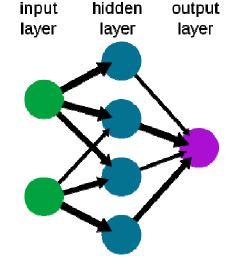

CSE4403 3.0/CSE6602E - Soft Computing Winter 2011

Lecture 8

Evolutionary Computing: What

Guest lecturer: Xiangdong An xan@cs.yorku.ca

A bigger picture

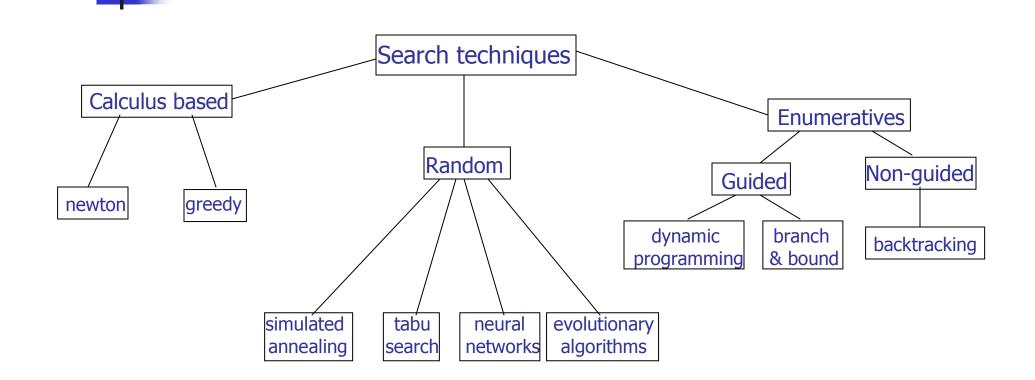

- Evolutionary computing is soft computing
- It is also
 - Natural computing
 - Optimization search
 - Heuristics
 - Local search

Evolutionary computing is natural computing

- Nature's solutions have always been a source of inspiration
 - Natural problem solvers
- DNA (molecular) computing
 - DNA as data structures
 - Molecular level, economical information storage (10¹² more efficient)
 - Computation by manipulating DNA (extension, cutting, joining)
 - Efficient energy usage (10¹⁰ times less), massive parallel (comp. power)
 - Solving NP-complete problems in linear time (by exhaustive search)
- Quantum computing
 - Quantum bits as data structures (0, 1 or a superposition of them)
 - Atomic scale information storage
 - Quantum parallelism
 - Solving NP-complete problems in linear time

Evolutionary computing is natural computing

- Neurocomputing
 - Human brain (created wheel, Toronto, wars, etc.)
 - Biological neural networks
 - Central nervous systems (brain and spinal cord)
 - Peripheral nervous systems
 - Connect CNS to limbs and organs
 - Neurons connected by axons
 - Artificial neural networks


A simple neural network

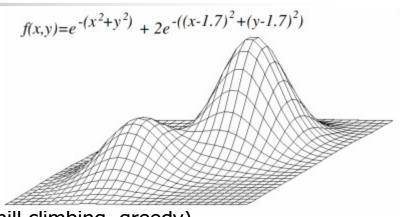
Evolutionary computing is natural computing

- Evolutionary computing
 - Evolutionary process (created the human brain)
 - Genes recombination and mutation, propagation
 - Automated problem solvers

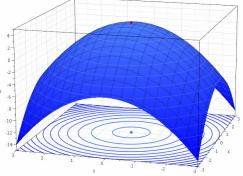
Evolutionary computing is optimal search

Evolutionary computing is optimal search

- Enumerative search
 - Brute force search
 - Backtracking
 - Branch and bound
 - Dynamic programming
- Calculus-directed search
 - Gradient descent (steepest descent, hill climbing, greedy)
- Random (local) search
 - Simulated annealing
 - Tabu search

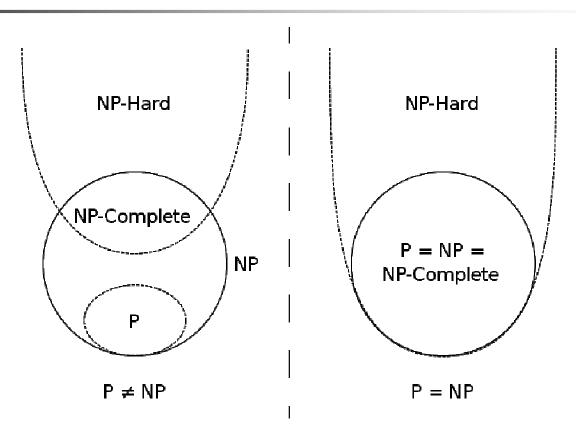

Problem

of local


optimal

- Neural networks
- Evolutionary algorithms
 - Starts from a population of solutions

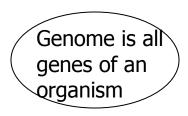
Everybody's life is a local search

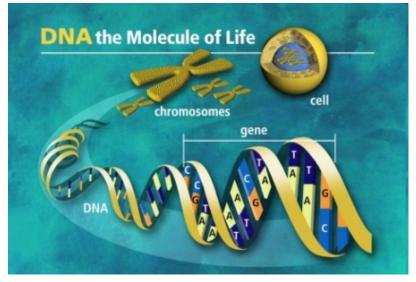

Starts from one solution

What problems need evolutionary computing

- Heruistics are to find a good enough solution where an exhaustive search is impractical
 - P problems
 - Solvable in polynomial time by a deterministic Turing machine
 - Efficiently solvable, tractable, feasible
 - NP problems
 - Non-deterministic polynomial time
 - NP-complete problems
 - Hardest of NP
 - Every problem in NP can be reduced to a problem in NP-complete
 - No polynomial solution by deterministic Turing machine is known
 - Currently intractable, infeasible
 - If any polynomial solution is found, then P = NP
 - NP-hard problems
 - At least as hard as NP-complete problems

What problems need evolutionary computing


A lot of combinatorial problems are NP-hard or NP-complete: a problem can easily take hundreds or millions of years given current computing power


Basic concepts of genetics

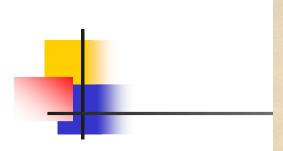
- Cell composing the organism
- Cell nucleus contains chromosomes
 - Human cells have 23 pairs of chromosomes
- A chromosome is a macromolecule called DNA
 - Two strands of DNA bond in a double helix structure
 - Complement: one paternal one maternal
 - Each strand is a chain of nucleotides of 4 types (A, G, C, T)
 - A nucleotide is a nucleic acid unit, and A (G) only binds with T (C)
 - A chromosome can have 50-250 million pairs of nucleotides
 - $4^{50} \sim 4^{250} = 2^{100} \sim 2^{500}$ permutations
 - When uncoiled 1.7-8.5cm long, considering the size of cell!
- A functional segment of a chromosome is called a gene
 - 20,000-25,000 human genes

Basic concepts of genetics

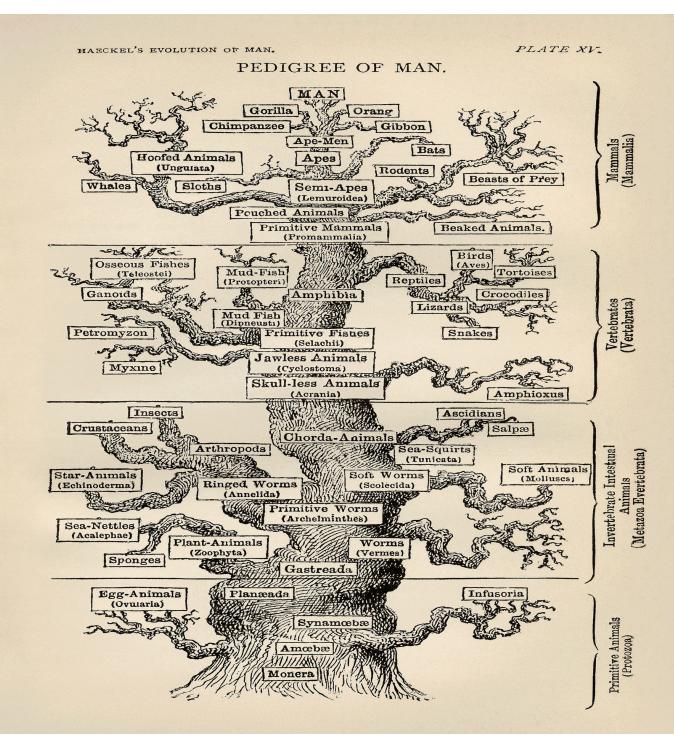
- Genotype is genetic markup of a cell or organism
 - Non-evaluable but the evolutionary search takes place
- Phenotype is measurable or observable attributes, traits, characteristics of an organism
 - Evaluable expression
- Genotype encodes phenotype

Darwin's theory of evolution

- Survival of the fittest
 - In a non-perfect environment, only a limited number of individuals that adapt or fit to it best survive (selection)
 - Fitness is affected by phenotypic traits
 - Genotypes are propagable to next generation
 - Small and random variations in genotypes occur
 - Hence variations in phenotypes happen
 - A process of trial-and-error (generate-and-test)
 - No guarantee on reaching the best fitness due to randomness
- Two cornerstones of evolution theory
 - Selection acts as a force pushing quality
 - Variation creates necessary diversity to facilitate novelty


Timeline of evolution

Age of the universe: 14 billion years Age of the Sun: 4.6 billion years Age of the Earth: 4.54 billion years


- 3.8 billion years of simple cells
- 3 billion years of photosynthesis
- 2 billion years of complex celles
- 1 billion years of multicellular life
- <u>600</u> million years of simple animals
- (570) million years of arthropods
- 550 million years of complex animals
- 500 million years fish & proto-amphibians
- 475 million years of land plants
- 400 million years of insects and seeds

- 360 million years of amphibians
- 300 million years of reptiles
- 200 million years of mammals
- 150 million years of birds
- 130 million years of flowers
- 65 million years dinosaurs died out
- 2.5 million years since genus homo
- 200,000 years since homo sapiens
- 25,000 years Neanderthals died out

 \rightarrow Cambrian explosion when the rate of evolution suddenly accelerated

 On the tree of evolution, all species are equal. It is there just because it is possible.

Local search by the biological evolution

- All branches of all possible evolution trees form the space the evolution can explore
 - That is a huge space, and our tree of evolution represents only one possible process
- Therefore, human beings may not be the best result (on another evolution tree) if some different variations happened in history
 - Given the huge search space (possibilities)

Search by evolutionary algorithms

- Many local search algorithms (e.g. Tabu, simulated annealing) are naïve evolutionary algorithms
 - Evolutionary algorithms start from a population while local search from one solution
 - Evolutionary algorithms do both recombination (crossover) and mutation while local search only mutation

Evolutionary algorithms

- The fitness (objective, cost, utility) function to optimize
 - Minimize
 - Maximize
- A population of possible solutions
 - Each individual solution is equivalent to a chromosome (DNA)
 - Each element of solution is a gene
 - Individuals are static that do not adapt but the population
 - Size

Evolutionary algorithms

- Evolution by variation and selection
 - Recombination
 - Parent selection
 - Fitter individuals get higher probability to reproduce
 - Cannot be too greedy otherwise get stuck in local optimum
 - What parts to combine and how should be stochastic
 - Mutation
 - A random, unbiased change to possibly reach any solution candidate
 - Therefore, the global optimum is possible to reach
 - Survivor selection (replacement strategy)
 - The fittest survive

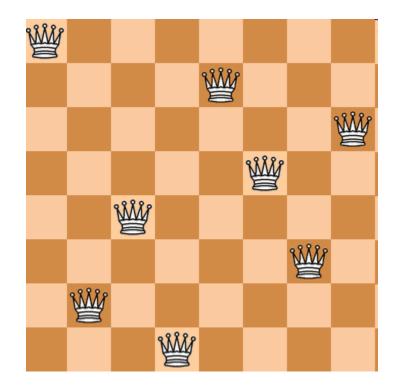
Evolutionary algorithms

- Initialization
 - The initial population can be randomly generated
 - Heuristics can be used to generate a fitter population
- Termination condition
 - After a known optimal fitness level is reached
 - After the maximally allowed CPU time elapses
 - After a number of fitness evaluations
 - When the fitness improvement is smaller than a threshold value

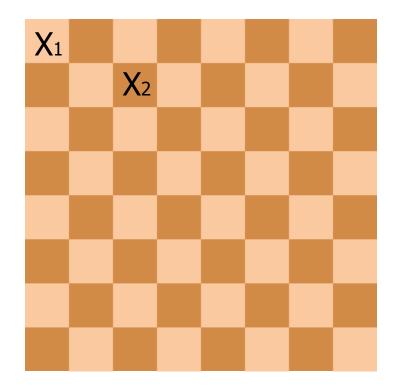
Evolutionary algorithms – pseudo code

Randomly generate the initial population of *m* individuals

Do before *termination condition* is satisfied


Randomly select a pair of parents

Crossover the two parents to generate an offspring

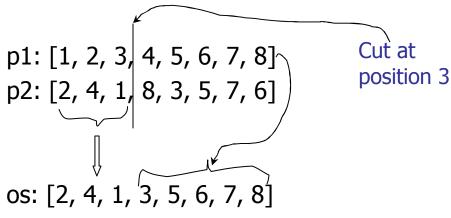

Mutate the offspring

Randomly select a candidate and compare its fitness with the offspring's If the offspring is fitter, keep the offspring and remove the candidate from the population

Eight-queens problem – an example

Eight-queens problem by backtracking

 $X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7 \quad X_8$


Incremental construction

Eight-queens problem by evolution algorithm

- Format of a candidate solution in population
 - [q₁, q₂, q₃, q₄, q₅, q₆, q₇, q₈]
 - Each column has a queen and q_i denotes row number
 - For *n*-queens problem, as *n* grows, the factorial *n*! becomes larger than all polynomials and exponential functions (but slower than <u>double exponential functions</u>) in *n*
- Objective function
 - The number of checking queen pairs
- Initial population
 - A population of 100 randomly generated permutations

Eight-queens problem by evolution algorithm

- Parent selction
 - Choose 5 individuals from population and use two fittest as parents
- Recombination (crossover) operator
 - Cut both parents at the same position (1 ~ 7)
 - The offspring take genes from one segment of a parent and the rest from another

Eight-queens problem by evolution algorithm

- Mutation operator
 - Select two random positions and swap values on the two positions

- Survivor selection
 - Randomly select an individual from population
 - If it is less fit than new offspring, replace it with new offspring
 - Otherwise, discard new offspring
- Easy to be made automated!