V)
- To make both guaranteed, the structure should be a perfect-map of P(V), the structure should also be a *D-map* of P(V), but may not always be possible