
Fast Evolution Strategies�Xin Yao and Yong LiuComputational Intelligence Group, School of Computer ScienceUniversity College, The University of New South WalesAustralian Defence Force Academy, Canberra, ACT, Australia 2600Email: fxin,liuyg@csadfa.cs.adfa.oz.au, URL: http://www.cs.adfa.oz.au/~xinAbstractEvolution strategies are a class of general optimisation algorithms which are applicable to functionsthat are multimodal, nondi�erentiable, or even discontinuous. Although recombination operators havebeen introduced into evolution strategies, the primary search operator is still mutation. Classical evolu-tion strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distributionis proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mu-tation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in thispaper. The paper also shows empirically that changing the order of mutating the objective variables andmutating the strategy parameters does not alter the previous conclusion signi�cantly, and that Cauchymutations with di�erent scaling parameters still outperform the Gaussian mutation with self-adaptation.However, the advantage of Cauchy mutations disappears when recombination is used in evolution strate-gies. It is argued that the search step size plays an important role in determining evolution strategies'performance. The large step size of recombination plays a similar role as Cauchy mutation.Keyword | Evolution strategies, function optimisation, Cauchy mutation.1 IntroductionAmong three major branches of evolutionary computation, i.e., genetic algorithms (GAs), evolutionaryprogramming (EP) and evolution strategies (ESs), ESs are the only one which was originally proposed fornumerical optimisation and is still mainly used in optimisation [2, 3]. The primary search operator in ESsis mutation although recombinations have been used. The state-of-the-art of ESs is (�; �)-ES [4, 5], where� > � � 1. (�; �) means that � parents generate � o�spring through recombination and mutation in eachgeneration. The best � o�spring are selected deterministically from the � o�spring and replace the parents.Elitism and probabilistic selection are not used. This paper �rst considers a simpli�ed version of ESs, i.e.,ESs without any recombination. Then ESs with recombination and a di�erent order of mutating objectivevariables and strategy parameters are investigated.ESs can be regarded as a population-based variant of generate-and-test algorithms [6]. They use searchoperators such as mutation to generate new solutions and use a selection scheme to test which of thenewly generated solutions should survive to the next generation. The advantage of viewing ESs (and otherevolutionary algorithms, EAs) as a variant of generate-and-test search algorithms is that the relationshipsbetween ESs and other search algorithms, such as simulated annealing (SA), tabu search (TS), hill-climbing,etc., can be made clearer and thus easier to explore. In addition, the generate-and-test view of ESs makesit obvious that \genetic" operators, such as crossover (recombination) and mutation, are really stochasticsearch operators which are used to generate new search points in a search space. The e�ectiveness of asearch operator would be best described by its ability to produce promising new points which have higherprobabilities of �nding a global optimum, rather than by some biological analogy. The role of test ina generate-and-test algorithm or selection in ESs is to evaluate how \promising" a new point is. Suchevaluation can be either deterministic or probabilistic.The (�; �)-ESs use Gaussian mutation to generate new o�spring and deterministic selection to test them.There has been a lot of work on di�erent selection schemes for ESs [7]. However, work on mutations has�An earlier short version of this paper [1] was presented at the Sixth Annual Conference on Evolutionary Programming,Indianapolis, USA, 13-16 April 1997. This work is partially supported by a University College Special Research Grant. Thepaper has been accepted by the journal Control and Cybernetics.1



been concentrated on self-adaptation [2, 5] rather than on new mutations. Gaussian mutations seem to bethe only choice [2, 5]. Recently, Cauchy mutation has been proposed as a very promising search operatordue to its higher probability of making long jumps [8, 9, 10]. In [8, 9], a fast EP based on Cauchy mutationwas proposed. It compares favourably to the classical EP on 23 benchmark functions (up to 30 dimensions).In [10], the idea of using Cauchy mutation in EAs was independently studied by Kappler. An (1 + 1) EAwithout self-adaptation and recombination was investigated. Both analytical and numerical results on 3one- or two- dimension functions were presented. It was pointed out that \in one dimension, an algorithmworking with Cauchy distributed mutations is both more robust and faster. This result cannot easily begeneralized to higher dimensions, ..." [10].This paper continues the work of fast EP [8] and studies fast ESs which use Cauchy mutations. Theidea of Cauchy mutation was originally inspired by fast simulated annealing [11, 12]. The relationshipbetween the classical ESs (CES) using Gaussian mutation and the fast ESs (FES) using Cauchy mutation isanalogous to that between classical simulated annealing and fast simulated annealing. This paper investigatesmulti-membered ESs, i.e., (�; �)-ESs with self-adaptation. Extensive experimental studies on 23 benchmarkproblems (up to 30 dimensions) have been carried out. The results have shown that FES outperforms CESon most of the 23 benchmark problems.The rest of this paper is organised as follows. Section 2 formulates the global optimisation problemconsidered in this paper and describes the implementation of CES. Section 3 describes the implementationof FES. Section 4 presents and discusses the experimental results on CES and FES using 23 benchmarkproblems. Section 5 investiagtes di�erent ES variants. Finally, Section 6 concludes with a few remarks.2 Function Optimisation By Classical Evolution StrategiesA global minimisation problem can be formalised as a pair (S; f), where S � Rn is a bounded set on Rnand f : S 7! R is an n-dimensional real-valued function. The problem is to �nd a point xmin 2 S such thatf(xmin) is a global minimum on S. More specially, it is required to �nd an xmin 2 S such that8x 2 S : f(xmin) � f(x)Here f does not need to be continuous, but it must be bounded. We only consider unconstrained functionminimisation in this paper. Function maximisation can be converted to a minimisation problem easily bytaking a negative sign.According to the description by B�ack and Schwefel [3], the (�; �)-CES is implemented as follows in ourstudies:1. Generate the initial population of � individuals, and set k = 1. Each individual is taken as a pair ofreal-valued vectors, (xi; �i), 8i 2 f1; � � � ; �g.2. Evaluate the �tness value for each individual (xi; �i), 8i 2 f1; � � � ; �g, of the population based on theobjective function, f(xi).3. Each parent (xi; �i), i = 1; � � � ; �, creates �=� o�spring on average, so that a total of � o�spring aregenerated: for i = 1; � � � ; �, j = 1; � � � ; n, and k = 1; � � � ; �,xk0(j) = xi(j) + �i(j)N (0; 1); (1)�k0(j) = �i(j) exp(� 0N (0; 1) + �Nj(0; 1)) (2)where xi(j), xk 0(j), �i(j) and �k0(j) denote the j-th component of the vectors xi, xk 0, �i and �k0,respectively. N (0; 1) denotes a normally distributed one-dimensional random number with mean zeroand standard deviation one. Nj(0; 1) indicates that the random number is generated anew for eachvalue of j. The factors � and � 0 are usually set to �p2pn��1 and �p2n��1 [3].4. Evaluate the �tness of each o�spring (xi0; �i0), 8i 2 f1; � � � ; �g, according to f(xi0).5. Sort o�spring (xi0; �i0), 8i 2 f1; � � � ; �g in a non-descending order according to their �tness values, andselect the � best o�spring out of � to be parents of the next generation.6. Stop if the stopping criterion is satis�ed; otherwise, k = k + 1 and go to Step 3.It is worth mentioning that swapping the order of Eq.(1) and Eq.(2) and using �k0(j) to generate xk 0(j)may give better performance for some problems [13]. However, no de�nite conclusion can be drawn yet.2



3 Fast Evolution StrategiesThe one-dimensional Cauchy density function centred at the origin is de�ned by:ft(x) = 1� tt2 + x2 ; �1 < x <1;where t > 0 is a scale parameter [14](pp.51). The corresponding distribution function isFt(x) = 12 + 1�arctan�xt � :The shape of ft(x) resembles that of the Gaussian density function but approaches the axis so slowly thatan expectation does not exist. As a result, the variance of the Cauchy distribution is in�nite. Figure 1 showsthe di�erence between Cauchy and Gaussian functions by plotting them in the same diagram. It is obviousthat the Cauchy function is more likely to generate a random number far away from the origin because ofits long at tails. This implies that Cauchy mutation in FES is more likely to escape from a local minimumor move away from a plateau.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4

N(0,1)
Cauchy, t=1

Figure 1: Comparison between Cauchy and Gaussian distributions.In order to investigate the impact of Cauchy mutation on ESs, the minimal change has been made to theCES. The FES studied in this paper is kept exactly the same as the CES described in Section 2 except forEq.(1) which is replaced by the following:xk 0(j) = xi(j) + �i(j)�j (3)where �j is an Cauchy random variable with the scale parameter t = 1 and is generated anew for each valueof j. It is worth indicating that Eq.(2) is unchanged in FES in order to keep the modi�cation of CES to aminimum. � in FES plays the role of the scale parameter t not the variance in the Cauchy distribution.In our experiments, the Gaussian random number was generated according to the following function inFORTRAN [15] (pp.280).FUNCTION gasdev(idum)INTEGER idumREAL gasdevC Returns a normally distributed number with zero mean and unit var-C iance, using ran1(idum) as the source of uniform numbers.INTEGER isetREAL fac,gset,rsq,v1,v2,ran1 3



SAVE iset,gsetDATA iset/0/if(iset.eq.0)then1 v1=2.*ran1(idum)-1.v2=2.*ran1(idum)-1.rsq=v1**2+v2**2if(rsq.ge.1..or.rsq.eq.0.)goto 1fac=sqrt(-2.*log(rsq)/rsq)gset=v1*facgasdev=v2*faciset=1elsegasdev=gsetiset=0endifreturnENDThe Cauchy random number was generated according to the following FORTRAN function [16] (pp.451).FUNCTION cauchy(idum)REAL cauchyC Returns a Cauchy random number with probability density functionC f(x)=1/(pi*(1+x*x)).REAL v1,v2v1=gasdev(idum)v2=gasdev(idum)if(v2.ne.0.)thencauchy=v1/v2elsecauchy=0.0endifreturnENDThe uniform random generator was generated according to a FORTRAN function given by Press et al.[15] (pp.271).4 Experimental Studies4.1 Test FunctionsA set of 23 well-known functions [17, 18, 4, 3, 19, 20] are used in our experimental studies. This relativelylarge set is necessary in order to reduce biases in evaluating algorithms. The 23 test functions are listed inTable 1. The detailed description of each function is given in the appendix. Functions f1 to f13 are highdimensional problems. Functions f1 to f5 are unimodal functions. Function f6 is the step function whichhas one minimum and is discontinuous. Function f7 is a noisy quartic function, where random[0; 1) is auniformly distributed random variable in [0; 1). Functions f8 to f13 are multimodal functions where thenumber of local minima increases exponentially with the function dimension [18, 4]. Functions f14 to f23 arelow-dimensional functions which have only a few local minima [18]. For unimodal functions, the convergencerate of FES and CES is more important than the �nal results of the optimisation in this paper, as there areother methods which are speci�cally designed to optimise unimodal functions. For multimodal functions,the important issue is whether an algorithm can �nd a better solution in a shorter time.4.2 Experimental SetupThe experimental setup was based on B�ack and Schwefel's suggestion [3]. For all experiments, (30; 200)-ESwith self-adaptive standard deviations, no correlated mutations, no recombination, the same initial standard4



Table 1: The 23 test functions used in our experimental studies, where n is the dimension of the function,fmin is the minimum value of the function, and S � Rn. The detailed description of each function is givenin the appendix.Test function n S fminf1(x) =Pni=1 x2i 30 [�100; 100]n 0f2(x) =Pni=1 jxij+Qni=1 jxij 30 [�10; 10]n 0f3(x) =Pni=1(Pij=1 xj)2 30 [�100; 100]n 0f4(x) = maxifjxij; 1 � i � ng 30 [�100; 100]n 0f5(x) =Pn�1i=1 [100(xi+1 � x2i )2 + (xi � 1)2] 30 [�30; 30]n 0f6(x) =Pni=1 (bxi + 0:5c)2 30 [�100; 100]n 0f7(x) =Pni=1 ix4i + random[0; 1) 30 [�1:28; 1:28]n 0f8(x) =Pni=1 ��xi sin(pjxij)� 30 [�500; 500]n -12569.5f9(x) =Pni=1[x2i � 10 cos(2�xi) + 10)] 30 [�5:12; 5:12]n 0f10(x) = �20 exp��0:2q 1nPni=1 x2i�� exp � 1nPni=1 cos 2�xi� 30 [�32; 32]n 0+20 + ef11(x) = 14000Pni=1 x2i �Qni=1 cos� xipi�+ 1 30 [�600; 600]n 0f12(x) = �n n10 sin2(�y1) +Pn�1i=1 (yi � 1)2[1 + 10 sin2(�yi+1)] 30 [�50; 50]n 0+(yn � 1)2	 +Pni=1 u(xi; 10; 100; 4),yi = 1 + 14(xi + 1)u(xi; a; k;m) = 8<: k(xi � a)m; xi > a;0; �a � xi � a;k(�xi � a)m; xi < �a:f13(x) = 0:1nsin2(3�x1) +Pn�1i=1 (xi � 1)2[1 + sin2(3�xi+1)] 30 [�50; 50]n 0+(xn � 1)[1 + sin2(2�xn)]	+Pni=1 u(xi; 5; 100; 4)f14(x) = � 1500 +P25j=1 1j+P2i=1(xi�aij)6 ��1 2 [�65:536; 65:536]n 1f15(x) =P11i=1 hai � x1(b2i+bix2)b2i+bix3+x4 i2 4 [�5; 5]n 0.0003075f16(x) = 4x21 � 2:1x41+ 13x61 + x1x2 � 4x22 + 4x42 2 [�5; 5]n -1.0316285f17(x) = �x2 � 5:14�2x21 + 5�x1 � 6�2 + 10 �1� 18� � cosx1 + 10 2 [�5; 10]� [0; 15] 0.398f18(x) = [1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 2 [�2; 2]n 3+6x1x2 + 3x22)]� [30 + (2x1 � 3x2)2(18� 32x1+12x21 + 48x2 � 36x1x2 + 27x22)]f19(x) = �P4i=1 ci exp h�P4j=1 aij(xj � pij)2i 4 [0; 1]n -3.86f20(x) = �P4i=1 ci exp h�P6j=1 aij(xj � pij)2i 6 [0; 1]n -3.32f21(x) = �P5i=1[(x� ai)T (x� ai) + ci]�1 4 [0; 10]n �1=c1f22(x) = �P7i=1[(x� ai)T (x� ai) + ci]�1 4 [0; 10]n �1=c1f23(x) = �P10i=1[(x� ai)T (x� ai) + ci]�1 4 [0; 10]n �1=c1where c1 = 0:1 5



deviations 3:0, and the same initial population were used. All experiments were repeated for 50 runs. Theinitial population was generated uniformly at random in the ranges speci�ed in Table 1. The number ofgenerations for each function was determined after some limited preliminary runs which showed that an ESwould have converged (either prematurely or globally) after certain number of generations. There is littlepoint running the algorithm longer if it is unlikely to improve the performance further.4.3 Experimental Results4.3.1 Unimodal Functions (f1{f7)Unimodal functions are not the most interesting and challenging test problems for global optimisation algo-rithms, such as ESs. There are more e�cient algorithms than ESs, which are speci�cally designed to optimisethem. The aim here is to use them to get a picture of the convergence rate of CES and FES. Figures 2and 3 show the evolutionary process of CES and FES on unimodal functions f1{f7. The �nal results aresummarised in Table 2.Table 2: Comparison between CES and FES on f1{f7. The results were averaged over 50 runs. \Mean Best"indicates the mean best function values found in the last generation. \Std Dev" stands for the standarddeviation.Function Number of FES CES FEP�CEPGenerations Mean Best Std Dev Mean Best Std Dev t-testf1 750 2:5� 10�4 6:8� 10�5 3:4� 10�5 8:6� 10�6 22:07yf2 1000 6:0� 10�2 9:6� 10�3 2:1� 10�2 2:2� 10�3 27:96yf3 2500 1:4� 10�3 5:3� 10�4 1:3� 10�4 8:5� 10�5 16:53yf4 2500 5:5� 10�3 6:5� 10�4 0.35 0.42 �5:78yf5 7500 33.28 43.13 6.69 14.45 3:97yf6 750 0 0 411.16 695.35 �4:18yf7 1500 1:2� 10�2 5:8� 10�3 3:0� 10�2 1:5� 10�2 �7:93yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.In terms of �nal results, FES performs better than CES on f4, f6 and f7, but worse than CES on f1{f3and f5. No strong conclusion can be drawn here. However, a closer look at the evolutionary processes revealssome interesting facts. For example, FES performs far better than CES on f6 (the step function). It has avery fast convergence rate and converges to the global minimum every time. This indicates that FES is verygood at dealing with plateaus due to its long jumps. Such long jumps enable FES to move from one plateauto a lower one easily, while CES would have to wander about a plateau for a long time before it can reach alower plateau.FES's behaviour on f1 is also very interesting. According to Figure 2, f1's value decreases much fasterfor FES than for CES in the beginning. This is probably caused by FES's long jumps, which take it to thecenter of the sphere more rapidly. When FES approaches the center, i.e., the minimum, long jumps are lesslikely to generate better o�spring and FES has to depend on small steps to move towards the minimum. Thesmaller central part of the Cauchy distribution, as shown by Figure 1, implies Cauchy mutation is weakerthan Gaussian one at �ne-grained neighbourhood (local) search. Hence the decrease of f1's value for FESslows down considerably in the vicinity of the minimum, i.e., when f1 is smaller than 10�3. CES, on theother hand, improves f1's value steadily throughout the evolution and eventually overtakes FES.The behaviour of FES and CES on other functions can be explained in a similar way. The probability ofmaking long jumps by a mutation plays an important role in determining the behaviour of ESs.4.3.2 Multimodal Functions With Many Local Minima (f8{f13)Functions f8{f13 are multimodal functions with many local minima. The number of local minima increasesexponentially as the function dimension increases [18, 4]. These functions appear to be very \rugged" anddi�cult to optimise. Figure 4 shows the 2-dimensional version of f8.The evolutionary processes of FES and CES for f8{f13 are shown by Figures 5 and 6. The �nal resultsare summarised in Table 3. Somewhat surprisingly, FES outperforms CES consistently on these apparently6
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Figure 2: Comparison between CES and FES on f1{f4. The vertical axis is the function value and thehorizontal axis is the number of generations. 7
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Figure 3: Comparison between CES and FES on f5{f7.The vertical axis is the function value and thehorizontal axis is the number of generations. 8
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Figure 4: The 2-dimensional version of f8.di�cult functions. Figures 5 and 6 show that CES stagnates rather early in search and makes little progressthereafter, while FES keeps �nding better function values throughout the evolution. It appears that CES istrapped in one of the local minima and is unable to get out due to its more localised Gaussian mutation.FES, on the other hand, has a much higher probability of making long jumps and thus is easier to get outof a local minimum when trapped. A good near (global) minimum is more likely to be found by FES.Table 3: Comparison between CES and FES on f8{f13. The results were averaged over 50 runs. \Mean Best"indicates the mean best function values found in the last generation. \Std Dev" stands for the standarddeviation.Function Number of FES CES FES�CESGenerations Mean Best Std Dev Mean Best Std Dev t-testf8 4500 �12556:4 32.53 �7549:9 631.39 �56:10yf9 2500 0.16 0.33 70.82 21.49 �23:19yf10 750 1:2� 10�2 1:8� 10�3 9.07 2.84 �22:51yf11 1000 3:7� 10�2 5:0� 10�2 0.38 0.77 �3:11yf12 750 2:8� 10�6 8:1� 10�7 1.18 1.87 �4:45yf13 750 4:7� 10�5 1:5� 10�5 1.39 3.33 �2:94yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.4.3.3 Multimodal Functions With a Few Local Minima (f14{f23)The evolutionary processes of FES and CES on functions f14{f23 are shown by Figures 6, 7 and 8. The �nalresults are summarised in Table 4. Although these functions are also multimodal functions, the behaviourof FES and CES on them are rather di�erent from that on multimodal functions with many local minima.There is no consistent winner here. For functions f14 and f15, FES outperforms CES. However, FES isoutperformed by CES on functions f21 and f22. No statistically signi�cant di�erence has been detectedbetween FES's and CES's performance on other functions. In fact, the �nal results of FES and CES wereexactly the same for f16, f17 and f18 although the initial behaviours were di�erent.At the beginning, it was suspected that the low dimensionality of functions f14{f23 might contributeto the similar performance of FES and CES. Hence another set of experiments were carried out using the9
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Figure 5: Comparison between CES and FES on f8{f11. The vertical axis is the function value and thehorizontal axis is the number of generations. 10
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Table 4: Comparison between CES and FES on f14{f23. The results were averaged over 50 runs. \MeanBest" indicates the mean best function values found in the last generation. \Std Dev" stands for the standarddeviation.Function Number of FES CES FES�CESGenerations Mean Best Std Dev Mean Best Std Dev t-testf14 50 1.20 0.63 2.16 1.82 �3:91yf15 2000 9:7� 10�4 4:2� 10�4 1:2� 10�3 1:6� 10�5 �4:36yf16 50 �1:0316 6:0� 10�7 �1:0316 6:0� 10�7 0f17 50 0.398 6:0� 10�8 0.398 6:0� 10�8 0f18 50 3.0 0 3.0 0 0f19 50 �3:86 4:0� 10�3 �3:86 1:4� 10�5 1.30f20 100 �3:23 0.12 �3:24 5:7� 10�2 0.93f21 50 �5:54 1.82 �6:96 3.10 2:81yf22 50 �6:76 3.01 �8:31 3.10 2:50yf23 50 �7:63 3.27 �8:50 3.14 1.25yThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.5-dimensional version of functions f8{f13. The same pattern as that shown by Figures 5 and 6 was observed.This result shows that dimensionality is not one of the factors which a�ect FES's and CES's performance onfunctions f14{f23. The characteristics of these functions are the factors. One of such characteristics mightbe the number of local minima. Unlike functions f8{f13, all these functions have just a few local minima.The advantage of FES's long jumps might be weakened in this case since there are not many local minima toescape. Also, fewer local minima imply that most of the optimisation time would be spent on searching in oneof the local minima's \basin of attractions," where there is only one minimum. Hence, CES's performancewould be very close to or even better than FES's.Since the goal of FES is to minimise multimodal not unimodal functions, FES's worse performance onfunctions f21 and f22 warrants a closer examination. Among 16 multimodal functions tested in this paper,these two were the only cases where FES was outperformed by CES. (Only statistically signi�cant di�erenceis considered in this paper.) Figure 9 shows the 2-dimensional version of function f21. The shape of f22is similar. It can be seen from the �gure that f21 is rather spiky with some small but deep local minimascattered on a relatively at area. These small but deep \spikes" cause some di�culties to FES. NeitherFES's nor CES's result was close to the global minimum. Both of them seemed to be trapped in some localminimum. However, FES su�ered more. This fact appears to contradict our previous discussion which saysFEP's long jumps are bene�cial, but it does not. Recall the analysis of FEP's and CEP's behaviours on f1in Section 4.3.1. It is not di�cult to see that long jumps are not always bene�cial. It is detrimental whenthe search points are already close to the global minimum. This turns out to be the case with functions f21and f22.For functions f21 and f22, the range of xi's are relatively small. Some of the points in the initialpopulations are already very close to the global minimum. After a few generations, the whole populationwill be close to the global minimum. In such a situation, long jumps will no longer be bene�cial. This canbe veri�ed both analytically and empirically. The detailed results were presented elsewhere [9].4.4 Related Work on Fast Evolutionary ProgrammingSimilar to FES, fast evolutionary programming (FEP) [8, 9] also uses Cauchy mutation. FEP has beentested on the same 23 benchmark functions as described by Table 1. Comparing those results [8, 9] withthe results obtained from the current study, it is clear that the di�erence between FES and CES is verysimilar to the di�erence between FEP and CEP. Similar evolutionary patterns were observed from FEP andCEP for the three function categories. The only exceptions were f3, f5, f15 and f23. For f3, FES performedworse than CES, while FEP performed better than CEP. For f5, FES also performed worse than CES, whilethere was no statistically signi�cant di�erence between FEP and CEP. For f15, FES performed better thanCES, while there was no statistically signi�cant di�erence between FEP and CEP either. For f23, therewas no statistically signi�cant di�erence between FES and CES, but FEP performed worse than CEP. In14
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Figure 9: The 2-dimensional version of function f21 (Shekel-5).general, the relationship between FES and CES is very similar to that between FEP and CEP. Since themajor di�erence between EP and ES is their selection schemes, the results of FES and FEP indicate thatCauchy mutation is a very robust search operator which can work with di�erent selection schemes. In fact,FES's performance can be further improved by mixing Cauchy and Gaussian mutations. Such improvementhas been proven to be very successful in the case of FEP [9].5 Other Variants of Evolution StrategiesThe previous sections only present some results with a simple version of evolution strategies. This sectioninvestigates1. whether changing the order of mutating objective variables and strategy parameters would make muchdi�erence between CES's and FES's performance,2. whether FES still performs better if a di�erent scale parameter t is used in the Cauchy distribution,and3. whether FES still performs better if recombination is used.5.1 The Order of MutationsWe have run the experiments with a di�erent order of mutating objective variables and strategy parameters.Table 5 shows the results of CES and FES, where the strategy parameter (Eq.2) was mutated �rst, for thethree representative functions. No recombination was used in CES and FES.For f1, which is a typical function in the �rst group of the 23 benchmark functions, FES was outperformedby CES signi�cantly. For f10, which is a typical function in the second group, FES performed signi�cantlybetter than CES. For f23, which is a typical function in the third group, FES was again outperformed by CES.These observations are the same as what we observed when we mutated the objective variables �rst. Thatis, changing the order of mutation has little impact on the observations we made in Section 4 about CES'sand FES's relative performance, although their absolute (i.e., individual) performance may have changedslightly.5.2 Cauchy Mutation with a Di�erent Scale ParameterAll the previous experiments assumed scale parameter t = 1 in the Cauchy distribution. Tables 6 and 7show the results of CEP and FEP on f10 when di�erent values of the scale parameter were used. Table 615



Table 5: Comparison between CES and FES with no recombination (only changing the order of Eq.1 andEq.2) on f1, f10 and f23. The results were averaged over 50 runs.F Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-testf1 750 2:0� 10�4 2:3� 10�5 2:4� 10�5 2:8� 10�6 52:47yf10 750 1:0� 10�2 9:4� 10�4 8:50 2:89 �20:75yf23 50 �8:86 2.92 �9:75 2.19 1:76yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.shows the results when the objective variables were mutated �rst, while Table 7 shows the results when thestrategy parameters were mutated �rst. It is interesting to note that FES still outperforms CES for botht = 0:5 and t = 1:5. However, the performance of FES deteriorates as t increases for this particular problem.A general conclusion about the relationship between the scale parameter and the algorithm's performanceis di�cult to draw because it is problem-dependent.Table 6: Comparison between CES and FES for di�erent scale parameters with no recombination. Objectivevariables were mutated �rst. The experiment was based on 50 runs using f10.Scaling Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-test0.5 750 5:9� 10�3 7:5� 10�4 9:72 2:75 �25:01y1.0 750 1:2� 10�2 1:8� 10�3 9.07 2.84 �22:51y1.5 750 0:42 2:82 7:61 2:83 �14:92yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.Table 7: Comparison between CES and FES for di�erent scale parameters with no recombination. Strategyparameters were mutated �rst. The experiment was based on 50 runs using f10.Scaling Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-test0.5 750 5:2� 10�3 4:4� 10�4 8:47 3:07 �19:52y1.0 750 1:0� 10�2 9:4� 10�4 8:50 2:89 �20:75y1.5 750 0:81 3:95 6:79 2:74 �9:29yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.5.3 Evolution Strategies with RecombinationAlthough evolution strategies emphasise mutation, they do use recombination. The current wisdom is touse discrete recombination on the objective variables and global intermediate recombination on the strategyparameters. Table 8 shows the results of CES and FES with aforementioned recombinations. The samerecombinations were implemented for both algorithms.The results in Table 8 reveal that FES performed poorly against CES for all three functions when recom-bination was used. The introduction of recombination to FES has signi�cantly worsened FES's performance,while CES's performance improved greatly using the recombinations. Our preliminary analysis of such phe-nomena indicates that the search step size of di�erent operators plays an important role in determining theperformance of an algorithm. As pointed out earlier [9], Cauchy mutation has a much larger search step sizethan Gaussian mutation. A large search step size is bene�cial when the current search point is far away from16



Table 8: Comparison between CES and FES with recombination (discrete recombination on the objectivevariables and global intermediate recombination on the strategy parameters). The strategy parameters weremutated �rst. All results were averaged over 50 runs.F Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-testf1 750 27:94 34:52 2:2� 10�5 2:4� 10�6 5:72yf10 750 4:64 1:49 3:4� 10�3 2:4� 10�4 22:03yf23 50 �10:34 0.63 �10:54 1:4� 10�4 2:22yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.the global optimum, which is often the case at the beginning of search. When the current search point isclose to the global optimum, which is likely towards the end of search, large search step sizes are detrimentalto search.The two recombinations implemented in our experiments have very large search step sizes, especially theglobal intermediate recombination. Using both Cauchy mutation and these recombinations imply a hugesearch step size which would be undesirable for the functions we studied. That is why the introduction ofrecombination into FES brought no bene�t at all. On the other hand, Gaussian mutation's search step sizeis relatively small. The introduction of recombination into CES greatly increased CES's search step sizeand thus its performance. In a sense, introducing recombination to CES has a similar e�ect as replacingGaussian mutation by Cauchy mutation. Both increase the algorithm's search step size.To support our arguments and preliminary analysis, another set of experiments were carried out whereonly the discrete recombination was used on both objective variables and strategy parameters in FES. (Thesearch step size of the discrete recombination is much smaller than the global intermediate recombination.)CES was kept the same as before. Table 9 shows the results of the experiment. It is clear that FES'sperformance has improved dramatically after this minor change. The results demonstrate that the searchstep size of Cauchy mutation is su�ciently large. There might not be any bene�t of using recombination onthe strategy parameters.Table 9: Comparison between CES and FES with recombination (discrete recombination on the objectivevariables and global intermediate recombination on the strategy parameters for CES, and discrete recombi-nation on both objective variables and strategy parameters for FES). The strategy parameters were mutated�rst. All results were averaged over 50 runs.F Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-testf1 750 1:3� 10�4 1:8� 10�5 2:2� 10�5 2:4� 10�6 39:67yf10 750 8:3� 10�3 6:6� 10�4 3:4� 10�3 2:4� 10�4 49:87yf23 50 �10:22 1.03 �10:54 1:4� 10�4 2:15yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.5.3.1 The Impact of Di�erent Scale ParametersTable 10 shows the impact of the scale parameter in Cauchy distribution on FES's performance whenrecombination is used. It indicates that di�erent scale parameters did not change the global picture verymuch, although it did a�ect FES's performance slightly.6 ConclusionsThis paper proposes a new (�; �)-ES algorithm (i.e., FES) using Cauchy mutation. Extensive empiricalstudies on 23 benchmark problems (up to 30 dimensions) were carried out to evaluate the performance of17



Table 10: Comparison between CES and FES with recombination (discrete recombination on the objectivevariables and global intermediate recombination on the strategy parameters for CES, and discrete recom-bination on both objective variables and strategy parameters for FES), when a di�erent scale parameter isused. The strategy parameters were mutated �rst. All results were averaged over 50 runs on f10.Scaling Gen's FES CES FES�CESMean Best Std Dev Mean Best Std Dev t-test0.5 750 4:2� 10�3 3:0� 10�4 1:7� 10�3 9:7� 10�5 59:03y1.0 750 8:3� 10�3 6:6� 10�4 3:4� 10�3 2:4� 10�4 49:87y1.5 750 1:21 4:78 5:3� 10�3 3:2� 10�4 1:78yyThe value of t with 49 degrees of freedom is signi�cant at � = 0:05 by a two-tailed test.FES. For multimodal functions with many local minima, FES outperforms CES consistently. For unimodalfunctions, CES appears to perform slightly better. However, FES is much better at dealing with plateaus.For multimodal functions with only a few local minima, the performance of FES and CES is very similar.The main reason for the di�erence in performance between FES and CES is due to the di�erence in theirprobabilities of making long jumps. Long jumps are bene�cial when the current search points are far awayfrom the global minimum, while detrimental when the current search points get close to the global minimum.Recent analytical results and further empirical studies [9] support the preliminary analyses presented in thispaper.According to recent work on analysing EAs using step sizes of search operators [21], the impact of asearch operator on the algorithm's search depends heavily on its search step size. It may be conjecturedthat recombination would play a major role in FES only if its search step size is larger than that of Cauchymutation.7 Appendix: Benchmark Functions7.1 Sphere Model f1(x) = 30Xi=1 x2i�100 � xi � 100; min(f1) = f1(0; : : : ; 0) = 07.2 Schwefel's Problem 2.22 f2(x) = 30Xi=1 jxij+ 30Yi=1 jxij�10 � xi � 10; min(f2) = f2(0; : : : ; 0) = 07.3 Schwefel's Problem 1.2 f3(x) = 30Xi=10@ iXj=1xj1A2�100 � xi � 100; min(f3) = f3(0; : : : ; 0) = 018



7.4 Schwefel's Problem 2.21f4(x) = maxi fjxij; 1 � i � 30g�100 � xi � 100; min(f4) = f4(0; : : : ; 0) = 07.5 Generalised Rosenbrock's Functionf5(x) = 29Xi=1[100(xi+1� x2i )2 + (xi � 1)2]�30 � xi � 30; min(f5) = f5(1; : : : ; 1) = 07.6 Step Function f6(x) = 30Xi=1 (bxi + 0:5c)2�100 � xi � 100; min(f6) = f6(0; : : : ; 0) = 07.7 Quartic Function with Noisef7(x) = 30Xi=1 ix4i + random[0; 1)�1:28 � xi � 1:28; min(f7) = f7(0; : : : ; 0) = 07.8 Generalised Schwefel's Problem 2.26f8(x) = � 30Xi=1 �xi sin�pjxij���500 � xi � 500; min(f8) = f8(420:9687; : : : ; 420:9687) = �12569:57.9 Generalised Rastrigin's Functionf9(x) = 30Xi=1[x2i � 10 cos(2�xi) + 10)]�5:12 � xi � 5:12; min(f9) = f9(0; : : : ; 0) = 07.10 Ackley's Functionf10(x) = �20 exp0@�0:2vuut 130 30Xi=1 x2i1A � exp 130 30Xi=1 cos 2�xi!+ 20 + e�32 � xi � 32; min(f10) = f10(0; : : : ; 0) = 019



7.11 Generalised Griewank Functionf11(x) = 14000 30Xi=1 x2i � 30Yi=1 cos� xipi�+ 1�600 � xi � 600; min(f11) = f11(0; : : : ; 0) = 07.12 Generalised Penalised Functionsf12(x) = �30 (10 sin2(�y1) + 29Xi=1(yi � 1)2[1 + 10 sin2(�yi+1)] + (yn � 1)2)+ 30Xi=1 u(xi; 10; 100; 4)�50 � xi � 50; min(f12) = f12(1; : : : ; 1) = 0f13(x) = 0:1(sin2(�3x1 + 29Xi=1(xi � 1)2[1 + sin2(3�xi+1)] + (xn � 1)[1 + sin2(2�x30)])+ 30Xi=1 u(xi; 5; 100; 4)�50 � xi � 50; min(f13) = f13(1; : : : ; 1) = 0where u(xi; a; k;m) = 8<: k(xi � a)m; xi > a;0; �a � xi � a;k(�xi � a)m; xi < �a:yi = 1 + 14(xi + 1)7.13 Shekel's Foxholes Functionf14(x) = 24 1500 + 25Xj=1 1j +P2i=1(xi � aij)635�1�65:536 � xi � 65:536; min(f14) = f14(�32;�32) � 1where (aij) = � �32 �16 0 16 32 �32 � � � 0 16 32�32 �32 �32 �32 �32 �16 � � � 32 32 32 �7.14 Kowalik's Function f15(x) = 11Xi=1 �ai � x1(b2i + bix2)b2i + bix3 + x4�2�5 � xi � 5; min(f15) � f15(0:1928; 0:1908; 0:1231; 0:1358)� 0:000307520



Table 11: Kowalik's Function f15i ai b�1i1 0.1957 0.252 0.1947 0.53 0.1735 14 0.1600 25 0.0844 46 0.0627 67 0.0456 88 0.0342 109 0.0323 1210 0.0235 1411 0.0246 167.15 Six-hump Camel-Back Functionf16 = 4x21 � 2:1x41 + 13x61 + x1x2 � 4x22 + 4x42�5 � xi � 5xmin = (0:08983;�0:7126); (�0:08983; 0:7126)min(f16) = �1:03162857.16 Branin Functionf17(x) = �x2 � 5:14�2x21 + 5�x1 � 6�2 + 10�1� 18�� cos x1 + 10�5 � x1 � 10; 0 � x2 � 15xmin = (�3:142; 12:275); (3:142; 2:275); (9:425; 2:425)min(f17) = 0:3987.17 Goldstein-Price Functionf18(x) = [1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)]�[30 + (2x1 � 3x2)2(18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)]�2 � xi � 2; min(f18) = f18(0;�1) = 37.18 Hartman's Familyf(x) = � 4Xi=1 ci exp24� nXj=1 aij(xj � pij)235with n = 3; 6 for f19(x) and f20(x), respectively, 0 � xj � 1. The coe�cients are de�ned by Tables 12 and13, respectively.For f19(x) the global minimum is equal to �3:86 and it is reached at the point (0:114; 0:556;0:852). Forf20(x) the global minimum is �3:32 at the point (0:201; 0:150;0:477;0:275;0:311;0:657).21



Table 12: Hartman Function f19i aij; j = 1; 2; 3 ci pij ; j = 1; 2; 31 3 10 30 1 0.3689 0.1170 0.26732 0.1 10 35 1.2 0.4699 0.4387 0.74703 3 10 30 3 0.1091 0.8732 0.55474 0.1 10 35 3.2 0.038150 0.5743 0.8828Table 13: Hartman Function f20i aij; j = 1; � � � ; 6 ci pij; j = 1; � � � ; 61 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.58862 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.99913 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.66504 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.03817.19 Shekel's Family f(x) = � mXi=1[(x� ai)(x� ai)T + ci]�1with m = 5; 710 for f21(x), f22(x) and f23(x), respectively, 0 � xj � 10.Table 14: Shekel Functions f21; f22; f23i aij ; j = 1; � � � ; 4 ci1 4 4 4 4 0.12 1 1 1 1 0.23 8 8 8 8 0.24 6 6 6 6 0.45 3 7 3 7 0.46 2 9 2 9 0.67 5 5 3 3 0.38 8 1 8 1 0.79 6 2 6 2 0.510 7 3.6 7 3.6 0.5These functions have 5, 7 and 10 local minima for f21(x), f22(x), and f23(x), respectively. xlocal opt � ai,f(xlocal opt) � 1=ci for 1 � i � m. The coe�cients are de�ned by Table 14.Acknowledgement | The authors are grateful to Professors Zbigniew Michalewicz and Marc Schoe-nauer for their constructive comments on the earlier version of this paper.References[1] X. Yao and Y. Liu, \Fast evolution strategies," in Evolutionary Programming VI: Proc. of the SixthAnnual Conference on Evolutionary Programming (P. J. Angeline, R. G. Reynolds, J. R. McDonnell,and R. Eberhart, eds.), vol. 1213 of Lecture Notes in Computer Science, (Berlin), pp. 151{161, Springer-Verlag, 1997.[2] D. B. Fogel, \An introduction to simulated evolutionary optimisation," IEEE Trans. on Neural Net-works, vol. 5, no. 1, pp. 3{14, 1994. 22
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