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Abstract

While Bayesian network (BN) can achieve accurate predictions even with erroneous or

incomplete evidence, explaining the inferences remains a challenge. Existing approaches

fall short because they do not exploit variable interactions and cannot account for com-

pensations during inferences. This paper proposes the Explaining BN Inferences (EBI)

procedure for explaining how variables interact to reach conclusions. EBI explains the

value of a target node in terms of the influential nodes in the target’s Markov blanket

under specific contexts, where the Markov nodes include the target’s parents, children, and

the children’s other parents. Working back from the target node, EBI shows the deriva-

tion of each intermediate variable, and finally explains how missing and erroneous evidence

values are compensated. We validated EBI on a variety of problem domains, including

mushroom classification, water purification and web page recommendation. The experi-

ments show that EBI generates high quality, concise and comprehensible explanations for

BN inferences, in particular the underlying compensation mechanism that enables BN to

outperform alternative prediction systems, such as decision tree.

1. Introduction

Probabilistic reasoning systems like the Bayesian network (BN) [1] are developed to assist

us with complex decisions. Given a set of input values, referred to commonly as the findings

or evidence, BN derives the posterior probabilities for a target of interest. This is known as

an inference on the target, and the target value with the highest belief or probability is the

prediction. BN represents causal dependencies as directed arcs, and derives belief values by

multiplying conditional probabilities. The encoded nodal dependencies in BN enable it to

predict accurately even when important values are unavailable [2].

To gain user acceptance, however, the inferences made by the BN should be under-

standable to users. As the domain grows more complex, the gap between user and system
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Figure 1: A Bayesian network (BN) for movie-watching.

knowledge widens, and the need for explanation increases. Indeed, a prominent user re-

quirement of probabilistic systems is the ability to explain inferences [3]. Since BN infers

based on probabilistic interactions among its variables, the explanations should reflect these

interactions and the resulting compensation of missing and erroneous values.

Existing methods generally explain in terms of a set of input values that generates a

target distribution similar to the inferred distribution. Figure 1 shows a BN for movie-

watching. Suppose the boolean input values are given as {workDone = true, hasMoney =

true, hasFriend = true}. Methods like INSITE [4] and BANTER [5] will check if individual

input influences the target significantly, then search for the most influential path from each

significant input to the target. A sample explanation for watchMovie may be:

Before presenting any evidence, the probability of watchMovie is pa.

The following findings are considered important (in order of importance):

• workDone results in a posterior probability of pb1 for watchMovie.

• hasMoney results in a posterior probability of pb2 for watchMovie.

• hasFriend results in a posterior probability of pb3 for watchMovie.

Their influence flows along the following paths:

• workDone influences hasTime, which influences watchMovie.

• hasMoney influences watchMovie.

• hasFriend influences watchMovie.

Presenting the evidence results in a posterior probability of pb for watchMovie.

Such an explanation conceals the interactions among the parents into watchMovie, thus

disregarding the fact that inferences for watchMovie should depend strongly upon its par-

ents’ interactions. There is also no mechanism for explaining missing and erroneous inputs.

Like the existing approaches, we believe that probabilistic causal explanations [6, 7] can

elucidate the causal history behind inferences when formulated as probabilistic rules [8]:

if < conditions > then < conclusion > with probability < p > (1)

where p is given by P (conclusion|conditions). In contrast to existing approaches that

explain inferences in terms of individual evidence variables, we propose to explain the BN

inferences on a target using a conjunction of the values in its Markov blanket [1], which

includes the target’s parents, children, and the children’s other parents.
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In the movie example, we would prefer to explain watchMovie in terms of the interactions

among hasTime, hasMoney and hasFriend, rather than the inputs individually. In addition,

suppose that watchMovie’s probabilities are independent of hasFriend when a user hasTime

and hasMoney. This regularity is an instance of context-specific independence (CSI) [9],

that we could exploit to generate a more succinct explanation such as the one below:

BN predicts watchMovie is true with probability pb because

hasTime is true with probability px, and hasMoney is true with probability py.

In this paper, we introduce the Explaining BN Inferences (EBI) procedure. EBI con-

siders just the target’s Markov values during inference, because conditional independence

implies that the Markov values fully explain the inference. To simplify the explanations, EBI

exploits context-specific independencies reflected in the target’s conditional probabilities.

The EBI procedure consists of three key steps described as follows. First, EBI restruc-

tures the BN (without changing its joint distribution) such that the target has its Markov

nodes as parents. Next, EBI condenses the target’s table of conditional probabilities into de-

cision trees (DTs) [10]. Finally, the explanatory nodes under specific contexts are identified

by traversing the DTs, and the corresponding EBI explanations are generated dynamically.

The EBI procedure is unique in that:

• Whereas most existing methods restrict their explanation to the evidence nodes, EBI

explains the target node’s value using the set of nodes in its Markov blanket that shield

it from the rest of the network. This suits our human inclinations to reason in terms of

a few specific heuristics [11], and to better accept causal stories as explanations [12].

• When observations on variables are presented as evidence for BN inference, some of

the observed values may not be correct. While some explanation methods highlight

erroneous values as conflicting findings, no existing method can explain how errors may

be compensated during inference. Similarly, current methods do not explain how the

missing values along the influence paths to the target node are derived. In contrast,

EBI provides users with significant insights into these compensations, presented as

layers of explanatory rules.

We evaluate EBI on a variety of problem domains, including mushrooms edibility clas-

sification [13], web page recommendation [14] and water purification [15]. The results show

that the EBI procedure generates its explanations within seconds, and that the EBI expla-

nations effectively account for the underlying BN compensation mechanism.

The rest of the paper is organized as follows. We introduce the relevant BN concepts

and review the existing explanation methods in Section 2. Section 3 presents our EBI
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(a) Example BN.

X3 X4 X5 P(X6=0 | X3, X4, X5) P(X6=1 | X3, X4, X5)
0 0 0 p1 1 - p1 
0 0 1 p1 1 - p1 
0 1 0 p1 1 - p1 
0 1 1 p1 1 - p1 
1 0 0 p2 1 - p2 
1 0 1 p2 1 - p2 
1 1 0 p3 1 - p3 
1 1 1 p3 1 - p3 

(b) CPT of node X6.

Figure 2: Example Bayesian network (BN) and conditional probability table (CPT).

procedure, and Section 4 discusses how EBI explains BN compensations. Section 5 presents

evaluations of EBI’s efficacy. Section 6 concludes with a discussion of future work.

2. Preliminaries and Related Work

2.1 Bayesian Network (BN) and Variable Independencies

A Bayesian network (BN) is a directed acyclic graph, wherein each node represents a random

variable and an edge indicates direct dependency between two variables. By its structure

and conditional probabilities, a BN encodes a joint distribution that describes the domain’s

probabilistic semantics. We shall now introduce the key concepts of BN that are essential

for understanding our approach to explaining BN inferences.

Definition (Conditional Independence): A variable X is conditionally independent

of its non-descendants (denoted hereafter as NDes(X)) given the values of its parents [1]:

P (X|Parents(X), NDes(X)) = P (X|Parents(X)). (2)

Consider the BN in Figure 2(a) involving binary variables X1 to X6, ordered in such a

way that all non-descendants of Xi are labelled with an index smaller than i. The BN’s

joint probability, denoted as P (X1 = x1, X2 = x2, . . . , X6 = x6), or just P (x1, x2, . . . , x6),

can be factorized as:

P (x1, x2, . . . , x6) = P (x1) × P (x2|x1) × . . . × P (x6|x1, . . . , x5) =
∏

i

P (xi|x1, . . . , xi−1) (3)

By exploiting conditional independence (Equation 2), the joint probability reduces to

P (x1, x2, . . . , x6) =
∏

i

P (xi|Parents(xi)), Parents(xi) ⊆ {x1, . . . , xi−1} (4)

which allows a joint probability to be specified as a product of conditional probability tables.

4



Definition (Conditional Probability Table): For each node X, a conditional proba-

bility table (CPT) tabulates X’s distribution for possible value assignments to its parents [1].

For example, the CPT in Figure 2(b) tabulates the conditional distribution of node X6.

In the CPT, P(X6 = 0 | X3 = 0,X4 = 0,X5 = 0) is given by the conditional probability p1.

In many practical applications [9, 16–18], the CPTs can be further decomposed for faster

inferences where the target is independent of certain parents given that certain other parents

are assigned specific values. Such regularities are known as context-specific independencies.

Context-specific independence (CSI) is an independence relation that holds only when

given specific value assignments to certain variables [9]. A formal definition due to Boutilier

et al. [9] is given below.

Definition (Context-Specific Independence): Let X , Y , Z and C be pairwise

disjoint sets of variables. Sets X and Z are context-specifically independent, or contextually-

independent, given Y and the context c ∈ val(C ), if the conditional probability P(X | Y ,

c, Z ) = P(X | Y , c) whenever P(Y , c, Z ) > 0.

To illustrate with the CPT in Figure 2(b), P(X6 = 0 | X3 = 0, X4, X5) is p1 regardless of

the values of X4 and X5, i.e., X6 is contextually independent of X4 and X5 given (X3 = 0).

Note that conditional independence implies that given the parent values of a target node

with no descendant, the target is independent of the other nodes. However, conditional

independence is insufficient to “block” or separate a given variable from its descendants,

because it only asserts that

P (X|NDes(X), Des(X)) = P (X|Parents(X), Des(X)) (5)

where Des(Xi) is the set {Xi+1, Xi+2, . . .} of node Xi’s descendants. Completely predicting

a node’s behavior requires a knowledge of the larger set of nodes in its Markov blanket [1].

Definition (Markov Blanket): The Markov blanket for a node X is the set of nodes

MB(X) comprising X’s parents, children, and spouses (the child nodes’ other parents) [1].

Definition (Markov Node, Markov Value): Variables in the Markov blanket of X

constitute the Markov nodes of X; the Markov nodes’ values are the Markov values of X.

For example, node X5 in Figure 2(a) has Markov nodes X2, X6, X3 and X4 (their values

constitute the Markov values of X5). The Markov property asserts that direct dependencies

must be shown by arcs, i.e., there cannot be “backdoors” in a BN [19]. Every other node is

thus independent of or d-separated from a node X when conditioned on MB(X). Formally,

P (X|MB(X), MB′(X)) = P (X|MB(X)), MB′(X) ∩ (MB(X) ∪ X) = ∅ (6)

where MB′(X) comprises the set of remaining variables in the Bayesian network that do

not fall within the Markov blanket of node X, and X 6∈ MB′(X).
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During an inference, the belief or probability of each nodal value is updated according to

the evidence. Bounded by a common joint distribution, the values assigned to the target’s

Markov nodes explain the inferred target value, because given just these Markov values, the

most-probable target value is consistent with its expected value under the evidence.

2.2 Related Work on Explaining BN Inferences

Existing BN tools generally display inferences using bars, meters, or some other graphical

expressions of differences in probabilities among variable values. Despite the easier inter-

pretation, they are limited to examining single variable’s distributions, and it remains hard

to comprehend the overall inference process. Lacave and Diez [20] note that no explanation

method has controlled the level of details to cater to a user’s knowledge, or how inquisitive

a user is. There is no dialogue that allows a user to gather explanations progressively.

INSITE [4] and BANTER [5] are well recognized BN explanation approaches. Both

methods identify the individually influential inputs and the paths along which their influ-

ences flow. The difference is that BANTER instantiates inputs individually, whilst INSITE

removes input values individually to compare their effects on the target’s probabilities. Had-

dawy et al. [5] highlight that both BANTER and INSITE cannot detect influential inputs

that interact among themselves, because their exhaustive approach requires an exponential

number of network evaluations to do so.

Chajewska and Draper [21] propose to reduce the computational complexity by search-

ing for explanations that are good but not necessarily the best. They define the postulates

for a measure of explanation quality and provide examples of such functions. Their algo-

rithm searches for explanations that satisfy a quality threshold. It remains a challenge to

determine whether there exists an explanation with a quality exceeding a specific threshold,

because this still requires an examination of all possible subsets of evidence variables.

Zhou et al. [22] propose the extraction of classification and correlation rules based on

the target’s probabilities. The rule set is a classification model that is compliant with the

BN. However, because they do not have a mechanism to isolate the influential variables

from among all the input values, their explanations can only be in terms of all the inputs.

Moreover, because both the order of inputs and their relations under specific contexts are

never considered, interactions among inputs are neglected by the resulting rules.

The above approaches assume that the user prefers explanations that connect the evi-

dence variables to the target. They suffer when the assumption fails for two reasons:

• Firstly, the number of variables is often overwhelming. For example, there are usually

thousands of variables in domains such as biomedicine, text and multimedia. As a
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Figure 3: Overview of our proposed explanation procedure, EBI.

typical user understands only a handful of these, it is not always meaningful to explain

inferences using variables that are part of the evidence.

• Secondly, the aforementioned approaches require an exponential number of analyses

for all the possible subsets of evidence variables. They are limited to analyzing findings

individually, and are computationally intractable for reflecting variable interactions.

Scenario-based reasoning [23] argues that inferences can instead be explained by those

variables that are “relevant” to the target, even though they may not be part of the evidence.

Firstly, the relevant variables are selected using the criterion of d-separation [1]. Each

combination of values for these variables constitutes one possible scenario, or causal story.

As there may be a large number of scenarios, only the most probable ones are presented.

Similar reviews on BN explanation approaches are found in [20] and [24]. To the best of

our knowledge, no prior work has exploited the variable independencies in BN to isolate the

target’s Markov values for explaining its inferences. In addition, no prior work has exploited

variable interactions to simplify the explanations, and none of the existing approaches can

explain BN compensations during inferences.

3. Our Approach to Explaining BN Inferences

We introduce the Explaining BN Inferences (EBI) procedure, as summarized in Figure 3.

Recall from Section 2.1 that the Markov blanket is the minimal set of nodes that completely

predicts the behavior of the target node. EBI first restructures the local dependencies

around the target node through arc reversals, in such a way that its Markov nodes become its

parents while maintaining the same joint distribution. The resulting conditional probability

table (CPT) of the target node describes its probability distribution over all combinations
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(a) BN before arc reversal.

A B

C

D

F G

E

(b) BN after the arc between
nodes E and C is reversed.

A B C D P(E=e |A,B,C,D) P(E=e |A,B,C,D)
a b c d p1 1 - p1 
a b c d p1 1 - p1 
a b c d p1 1 - p1 
a b c d p1 1 - p1 
a b c d p2 1 - p2 
a b c d p2 1 - p2 
a b c d p2 1 - p2 
a b c d p2 1 - p2 
a b c d p3 1 - p3 
a b c d p3 1 - p3 
a b c d p4 1 - p4 
a b c d p5 1 - p5 
a b c d p3 1 - p3 
a b c d p3 1 - p3 
a b c d p6 1 - p6 
a b c d p5 1 - p5 

(c) CPT of node E after the arc reversal.

Figure 4: Running example for Section 3. The context-specific independencies for the target
node E are captured as regularities in the conditional probabilities of Figure 4(c).

of Markov values. To reduce the complexity of the rules that EBI generates to explain the

inference, EBI exploits context-specific independencies (CSI) and explains in terms of the

significant Markov values. From the CPT, a decision tree (DT) [10] that represents the

CSI among the Markov nodes is learned for each of the target values. During inference,

EBI compares the assigned Markov values against the DT for the inferred target value,

and explains using just the nodes on the path that matches the current context. In the

remainder of this section, we elaborate on each of these component processes of EBI with

Figure 4 as a running example.

3.1 Transforming the BN through Arc Reversals

Given a BN, we can reverse the arc from the target to each of its children, while readjusting

their local structures and conditional probability tables such that the BN produces identical

inferences as before. In the process, arcs are added from the other parents of each child

node to the target node. Effectively, all the nodes in the Markov blanket of the target

become its parents, allowing us to apply DT induction to the resulting target CPT.

Theorem (Arc Reversal): An arc (i,j) linking node i to node j can be replaced by

the arc (j,i), provided that there is no other directed (i,j)-path in the network. After the

reversal, both nodes inherit each other’s conditional predecessors (the proof is given in [25]).

The requirement on the absence of alternate directed (i,j)-path is a necessary and suffi-

cient condition to ensure that no cycle is created by the arc reversal transformation. For our

purpose of reversing the arcs from the target t to each of its child nodes, this requirement is

satisfied by sequencing the arc reversals; for a child c with an alternate directed (t,c)-path,

the arc that links t to the child node on the alternative path is reversed before the arc (t,c).
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Figure 5: Decision tree (DT) induced from the CPT entries for value e in Figure 4(c).

We illustrate the arc reversal transformation [25, 26] with our running example. Fig-

ure 4(a) shows the original BN, and Figure 4(b) shows the BN after the arc from E to

C is reversed. Before reversal, Parents(E) − Parents(C) = {A, B} and Parents(C) −

Parents(E) − {E} = {D}. The Markov blanket of E comprises parents {A, B}, child

C, and the other parent of C, namely D. The reversal of arc(E, C) involves setting

Parents(E) = Parents(C) = {A, B} ∪ {D} so that E and C share a set of condition-

ing nodes, and computing their conditional probabilities as follows:

P (C|A, B, D) =
∑

E

P (E|A, B)P (C|E, D) (7)

P (E|C, A, B, D) =
P (E|A, B)P (C|E, D)

P (C|A, B, D)
(8)

Equations 7 and 8 ensure that the joint distribution of the BN remains unchanged.

Equation 7 computes P (C|A, B, D) by summing out or marginalizing the node E from the

joint distribution before arc reversal. Equation 8 computes P (E|C, A, B, D) by equating

the joint distributions before and after arc reversal, and dividing the joint distribution on

each side by P (C|A, B, D). The other child nodes of E and C are unaffected. Figure 4

shows that all the nodes in E’s Markov blanket are transformed to become parents of E.

3.2 Learning Context-Specific Independencies among Markov Nodes

After arc reversal, the context-specific independencies (CSI) among the Markov nodes are

learned from the resulting target conditional probability table (CPT). The CPT entries are

grouped by the target values, and a decision tree (DT) [10] is learned from each group with

the conditional probabilities as class labels. For the CPT in Figure 4(c), the Markov values

and probabilities in the first two columns constitute the group of sixteen entries for value e

of node E. Figure 5 shows the DT that is learned from this group.

DT induction is suitable as EBI’s learning method because it is fast and straightforward.

More importantly, each DT contains an exhaustive set of mutually exclusive paths. These
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properties guarantee that within the learned DT, there is always a unique path that matches

the current Markov value combination. Nevertheless, the quality of the decision tree induced

from the CPT could affect the extent to which contextual independencies among the Markov

nodes can be extracted. A discussion about representation of CPTs by decision trees is given

in Boutilier et al [9]. Assuming that the CPTs are not revised incrementally by incoming

examples, the entire process of reversing the arcs and learning the DTs can be completed

off-line during the preprocessing. The DTs are then referred to during prediction to identify

the minimal set of Markov nodes that explains the inference in the current context.

3.3 Generating Context-Specific Explanations based on Markov Nodes

When the BN predicts a value for the target, EBI dynamically generates an explanation for

the inference in the current context. From the DT that corresponds to the predicted target

value, EBI selects the path that matches the target’s assigned Markov values, and forms the

explanation with the nodes on this path. The most time-consuming task during explanation

is the identification of the matching path. Zhang [27] points out that the matching operation

is much more efficient with trees of paths than with sets of rules. Letting n be the number of

Markov values that constitute the current context of the target variable, the worst-case time

complexity of generating the EBI explanation is merely of order O(n). As we shall discuss in

the next section, EBI can be applied recursively to explain compensations during inference;

the use of trees for representing CSI makes EBI efficient even in recursive application.

Consider the running example in Figure 4. Given the evidence, the BN infers a value

for target E and similarly for each of its Markov nodes A, B, C and D. Without using the

DTs, we can explain the inference on E by matching the sixteen entries (rules) in its CPT

to the Markov values. For instance, if the Markov values are a, b, c and d, respectively, an

explanation can be formulated from the matching CPT entry in row 10 of Figure 4(c). If

p3=0.7, BN infers E as e with the following explanation:

• E is e with probability 0.7 because A is a, B is b, C is c, and D is d.

Instead of matching on the sixteen CPT entries, EBI traverses the DT shown in Figure 5

to find the path that contains the important Markov values within the current context. The

matching process proceeds by descending from the tree root to a leaf node through following

branches compatible with the Markov values. For the Markov values of a, b, c and d, the

resulting EBI explanation for P(e) is independent of B and D in the context (A=a, C=c):

• E is e with probability 0.7 because A is a, and C is c.

Correspondingly, the EBI explanation for E=e is given as:

• E is e with probability 0.3 because A is a, and C is c.
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Figure 6: Example for explaining BN compensations.

The explanations extracted using EBI are independent of the inference algorithm. Fur-

thermore, because the inference result and the assigned Markov values account for the same

evidence, EBI explanations are consistent with the inferences.

4. Explaining BN Compensations during Inferences

A significant advantage of EBI is that it can be extended to explain the mechanism by

which a BN compensates for missing and erroneous inputs during inferences. EBI presents

interested users with explanations on how the BN computes the distribution of one or more

variables whose values are not supplied. In addition, EBI highlights those situations in

which the network detects apparent errors in one or more variables in the target variable’s

Markov blanket, and explains how the network compensates for them during inferences. In

this section, we discuss how the EBI procedure explains these hidden BN processes.

4.1 Explaining BN Compensation of Missing Inputs

An input is missing if its value is not given as an evidence. During BN inference, the node

with the missing value is assigned a Markov value based on the interaction with its Markov

nodes. Our treatment of missing inputs is to first explain the inference on the target variable

as before using the assigned Markov values, and then provide an option for the users to

retrieve further explanations for each missing Markov node.

Figure 6 shows a BN where the target is explained using the values of its Markov nodes

0, 1, 2 and 3. If node 0 is missing during an inference, its assigned value is in turn explained

based on its own Markov nodes. EBI highlights each missing Markov value as a weakness in

the evidence. Procedure 1 summarizes EBI’s explanation of missing value compensations.

While the basic EBI procedure emphasizes explanation in terms of the target’s Markov

nodes, Recursive-EBI allows the explanation process to propagate through the BN. This

provides an interactive mechanism to explain how specific missing input values are com-

pensated by the BN. Alternatively, one can use a graph tracing algorithm to explain all the

missing inputs, while still benefiting from EBI’s exploitation of variable independencies.
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Procedure 1 Recursive-EBI (BN, V, n)

Input: BN, evidence V, and the node n to be explained.
Output: Explanation for the BN inference on n.

if n is not the target node then
Explain the BN’s computed posterior distribution for n as a missing value compensation.

else
Explain n as the target node.

Highlight any missing Markov node m.
if the user requests an explanation on m then

Recursive-EBI (BN, V, m).

4.2 Explaining BN Compensation of Erroneous Inputs

An input is potentially erroneous if its observed values carry a certain probability of being

incorrect. For specific applications like those involving sensor measurements, it is possible

to specify a sensible threshold to filter away low natural background variations in readings,

such that we are able to identify those inputs with a higher inconsistency as having a greater

potential to be erroneous. BN handles a potentially erroneous input by entering its value as

a likelihood finding instead of a specific finding. It is the likelihood ratio of the input states,

and not the specific likelihood of each state, that is taken as evidence [19]. The likelihood

ratio represents the relative probability of observing a specific value of a variable given each

of its possible states. This soft evidence allows the beliefs of that input to be affected by

other nodes. Such exploitation of variable dependencies to correct inconsistent observations

is related to the detection of inconsistencies in sensor data by Ibarguengoytia et al [28].

BN supports two types of error compensation. With reference to Figure 6, suppose that

the value for node 0 is potentially in error and its value is entered as a likelihood finding. Its

beliefs are left open to “correction” by the other nodes, under which its value may be revised

to be more consistent with the other input findings. We term this as Type I compensation.

Definition (Type I Compensation): We say that Type I compensation of an erro-

neous input occurs, when its value is corrected to an assigned value after the BN inference.

Suppose that the value of node 0 is not corrected but the BN nevertheless produces the

“right” inference. In other words, the effect of the erroneous node 0 has been compensated

by nodes 1, 2 and 3 in deriving the target value. We term this as Type II compensation.

Definition (Type II Compensation): We say that Type II compensation of an

erroneous input occurs, when its effect on the value of a target node has been overcome by

other inputs to the target after the BN inference.

EBI explains Type I and Type II compensations differently. To explain Type I compen-

sation when an assigned Markov value differs from its finding, Recursive-EBI is enhanced to

highlight the correction and explain the underlying compensation mechanism. We present
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Procedure 2 Enhanced-EBI (BN, V, n)

Input: BN, evidence V and the node n to be explained.
Output: Explanation for the BN inference on n.

if n is not the target node then
if n is missing from the evidence then

Explain the assigned value for n as a missing value compensation.
else if n has its value corrected then

Explain the correction on n as an erroneous value compensation.
else

Explain n as the target node.
for each corrected Markov node c do

Enhanced-EBI (BN, V, c).
Highlight any missing Markov node m.
if user requests an explanation on m then

Enhanced-EBI (BN, V, m).

this as Enhanced-EBI in Procedure 2. The procedure presents users with further explana-

tions when there are corrections in the target’s Markov values due to Type I compensations.

For Type II compensations, it suffices for Enhanced-EBI to explain the target value as

per Procedure 1. The reason is that EBI only considers the assigned Markov values after the

beliefs in the BN have been updated based on the current evidence, regardless of whether

they are likelihood findings, specific findings, or are inferred from other inputs.

4.3 Discussion

The simple strategies of EBI give rise to a number of apparent limitations, though most of

the concerns can be addressed through straightforward extensions. They include:

• Explaining with most-probable values might be insufficient when there are more than

one most-probable value, or when variable dimensions are numerous and the highest

posterior probabilities are too low for the explanation to be convincing. In the former

case, presenting more than one possible explanation could be a viable solution. In the

latter case, the main concern is whether the presented posterior of the target variable

is too low to be convincing. However, considering that this low posterior has provided

the very basis for the inference, presenting the low posterior can in fact alert the user

to the low degree of confidence in the BN conclusion, thus aiding the user’s judgement.

• EBI explains both the inferred target value and the underlying compensation processes,

using a local view of the target variable and its Markov variables. Nevertheless, it

is possible for an individual user to prefer (even an incomplete) global view of the

inference process instead of a local view when working in a given context. A truly
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user-centric solution could entail a hybrid or combination of global and local views of

the inference process.

• EBI is designed to effectively explain the BN inference on a single target node, but a

user might require explanations for the value assignments in multiple targets instead.

A straightforward solution would be to generate an independent EBI explanation for

each of these target variables, by treating the rest of the variables as missing values

in each round. However, EBI’s recursive treatment of missing value explanation may

then generate a large number of complex explanations. An alternative solution would

be to take advantage of the recursion capability of the procedure, by presenting first

the explanations for a small subset of the targets, then allowing the users to recursively

obtain explanations for the remaining related target variables.

Keeping in view that these and other limitations may arise during user interactions, we

proceed to empirically validate EBI’s explanation efficacy in natural problem domains.

5. Experimental Validation

In Section 5.1, we present our experimental procedures and describe the problem domains.

Sections 5.2 begins by comparing the prediction performance of BN and DT when inputs are

missing. The purpose for the comparison is to provide motivation for improving explanation

of BN inferences rather than predicting with DT, which are known to be reliable classifiers

that also provide users with comprehensible rules. The remainder of Section 5.2 discusses

examples from various domains to validate if EBI can effectively explain the missing inputs.

Following a similar organization, Section 5.3 compares BN against DT, and validates the

EBI explanations when there are erroneous inputs. Section 5.4 summarizes the explanation

efficacy of EBI in the various experiments.

5.1 Methods and Procedures

We use the CaMML program [29] to learn BN from data and the Netica-J API [30] to predict

with BN. We present results on the mushrooms data set from UCI [13], the Syskill-Webert

web page ratings data set [14], and the water network [15]. The data is preprocessed so that

BN and DT are compared fairly on the same partitions of training and testing examples.

The experimental results in this paper are obtained on a Pentium-4 3.0 GHz PC installed

with Windows XP and 1.0 GB of physical memory.

The mushrooms data set consists of 8124 examples. For each mushroom sample, given

a set of six observational input variables, the target variable Edibility predicts whether the

mushroom is poisonous or edible. Both BN and DT learn on inputs Odor, Spore-print-

color, Stalk-surface-below-ring, Stalk-color-above-ring, Habitat and Cap-color because these
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Figure 7: A BN learned from the mushrooms data.
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rating

production

Figure 8: A BN learned from the web page data.

are known to have the highest classification power. As Odor is the most important input

(with a classification accuracy of 98.52%), we compare BN and DT with Odor missing or

in error. Figure 7 shows a BN learned from the mushrooms data.

The Syskill-Webert web page ratings data set comprises the HTML sources of real web

pages and their corresponding ratings (“medium/cold”, “hot”) by a human subject. Web

pages on the topic of goats provide seventy examples for our experiments. The attributes

are English words extracted from the web pages, excluding stopwords from the SMART

list [31]. We conduct multiple trials by training on randomly-chosen examples and testing

on the rest. In each trial, we use the information gain criterion from the original study [32]

to select the 32 most informative attributes. Figure 8 shows a BN that is learned from the

web page data based on the minimal set learning procedure of Yap et al. [2].

The water network models the processes inside a water purification plant. As shown in

Figure 9, eleven inputs from the 0th and 15th time slices are used to predict CBODD 12 30.

A total of 1000 examples are generated using the Netica-J API. As DT uses only CKNI 12 15

and CBODD 12 15 in determining the value of target CBODD 12 30, we compare BN and

DT when these inputs are missing or erroneous.

Prediction performance is measured by prediction accuracy, defined as the percentage

of correctly classified test examples. (The mean absolute error (MAE) for a discrete class is
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C_NI_12_15 CKNI_12_15 CBODD_12_15 CNOD_12_15 CBODN_12_15

CBODD_12_30

Figure 9: The water BN in our experiments.

Table 1: Prediction accuracy under missing inputs. Complete: all input values are present;
Missing : important input values are missing.

BN (%) DT (%)

Complete Missing Complete Missing

Mushrooms 99.45 95.76 99.90 54.39

Water 92.30 70.20 92.30 38.80

Web Page 75.00 71.15 72.69 66.92

one minus its prediction accuracy.) For the mushrooms data set, we perform five rounds of

two-fold cross-validations to compare BN and DT. For the web page data set, we perform

ten trials of sixty training and ten test examples. For the water data, we compare BN and

DT over ten test sets of 100 examples each. For BN, the missing values are left out during

prediction, whilst for DT we substitute missing values with the most frequent values in the

corresponding training sets. For the error compensation experiments, training sets have no

error while test sets have erroneous inputs with error rates ranging from 0% to 50%.

We need a measure of explanation quality to evaluate the EBI explanations. A suitable

measure is given by Chajewska and Draper [21] to be the ratio of absolute differences:

f(o) = 1 − |
P (o|δB) − P (o|δX)

P (o|δB) − P (o|δA)
| (9)

where δA is the state of the BN before inference, δB is the state after inference, δX is the

state in the explanation, o is the predicted target value, and P (o|δ) is the predicted target

value’s probability given δ. Equation 9 evaluates to zero when P (o|δX) equals P (o|δA) (the

explanation is worthless as it cannot explain the difference in P (o|δA) and P (o|δB)); it peaks

if P (o|δX) equals P (o|δB), is symmetrical about the peak, and falls linearly away from it.

5.2 Observations under Missing Inputs

The prediction accuracies of BN and DT for the scenarios with and without missing input in

the three data sets are summarized in Table 1. The results agree with observations in Yap
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Figure 10: BN after reversal of the arc com-
ing out of Edibility in Figure 7.
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Figure 11: BN after reversal of arcs coming
out of Odor in Figure 7.

Table 2: An explanation generated by EBI for mushrooms. Odor ’s value is missing.

BN Inference with EBI Explanation Quality of Explanation

BN predicts Mushroom is poisonous with probability 1.000 because 1.000
Odor is foul with probability 1.000,
Stalk-surface-below-ring is silky with probability 1.000,
Habitat is grasses with probability 1.000, and
Stalk-color-above-ring is brown with probability 1.000.

Missing values compensated:
BN infers Odor as foul with probability 1.000 because

Spore-print-color is chocolate with probability 1.000,
Cap-color is yellow with probability 1.000, and
Stalk-surface-below-ring is silky with probability 1.000.

et al. [2] that BN and DT perform similarly when given complete data for prediction, but

BN outperforms DT when important inputs are missing. The reason is that BN encodes its

variable dependencies such that the missing values can be compensated by the other inputs.

For the mushrooms data set, the BNs learned in the various validation cycles have a

structure similar to that in Figure 7. Knowing that missing values for Odor can be explained

by the values of its Markov nodes, the structure does not tell us how these values explain

the assigned value of Odor, and how this in turn explains the inference on Edibility. EBI

brings out the missing insights.

Figures 10 and 11 show the networks after the BN in Figure 7 is restructured to explain

the values of Edibility and Odor, respectively. Table 2 shows an EBI explanation when

Odor is missing. For our illustration, the line under Odor indicates that compensation has

taken place. Only the explanation for Edibility is given in the initial feedback. If the user

is interested in the reason for the assigned Odor value, EBI presents an explanation for the
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Table 3: An explanation generated by EBI for water. CKNI 12 15 ’s value is missing.

BN Inference with EBI Explanation Quality of Explanation

BN predicts CBODD 12 30 is 25mg/l with probability 0.549 because 1.000
C NI 12 15 is 6 with probability 1.000,
CBODD 12 15 is 30mg/l with probability 1.000,
CKNI 12 15 is 30mg/l with probability 0.600, and

CBODN 12 15 is 5mg/l with probability 1.000.

Missing value compensated:
BN infers CKNI 12 15 is 30mg/l with probability 0.600 because

CKNI 12 00 is 30mg/l with probability 1.000,
C NI 12 15 is 6 with probability 1.000, and
CBODD 12 15 is 30mg/l with probability 1.000.

Table 4: An explanation generated by EBI for web page. development ’s value is missing.

BN Inference with EBI Explanation Quality of Explanation

BN predicts rating is cold/medium with probability 0.814 because 1.000
dairy is absent with probability 1.000,
development is absent with probability 0.936, and
farm is absent with probability 1.000.

Missing values compensated:
BN infers development is absent with probability 0.936 because

management is absent with probability 1.000,
dairy is absent with probability 1.000, and
farm is absent with probability 1.000.

compensation as shown. Although we can present the posteriors for all the Markov nodes

of the missing input, we have removed the target node from the missing value explanation

to avoid confusing the users. In the example, Edibility is independent of Spore-print-color

and Odor is independent of Habitat given the rest of their respective Markov values. These

variable interactions among the Markov nodes allow EBI to simplify its explanation.

Table 3 shows an EBI explanation for the water network’s prediction on CBODD 12 30

where CKNI 12 15 is missing. With reference to Figure 9, CBODD 12 30 and CKNI 12 15

have five and six Markov nodes, respectively. EBI deduces that not all the Markov nodes

are needed to explain the two values and presents its simplified explanations as shown. The

missing status of CKNI 12 15 is highlighted in the EBI explanation for CBODD 12 30, and

only interested users are presented with the missing value explanation in the table.

Table 4 shows an EBI explanation for the web page data. With reference to Figure 8,

rating has dairy, development and farm as its Markov nodes. The explanation in Table 4 is
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Figure 12: Prediction accuracy with erroneous inputs in the test data.

for the case where development is missing from the evidence. Likewise, the missing Markov

value is highlighted and the further explanation is presented only upon user request.

As shown, EBI explains missing inputs via a flexible and user-centered mechanism, thus

helping users to better appreciate how the missing values are compensated during inferences.

5.3 Observations under Erroneous Inputs

Figures 12(a), 12(b) and 12(c) summarize the results for the three domains under the effect

of erroneous inputs. BN outperforms the DT under identical error conditions because it

captures and exploits the dependencies among its variables. Figures 12(a) and 12(b) show

that BN maintains its accuracy despite the errors, whilst DT suffers as errors intensify. BN’s

robustness is most pronounced for mushrooms and less so for web pages, possibly due to

a weaker dependency among words. Likewise, Figure 12(c) suggests that the dependencies

among water plant processes are weak but BN outperforms DT when the error rate is high.
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Table 5: An example from mushrooms
data where a Type II compen-
sation gives a different predic-
tion when Odor is in error.

(a) No Error Among the Input Values.

Odor Spore-print-color Edibility

foul chocolate poisonous

(b) Wrong Odor - As Specific Finding.

Odor Spore-print-color Edibility

none chocolate edible

(c) Wrong Odor - As Likelihood Finding.

Odor Spore-print-color Edibility

foul chocolate poisonous

Table 6: An example from mushrooms
data where a Type II compen-
sation gives an identical pre-
diction when Odor is in error.

(a) No Error Among the Input Values.

Odor Spore-print-color Edibility

none black edible

(b) Wrong Odor - As Specific Finding.

Odor Spore-print-color Edibility

fishy black edible

(c) Wrong Odor - As Likelihood Finding.

Odor Spore-print-color Edibility

none black edible

Table 5 presents an example from the mushrooms experiments where an error in Odor

leads to a different inference on Edibility. The inference based on the correct Odor value

of foul is that the mushroom is poisonous (Table 5(a)). However, when Odor is wrongly

entered as none, BN predicts that the same mushroom is edible (Table 5(b)). This example

corresponds to the first explanation in Table 7. In this case, when the erroneous Odor is

entered as a specific finding, EBI explains the inferred Edibility value as follows:

BN predicts Mushroom is edible with probability 0.965 because

Odor is none with probability 1.000,

Spore-print-color is chocolate with probability 1.000,

Stalk-surface-below-ring is silky with probability 1.000,

Habitat is woods with probability 1.000, and

Stalk-color-above-ring is brown with probability 1.000.

If we enter the erroneous value of none for Odor as a likelihood finding, Odor is corrected

to foul during the inference and we get the same prediction as without error (Table 5(c)).

EBI highlights this compensation as shown in the first explanation of Table 7, where the

value of Habitat is found to be insignificant for explaining the correction in Odor.

Corresponding to the second explanation in Table 7, Table 6 shows another example

from the mushrooms experiments. Just as when Odor is none (Table 6(a)), the BN predicts

that the mushroom is edible when the wrong Odor value of fishy is entered as specific finding

(Table 6(b)). Type II compensation, which involves inputs to the target interacting to yield
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Table 7: Two explanations generated by EBI for mushrooms. Odor ’s value is in error.

BN Inference with EBI Explanation Quality of Explanation

BN predicts Mushroom is poisonous with probability 1.000 because 1.000
Odor is foul with probability 1.000,
Spore-print-color is chocolate with probability 1.000,
Stalk-surface-below-ring is silky with probability 1.000,
Habitat is woods with probability 1.000, and
Stalk-color-above-ring is brown with probability 1.000.

Erroneous values compensated:
BN corrects Odor from none to foul because given

Spore-print-color is chocolate, Cap-color is yellow,
and Stalk-surface-below-ring is silky,

Odor is none with probability 0.000, and
Odor is foul with probability 1.000.

BN predicts Mushroom is edible with probability 0.999 because 1.000
Odor is none with probability 0.999,
Spore-print-color is black with probability 1.000,
Stalk-surface-below-ring is fibrous with probability 1.000, and
Habitat is grasses with probability 1.000.

Erroneous values compensated:
BN corrects Odor from fishy to none because given

Spore-print-color is black, Cap-color is white,
and Stalk-surface-below-ring is fibrous,

Odor is fishy with probability 0.000, and
Odor is none with probability 0.999.

a right inference, helps the BN in this case to maintain the same prediction even when Odor

is in error. EBI explains this inference as follows:

BN predicts Mushroom is edible with probability 0.523 because

Odor is fishy with probability 1.000,

Spore-print-color is black with probability 1.000,

Stalk-surface-below-ring is fibrous with probability 1.000,

Habitat is grasses with probability 1.000, and

Stalk-color-above-ring is white with probability 1.000.

When the wrong Odor value of fishy is entered as a likelihood finding, the BN corrects

the Odor value to none, in addition to making the right inference that the mushroom is

edible (Table 6(c)). EBI highlights this compensation as shown in the second explanation of

Table 7. In the example, EBI simplifies its explanation for the inference on Edibility by ex-

ploiting context-specific independencies among the nodes in Edibility ’s Markov blanket (the
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Table 8: An explanation generated by EBI for water. CBODD 12 15 ’s value is in error.

BN Inference with EBI Explanation Quality of Explanation

BN predicts CBODD 12 30 is 25mg/l with probability 0.878 because 1.000
C NI 12 15 is 6 with probability 1.000,
CBODD 12 15 is 25mg/l with probability 0.984,

CKNI 12 15 is 20mg/l with probability 1.000, and
CBODN 12 15 is 20mg/l with probability 1.000.

Erroneous values compensated:
BN corrects CBODD 12 15 from 30mg/l to 25mg/l because given

CKNI 12 00 is 20mg/l, CBODD 12 00 is 25mg/l,
and CKNI 12 15 is 20mg/l,

CBODD 12 15 is 30mg/l with probability 0.016, and
CBODD 12 15 is 25mg/l with probability 0.984.

Table 9: An explanation generated by EBI for web page. farm’s value is in error.

BN Inference with EBI Explanation Quality of Explanation

BN predicts rating is cold/medium with probability 0.984 because 1.000
dairy is absent with probability 1.000, and
farm is absent with probability 0.997.

Erroneous values compensated:
BN corrects farm from present to absent because given

pigs is absent, kids is absent, animal is absent,
and dairy is absent,

farm is present with probability 0.003, and
farm is absent with probability 0.997.

nodes shown as the parents of Edibility in Figure 10) to omit Stalk-color-above-ring. Like-

wise, EBI deduces from the discovered interactions among Odor ’s Markov nodes (Odor ’s

parents in Figure 11) that Habitat is not necessary for explaining the correction in Odor.

Table 8 shows an EBI explanation for water. With reference to Figure 9, CBODD 12 30

has five Markov nodes and the erroneous CBODD 12 15 has ten. EBI exploits CSI to omit

CNOD 12 15 when explaining CBODD 12 30, and it uses just four of the ten Markov nodes

for CBODD 12 15 to explain its corrected value. Table 9 shows an EBI explanation for the

web page problem. Likewise, EBI not only explains the inference on the target rating, but

it also highlights and explains the correction in the value of farm during the inference.

5.4 Explanation Efficacy

We summarize the empirical statistics from the experiments. Table 10 presents the average

time taken to generate an EBI explanation, and Tables 11 and 12 present the savings due

to CSI. We quantify the savings by measuring the explanation complexity (defined as the
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Table 10: Average time (in units of sec-
onds) taken for generating
each EBI explanation.

Mushrooms 1.397
Water 2.657
Web Page 0.001

Average 1.352

Table 11: Percentage of cases with a re-
duction in explanation com-
plexity after exploiting CSI.

Mushrooms 62.98
Water 71.14
Web Page 10.00

Average 48.04

Table 12: Explanation complexity. Before CSI : Average number of antecedents before ex-
ploiting CSI; After CSI : Average number of antecedents after exploiting CSI.

Before CSI After CSI % reduction

Mushrooms 6.393 5.615 12.17
Water 7.355 5.629 23.47
Web Page 3.471 3.306 4.757

Average 5.740 4.850 13.47

number of rule antecedents as per [33]) before and after exploiting CSI. Table 11 presents the

percentage of all cases that experience a reduction in explanation complexity after exploiting

CSI, and Table 12 presents the reduction in average explanation complexity across all cases.

The EBI explanations have an average quality (see formula (9)) of 100.0%. Table 10

shows that EBI generates its explanations within a matter of seconds, and Table 11 shows

that as many as half of all test cases have benefitted from EBI’s exploitation of CSI to

simplify explanations. Table 12 shows that on average, EBI explanations enjoy a substantial

reduction in complexity by exploiting CSI to identify the minimal set of important nodes.

The results demonstrate that EBI produces concise rules to explain BN inferences in

real time. Most importantly, EBI is unique in its ability to explain missing and erroneous

inputs. As illustrated by experiments on the various data sets, EBI effectively explains the

intrinsic processes of BN compensations to the users.

6. Conclusion and Future Work

As Bayesian network (BN) exploits interactions among its variables during inferences, expla-

nations for the inferences should reflect these interactions. To this end, our EBI procedure

explains the inferred value of a node using its Markov values rather than the evidence vari-

ables. To make its explanations more concise, EBI exploits context-specific independencies

to highlight the important Markov values in specific contexts. It then generates probabilistic

explanations that show how variable interactions lead to the inferences. Experiments using
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real-world data sets show that BN outperforms DT when inputs are missing or erroneous;

EBI produces concise and comprehensible explanations for the underlying compensation

mechanism, thus promoting user appreciation of the BN predictions.

The search for a natural and user-centric BN explanation process is a very hard prob-

lem, and the work reported here constitutes a step towards that end. There are several

avenues for future work. The EBI procedure uses decision tree rules to represent variable

interactions, but alternative forms of representation like M-of-N rules [34, 35] may provide

a richer semantics. Besides context-specific independence, we can investigate other types of

variable interactions that may be useful for explaining BN inferences. For instance, causal

independence [36], defined as a situation where multiple causes contribute independently

to a common effect, has known applicability to noisy OR-gate problems [1]. Yet another

interesting future direction is to transform the induced decision tree data structures into

their equivalent decision diagrams [37], which would reduce the space complexity for the

representation of context-specific independencies. Finally, further studies are necessary to

conceive and evaluate ways to enhance EBI for specific domains including biomedicine.

While our research demonstrates the general feasibility of EBI, the collection of qualitative

user evaluations is an important follow-on work.
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