
Archive-name: ai-faq/neural-nets/part1
Last-modified: 2002-05-17
URL: ftp://ftp.sas.com/pub/neural/FAQ.html
Maintainer: saswss@unx.sas.com (Warren S. Sarle)

Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA.

 Additions, corrections, or improvements are always welcome.
 Anybody who is willing to contribute any information,
 please email me; if it is relevant, I will incorporate it.

 The monthly posting departs around the 28th of every month.

This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-
nets (as well as comp.answers and news.answers, where it should be findable at any time).
Its purpose is to provide basic information for individuals who are new to the field of neural
networks or who are just beginning to read this group. It will help to avoid lengthy
discussion of questions that often arise for beginners.

 SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION
 and
 DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING

The latest version of the FAQ is available as a hypertext document, readable by any WWW
(World Wide Web) browser such as Netscape, under the URL:
ftp://ftp.sas.com/pub/neural/FAQ.html.

If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it
with a monospace font such as Courier. If you view it with a proportional font, tables and
formulas will be mangled. Some newsreaders or WWW news services garble plain text. If
you have trouble viewing plain text, try the HTML version described above.

All seven parts of the FAQ can be downloaded from either of the following URLS:

ftp://ftp.sas.com/pub/neural/FAQ.html.zip
ftp://ftp.sas.com/pub/neural/FAQ.txt.zip

These postings are archived in the periodic posting archive on host rtfm.mit.edu (and on
some other hosts as well). Look in the anonymous ftp directory
"/pub/usenet/news.answers/ai-faq/neural-nets" under the file names "part1", "part2", ...
"part7". If you do not have anonymous ftp access, you can access the archives by mail
server as well. Send an E-mail message to mail-server@rtfm.mit.edu with "help" and
"index" in the body on separate lines for more information.

For those of you who read this FAQ anywhere other than in Usenet: To read comp.ai.neural-
nets (or post articles to it) you need Usenet News access. Try the commands, 'xrn', 'rn', 'nn',

Page 1 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

or 'trn' on your Unix machine, 'news' on your VMS machine, or ask a local guru. WWW
browsers are often set up for Usenet access, too--try the URL news:comp.ai.neural-nets.

The FAQ posting departs to comp.ai.neural-nets around the 28th of every month. It is also
sent to the groups comp.answers and news.answers where it should be available at any time
(ask your news manager). The FAQ posting, like any other posting, may a take a few days
to find its way over Usenet to your site. Such delays are especially common outside of
North America.

All changes to the FAQ from the previous month are shown in another monthly posting
having the subject `changes to "comp.ai.neural-nets FAQ" -- monthly posting', which
immediately follows the FAQ posting. The `changes' post contains the full text of all
changes and can also be found at ftp://ftp.sas.com/pub/neural/changes.txt . There is also a
weekly post with the subject "comp.ai.neural-nets FAQ: weekly reminder" that briefly
describes any major changes to the FAQ.

This FAQ is not meant to discuss any topic exhaustively. It is neither a tutorial nor a
textbook, but should be viewed as a supplement to the many excellent books and online
resources described in Part 4: Books, data, etc..

Disclaimer:

This posting is provided 'as is'. No warranty whatsoever is expressed or implied, in
particular, no warranty that the information contained herein is correct or useful in any
way, although both are intended.

To find the answer of question "x", search for the string "Subject: x"

========== Questions ==========
Part 1: Introduction

What is this newsgroup for? How shall it be used?
Where is comp.ai.neural-nets archived?
What if my question is not answered in the FAQ?
May I copy this FAQ?
What is a neural network (NN)?
Where can I find a simple introduction to NNs?
Are there any online books about NNs?
What can you do with an NN and what not?
Who is concerned with NNs?
How many kinds of NNs exist?
How many kinds of Kohonen networks exist? (And what is k-means?)

VQ: Vector Quantization and k-means
SOM: Self-Organizing Map

Page 2 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

LVQ: Learning Vector Quantization
Other Kohonen networks and references

How are layers counted?
What are cases and variables?
What are the population, sample, training set, design set, validation set, and test set?
How are NNs related to statistical methods?

Part 2: Learning

What are combination, activation, error, and objective functions?
What are batch, incremental, on-line, off-line, deterministic, stochastic, adaptive,
instantaneous, pattern, epoch, constructive, and sequential learning?
What is backprop?
What learning rate should be used for backprop?
What are conjugate gradients, Levenberg-Marquardt, etc.?
How does ill-conditioning affect NN training?
How should categories be encoded?
Why not code binary inputs as 0 and 1?
Why use a bias/threshold?
Why use activation functions?
How to avoid overflow in the logistic function?
What is a softmax activation function?
What is the curse of dimensionality?
How do MLPs compare with RBFs?
What are OLS and subset/stepwise regression?
Should I normalize/standardize/rescale the data?
Should I nonlinearly transform the data?
How to measure importance of inputs?
What is ART?
What is PNN?
What is GRNN?
What does unsupervised learning learn?
Help! My NN won't learn! What should I do?

Part 3: Generalization

How is generalization possible?
How does noise affect generalization?
What is overfitting and how can I avoid it?
What is jitter? (Training with noise)
What is early stopping?
What is weight decay?
What is Bayesian learning?
How to combine networks?
How many hidden layers should I use?

Page 3 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

How many hidden units should I use?
How can generalization error be estimated?
What are cross-validation and bootstrapping?
How to compute prediction and confidence intervals (error bars)?

Part 4: Books, data, etc.

Books and articles about Neural Networks?
Journals and magazines about Neural Networks?
Conferences and Workshops on Neural Networks?
Neural Network Associations?
Mailing lists, BBS, CD-ROM?
How to benchmark learning methods?
Databases for experimentation with NNs?

Part 5: Free software

Source code on the web?
Freeware and shareware packages for NN simulation?

Part 6: Commercial software

Commercial software packages for NN simulation?

Part 7: Hardware and miscellaneous

Neural Network hardware?
What are some applications of NNs?

General
Agriculture
Chemistry
Face recognition
Finance and economics
Games, sports, gambling
Industry
Materials science
Medicine
Music
Robotics
Weather forecasting
Weird

What to do with missing/incomplete data?
How to forecast time series (temporal sequences)?
How to learn an inverse of a function?
How to get invariant recognition of images under translation, rotation, etc.?
How to recognize handwritten characters?

Page 4 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

What about pulsed or spiking NNs?
What about Genetic Algorithms and Evolutionary Computation?
What about Fuzzy Logic?
Unanswered FAQs
Other NN links?

--

Subject: What is this newsgroup for? How shall it be used?

The newsgroup comp.ai.neural-nets is intended as a forum for people who want to use or
explore the capabilities of Artificial Neural Networks or Neural-Network-like structures.

Posts should be in plain-text format, not postscript, html, rtf, TEX, MIME, or any word-
processor format.

Do not use vcards or other excessively long signatures.

Please do not post homework or take-home exam questions. Please do not post a long
source-code listing and ask readers to debug it. And note that chain letters and other get-
rich-quick pyramid schemes are illegal in the USA; for example, see
http://www.usps.gov/websites/depart/inspect/chainlet.htm

There should be the following types of articles in this newsgroup:

1. Requests

Requests are articles of the form "I am looking for X", where X is something
public like a book, an article, a piece of software. The most important about such a
request is to be as specific as possible!

If multiple different answers can be expected, the person making the request should
prepare to make a summary of the answers he/she got and announce to do so with a
phrase like "Please reply by email, I'll summarize to the group" at the
end of the posting.

The Subject line of the posting should then be something like "Request: X"

2. Questions

As opposed to requests, questions ask for a larger piece of information or a more or
less detailed explanation of something. To avoid lots of redundant traffic it is
important that the poster provides with the question all information s/he already has
about the subject asked and state the actual question as precise and narrow as possible.
The poster should prepare to make a summary of the answers s/he got and announce to
do so with a phrase like "Please reply by email, I'll summarize to the

Page 5 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

group" at the end of the posting.

The Subject line of the posting should be something like "Question: this-and-
that" or have the form of a question (i.e., end with a question mark)

Students: please do not ask comp.ai.neural-net readers to do your homework or take-
home exams for you.

3. Answers

These are reactions to questions or requests. If an answer is too specific to be of
general interest, or if a summary was announced with the question or request, the
answer should be e-mailed to the poster, not posted to the newsgroup.

Most news-reader software automatically provides a subject line beginning with "Re:"
followed by the subject of the article which is being followed-up. Note that sometimes
longer threads of discussion evolve from an answer to a question or request. In this
case posters should change the subject line suitably as soon as the topic goes too far
away from the one announced in the original subject line. You can still carry along the
old subject in parentheses in the form "Re: new subject (was: old subject)"

4. Summaries

In all cases of requests or questions the answers for which can be assumed to be of
some general interest, the poster of the request or question shall summarize the
answers he/she received. Such a summary should be announced in the original posting
of the question or request with a phrase like "Please answer by email, I'll
summarize"

In such a case, people who answer to a question should NOT post their answer to the
newsgroup but instead mail them to the poster of the question who collects and
reviews them. After about 5 to 20 days after the original posting, its poster should
make the summary of answers and post it to the newsgroup.

Some care should be invested into a summary:
 simple concatenation of all the answers is not enough: instead, redundancies,

irrelevancies, verbosities, and errors should be filtered out (as well as possible)
 the answers should be separated clearly
 the contributors of the individual answers should be identifiable (unless they

requested to remain anonymous [yes, that happens])
 the summary should start with the "quintessence" of the answers, as seen by the

original poster
 A summary should, when posted, clearly be indicated to be one by giving it a

Subject line starting with "SUMMARY:"
Note that a good summary is pure gold for the rest of the newsgroup community, so

Page 6 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

summary work will be most appreciated by all of us. Good summaries are more
valuable than any moderator ! :-)

5. Announcements

Some articles never need any public reaction. These are called announcements (for
instance for a workshop, conference or the availability of some technical report or
software system).

Announcements should be clearly indicated to be such by giving them a subject line of
the form "Announcement: this-and-that"

6. Reports

Sometimes people spontaneously want to report something to the newsgroup. This
might be special experiences with some software, results of own experiments or
conceptual work, or especially interesting information from somewhere else.

Reports should be clearly indicated to be such by giving them a subject line of the
form "Report: this-and-that"

7. Discussions

An especially valuable possibility of Usenet is of course that of discussing a certain
topic with hundreds of potential participants. All traffic in the newsgroup that can not
be subsumed under one of the above categories should belong to a discussion.

If somebody explicitly wants to start a discussion, he/she can do so by giving the
posting a subject line of the form "Discussion: this-and-that"

It is quite difficult to keep a discussion from drifting into chaos, but, unfortunately, as
many many other newsgroups show there seems to be no secure way to avoid this. On
the other hand, comp.ai.neural-nets has not had many problems with this effect in the
past, so let's just go and hope...

8. Jobs Ads

Advertisements for jobs requiring expertise in artificial neural networks are
appropriate in comp.ai.neural-nets. Job ads should be clearly indicated to be such by
giving them a subject line of the form "Job: this-and-that". It is also useful to
include the country-state-city abbreviations that are conventional in misc.jobs.offered,
such as: "Job: US-NY-NYC Neural network engineer". If an employer has more
than one job opening, all such openings should be listed in a single post, not multiple
posts. Job ads should not be reposted more than once per month.

--

Page 7 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Subject: Where is comp.ai.neural-nets archived?

The following archives are available for comp.ai.neural-nets:

 http://groups.google.com, formerly Deja News. Does not work very well yet.
 94-09-14 through 97-08-16 ftp://ftp.cs.cmu.edu/user/ai/pubs/news/comp.ai.neural-nets

For more information on newsgroup archives, see
http://starbase.neosoft.com/~claird/news.lists/newsgroup_archives.html
or http://www.pitt.edu/~grouprev/Usenet/Archive-List/newsgroup_archives.html

--

Subject: What if my question is not answered in the FAQ?

If your question is not answered in the FAQ, you can try a web search. The following search
engines are especially useful:
http://www.google.com/
http://search.yahoo.com/
http://www.altavista.com/
http://citeseer.nj.nec.com/cs

Another excellent web site on NNs is Donald Tveter's Backpropagator's Review at
http://www.dontveter.com/bpr/bpr.html or http://gannoo.uce.ac.uk/bpr/bpr.html.

For feedforward NNs, the best reference book is:

Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford
University Press.

If the answer isn't in Bishop, then for more theoretical questions try:

Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press.

For more practical questions about MLP training, try:

Masters, T. (1993). Practical Neural Network Recipes in C++, San Diego: Academic
Press.

Reed, R.D., and Marks, R.J, II (1999), Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, Cambridge, MA: The MIT Press.

There are many more excellent books and web sites listed in the Neural Network FAQ, Part
4: Books, data, etc.

Page 8 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

--

Subject: May I copy this FAQ?

The intent in providing a FAQ is to make the information freely available to whoever needs
it. You may copy all or part of the FAQ, but please be sure to include a reference to the
URL of the master copy, ftp://ftp.sas.com/pub/neural/FAQ.html, and do not sell copies of
the FAQ. If you want to include information from the FAQ in your own web site, it is better
to include links to the master copy rather than to copy text from the FAQ to your web pages,
because various answers in the FAQ are updated at unpredictable times. To cite the FAQ in
an academic-style bibliography, use something along the lines of:

Sarle, W.S., ed. (1997), Neural Network FAQ, part 1 of 7: Introduction, periodic
posting to the Usenet newsgroup comp.ai.neural-nets, URL:
ftp://ftp.sas.com/pub/neural/FAQ.html

--

Subject: What is a neural network (NN)?

The question 'What is a neural network?' is ill-posed.
 - Pinkus (1999)

First of all, when we are talking about a neural network, we should more properly say
"artificial neural network" (ANN), because that is what we mean most of the time in
comp.ai.neural-nets. Biological neural networks are much more complicated than the
mathematical models we use for ANNs. But it is customary to be lazy and drop the "A" or
the "artificial".

There is no universally accepted definition of an NN. But perhaps most people in the field
would agree that an NN is a network of many simple processors ("units"), each possibly
having a small amount of local memory. The units are connected by communication
channels ("connections") which usually carry numeric (as opposed to symbolic) data,
encoded by any of various means. The units operate only on their local data and on the
inputs they receive via the connections. The restriction to local operations is often relaxed
during training.

Some NNs are models of biological neural networks and some are not, but historically,
much of the inspiration for the field of NNs came from the desire to produce artificial
systems capable of sophisticated, perhaps "intelligent", computations similar to those that
the human brain routinely performs, and thereby possibly to enhance our understanding of
the human brain.

Most NNs have some sort of "training" rule whereby the weights of connections are
adjusted on the basis of data. In other words, NNs "learn" from examples, as children learn

Page 9 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

to distinguish dogs from cats based on examples of dogs and cats. If trained carefully, NNs
may exhibit some capability for generalization beyond the training data, that is, to produce
approximately correct results for new cases that were not used for training.

NNs normally have great potential for parallelism, since the computations of the
components are largely independent of each other. Some people regard massive parallelism
and high connectivity to be defining characteristics of NNs, but such requirements rule out
various simple models, such as simple linear regression (a minimal feedforward net with
only two units plus bias), which are usefully regarded as special cases of NNs.

Here is a sampling of definitions from the books on the FAQ maintainer's shelf. None will
please everyone. Perhaps for that reason many NN textbooks do not explicitly define neural
networks.

According to the DARPA Neural Network Study (1988, AFCEA International Press, p. 60):

... a neural network is a system composed of many simple processing elements
operating in parallel whose function is determined by network structure,
connection strengths, and the processing performed at computing elements or
nodes.

According to Haykin (1994), p. 2:

A neural network is a massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use. It
resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.
2. Interneuron connection strengths known as synaptic weights are used to

store the knowledge.

According to Nigrin (1993), p. 11:

A neural network is a circuit composed of a very large number of simple
processing elements that are neurally based. Each element operates only on local
information. Furthermore each element operates asynchronously; thus there is no
overall system clock.

According to Zurada (1992), p. xv:

Artificial neural systems, or neural networks, are physical cellular systems which
can acquire, store, and utilize experiential knowledge.

References:

Pinkus, A. (1999), "Approximation theory of the MLP model in neural networks,"

Page 10 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Acta Numerica, 8, 143-196.

Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, NY: Macmillan.

Nigrin, A. (1993), Neural Networks for Pattern Recognition, Cambridge, MA: The
MIT Press.

Zurada, J.M. (1992), Introduction To Artificial Neural Systems, Boston: PWS
Publishing Company.

--

Subject: Where can I find a simple introduction to NNs?

Several excellent introductory books on NNs are listed in part 4 of the FAQ under "Books
and articles about Neural Networks?" If you want a book with minimal math, see "The best
introductory book for business executives."

Dr. Leslie Smith has a brief on-line introduction to NNs with examples and diagrams at
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html.

If you are a Java enthusiast, see Jochen Fröhlich's diploma at http://rfhs8012.fh-
regensburg.de/~saj39122/jfroehl/diplom/e-index.html

For a more detailed introduction, see Donald Tveter's excellent Backpropagator's Review at
http://www.dontveter.com/bpr/bpr.html or http://gannoo.uce.ac.uk/bpr/bpr.html, which
contains both answers to additional FAQs and an annotated neural net bibliography
emphasizing on-line articles.

StatSoft Inc. has an on-line Electronic Statistics Textbook, at
http://www.statsoft.com/textbook/stathome.html that includes a chapter on neural nets as
well as many statistical topics relevant to neural nets.

--

Subject: Are there any online books about NNs?

Kevin Gurney has on-line a preliminary draft of his book, An Introduction to Neural
Networks, at http://www.shef.ac.uk/psychology/gurney/notes/index.html The book is now in
print and is one of the better general-purpose introductory textbooks on NNs. Here is the
table of contents from the on-line version:

1. Computers and Symbols versus Nets and Neurons
2. TLUs and vectors - simple learning rules
3. The delta rule
4. Multilayer nets and backpropagation

Page 11 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

5. Associative memories - the Hopfield net
6. Hopfield nets (contd.)
7. Kohonen nets
8. Alternative node types
9. Cubic nodes (contd.) and Reward Penalty training

10. Drawing things together - some perspectives

Another on-line book by Ben Kröse and Patrick van der Smagt, also called An Introduction
to Neural Networks, can be found at ftp://ftp.wins.uva.nl/pub/computer-systems/aut-
sys/reports/neuro-intro/neuro-intro.ps.gz or http://www.robotic.dlr.de/Smagt/books/neuro-
intro.ps.gz. or http://www.supelec-rennes.fr/acth/net/neuro-intro.ps.gz
Here is the table of contents:

1. Introduction
2. Fundamantals
3. Perceptron and Adaline
4. Back-Propagation
5. Recurrent Networks
6. Self-Organising Networks
7. Reinforcement Learning
8. Robot Control
9. Vision

10. General Purpose Hardware
11. Dedicated Neuro-Hardware

--

Subject: What can you do with an NN and what not?

In principle, NNs can compute any computable function, i.e., they can do everything a
normal digital computer can do (Valiant, 1988; Siegelmann and Sontag, 1999; Orponen,
2000; Sima and Orponen, 2001), or perhaps even more, under some assumptions of doubtful
practicality (see Siegelmann, 1998, but also Hadley, 1999).

Practical applications of NNs most often employ supervised learning. For supervised
learning, you must provide training data that includes both the input and the desired result
(the target value). After successful training, you can present input data alone to the NN (that
is, input data without the desired result), and the NN will compute an output value that
approximates the desired result. However, for training to be successful, you may need lots
of training data and lots of computer time to do the training. In many applications, such as
image and text processing, you will have to do a lot of work to select appropriate input data
and to code the data as numeric values.

In practice, NNs are especially useful for classification and function approximation/mapping
problems which are tolerant of some imprecision, which have lots of training data available,

Page 12 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

but to which hard and fast rules (such as those that might be used in an expert system)
cannot easily be applied. Almost any finite-dimensional vector function on a compact set
can be approximated to arbitrary precision by feedforward NNs (which are the type most
often used in practical applications) if you have enough data and enough computing
resources.

To be somewhat more precise, feedforward networks with a single hidden layer and trained
by least-squares are statistically consistent estimators of arbitrary square-integrable
regression functions under certain practically-satisfiable assumptions regarding sampling,
target noise, number of hidden units, size of weights, and form of hidden-unit activation
function (White, 1990). Such networks can also be trained as statistically consistent
estimators of derivatives of regression functions (White and Gallant, 1992) and quantiles of
the conditional noise distribution (White, 1992a). Feedforward networks with a single
hidden layer using threshold or sigmoid activation functions are universally consistent
estimators of binary classifications (Faragó and Lugosi, 1993; Lugosi and Zeger 1995;
Devroye, Györfi, and Lugosi, 1996) under similar assumptions. Note that these results are
stronger than the universal approximation theorems that merely show the existence of
weights for arbitrarily accurate approximations, without demonstrating that such weights
can be obtained by learning.

Unfortunately, the above consistency results depend on one impractical assumption: that the
networks are trained by an error (L_p error or misclassification rate) minimization technique
that comes arbitrarily close to the global minimum. Such minimization is computationally
intractable except in small or simple problems (Blum and Rivest, 1989; Judd, 1990). In
practice, however, you can usually get good results without doing a full-blown global
optimization; e.g., using multiple (say, 10 to 1000) random weight initializations is usually
sufficient.

One example of a function that a typical neural net cannot learn is Y=1/X on the open
interval (0,1). An open interval is not a compact set. With any bounded output activation
function, the error will get arbitrarily large as the input approaches zero. Of course, you
could make the output activation function a reciprocal function and easily get a perfect fit,
but neural networks are most often used in situations where you do not have enough prior
knowledge to set the activation function in such a clever way. There are also many other
important problems that are so difficult that a neural network will be unable to learn them
without memorizing the entire training set, such as:

 Predicting random or pseudo-random numbers.
 Factoring large integers.
 Determing whether a large integer is prime or composite.
 Decrypting anything encrypted by a good algorithm.

And it is important to understand that there are no methods for training NNs that can
magically create information that is not contained in the training data.

Page 13 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Feedforward NNs are restricted to finite-dimensional input and output spaces. Recurrent
NNs can in theory process arbitrarily long strings of numbers or symbols. But training
recurrent NNs has posed much more serious practical difficulties than training feedforward
networks. NNs are, at least today, difficult to apply successfully to problems that concern
manipulation of symbols and rules, but much research is being done.

There have been attempts to pack recursive structures into finite-dimensional real vectors
(Blair, 1997; Pollack, 1990; Chalmers, 1990; Chrisman, 1991; Plate, 1994; Hammerton,
1998). Obviously, finite precision limits how far the recursion can go (Hadley, 1999). The
practicality of such methods is open to debate.

As for simulating human consciousness and emotion, that's still in the realm of science
fiction. Consciousness is still one of the world's great mysteries. Artificial NNs may be
useful for modeling some aspects of or prerequisites for consciousness, such as perception
and cognition, but ANNs provide no insight so far into what Chalmers (1996, p. xi) calls the
"hard problem":

Many books and articles on consciousness have appeared in the past few years,
and one might think we are making progress. But on a closer look, most of this
work leaves the hardest problems about consciousness untouched. Often, such
work addresses what might be called the "easy problems" of consciousness: How
does the brain process environmental stimulation? How does it integrate
information? How do we produce reports on internal states? These are important
questions, but to answer them is not to solve the hard problem: Why is all this
processing accompanied by an experienced inner life?

For more information on consciousness, see the on-line journal Psyche at
http://psyche.cs.monash.edu.au/index.html.

For examples of specific applications of NNs, see What are some applications of NNs?

References:

Blair, A.D. (1997), "Scaling Up RAAMs," Brandeis University Computer Science
Technical Report CS-97-192,
http://www.demo.cs.brandeis.edu/papers/long.html#sur97

Blum, A., and Rivest, R.L. (1989), "Training a 3-node neural network is NP-
complete," in Touretzky, D.S. (ed.), Advances in Neural Information Processing
Systems 1, San Mateo, CA: Morgan Kaufmann, 494-501.

Chalmers, D.J. (1990), "Syntactic Transformations on Distributed Representations,"
Connection Science, 2, 53-62,
http://ling.ucsc.edu/~chalmers/papers/transformations.ps

Chalmers, D.J. (1996), The Conscious Mind: In Search of a Fundamental Theory, NY:

Page 14 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Oxford University Press.

Chrisman, L. (1991), "Learning Recursive Distributed Representations for Holistic
Computation", Connection Science, 3, 345-366,
ftp://reports.adm.cs.cmu.edu/usr/anon/1991/CMU-CS-91-154.ps

Collier, R. (1994), "An historical overview of natural language processing systems that
learn," Artificial Intelligence Review, 8(1), ??-??.

Devroye, L., Györfi, L., and Lugosi, G. (1996), A Probabilistic Theory of Pattern
Recognition, NY: Springer.

Faragó, A. and Lugosi, G. (1993), "Strong Universal Consistency of Neural Network
Classifiers," IEEE Transactions on Information Theory, 39, 1146-1151.

Hadley, R.F. (1999), "Cognition and the computational power of connectionist
networks," http://www.cs.sfu.ca/~hadley/online.html

Hammerton, J.A. (1998), "Holistic Computation: Reconstructing a muddled concept,"
Connection Science, 10, 3-19,
http://www.tardis.ed.ac.uk/~james/CNLP/holcomp.ps.gz

Judd, J.S. (1990), Neural Network Design and the Complexity of Learning, Cambridge,
MA: The MIT Press.

Lugosi, G., and Zeger, K. (1995), "Nonparametric Estimation via Empirical Risk
Minimization," IEEE Transactions on Information Theory, 41, 677-678.

Orponen, P. (2000), "An overview of the computational power of recurrent neural
networks," Finnish AI Conference, Helsinki,
http://www.math.jyu.fi/~orponen/papers/rnncomp.ps

Plate, T.A. (1994), Distributed Representations and Nested Compositional Structure,
Ph.D. Thesis, University of Toronto, ftp://ftp.cs.utoronto.ca/pub/tap/

Pollack, J. B. (1990), "Recursive Distributed Representations," Artificial Intelligence
46, 1, 77-105, http://www.demo.cs.brandeis.edu/papers/long.html#raam

Siegelmann, H.T. (1998), Neural Networks and Analog Computation: Beyond the
Turing Limit, Boston: Birkhauser, ISBN 0-8176-3949-7,
http://iew3.technion.ac.il:8080/Home/Users/iehava/book/

Siegelmann, H.T., and Sontag, E.D. (1999), "Turing Computability with Neural
Networks," Applied Mathematics Letters, 4, 77-80.

Sima, J., and Orponen, P. (2001), "Computing with continuous-time Liapunov

Page 15 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

systems," 33rd ACM STOC, http://www.math.jyu.fi/~orponen/papers/liapcomp.ps

Valiant, L. (1988), "Functionality in Neural Nets," Learning and Knowledge
Acquisition, Proc. AAAI, 629-634.

White, H. (1990), "Connectionist Nonparametric Regression: Multilayer Feedforward
Networks Can Learn Arbitrary Mappings," Neural Networks, 3, 535-550. Reprinted in
White (1992b).

White, H. (1992a), "Nonparametric Estimation of Conditional Quantiles Using Neural
Networks," in Page, C. and Le Page, R. (eds.), Proceedings of the 23rd Sympsium on
the Interface: Computing Science and Statistics, Alexandria, VA: American Statistical
Association, pp. 190-199. Reprinted in White (1992b).

White, H. (1992b), Artificial Neural Networks: Approximation and Learning Theory,
Blackwell.

White, H., and Gallant, A.R. (1992), "On Learning the Derivatives of an Unknown
Mapping with Multilayer Feedforward Networks," Neural Networks, 5, 129-138.
Reprinted in White (1992b).

--

Subject: Who is concerned with NNs?

Neural Networks are interesting for quite a lot of very different people:

 Computer scientists want to find out about the properties of non-symbolic information
processing with neural nets and about learning systems in general.

 Statisticians use neural nets as flexible, nonlinear regression and classification models.
 Engineers of many kinds exploit the capabilities of neural networks in many areas,

such as signal processing and automatic control.
 Cognitive scientists view neural networks as a possible apparatus to describe models of

thinking and consciousness (High-level brain function).
 Neuro-physiologists use neural networks to describe and explore medium-level brain

function (e.g. memory, sensory system, motorics).
 Physicists use neural networks to model phenomena in statistical mechanics and for a

lot of other tasks.
 Biologists use Neural Networks to interpret nucleotide sequences.
 Philosophers and some other people may also be interested in Neural Networks for

various reasons.

For world-wide lists of groups doing research on NNs, see the Foundation for Neural
Networks's (SNN) page at http://www.mbfys.kun.nl/snn/pointers/groups.html and see
Neural Networks Research on the IEEE Neural Network Council's homepage
http://www.ieee.org/nnc.

Page 16 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

--

Subject: How many kinds of NNs exist?

There are many many kinds of NNs by now. Nobody knows exactly how many. New ones
(or at least variations of old ones) are invented every week. Below is a collection of some of
the most well known methods, not claiming to be complete.

The two main kinds of learning algorithms are supervised and unsupervised.

 In supervised learning, the correct results (target values, desired outputs) are known
and are given to the NN during training so that the NN can adjust its weights to try
match its outputs to the target values. After training, the NN is tested by giving it only
input values, not target values, and seeing how close it comes to outputting the correct
target values.

 In unsupervised learning, the NN is not provided with the correct results during
training. Unsupervised NNs usually perform some kind of data compression, such as
dimensionality reduction or clustering. See "What does unsupervised learning learn?"

The distinction between supervised and unsupervised methods is not always clear-cut. An
unsupervised method can learn a summary of a probability distribution, then that
summarized distribution can be used to make predictions. Furthermore, supervised methods
come in two subvarieties: auto-associative and hetero-associative. In auto-associative
learning, the target values are the same as the inputs, whereas in hetero-associative learning,
the targets are generally different from the inputs. Many unsupervised methods are
equivalent to auto-associative supervised methods. For more details, see "What does
unsupervised learning learn?"

Two major kinds of network topology are feedforward and feedback.

 In a feedforward NN, the connections between units do not form cycles. Feedforward
NNs usually produce a response to an input quickly. Most feedforward NNs can be
trained using a wide variety of efficient conventional numerical methods (e.g. see
"What are conjugate gradients, Levenberg-Marquardt, etc.?") in addition to algorithms
invented by NN reserachers.

 In a feedback or recurrent NN, there are cycles in the connections. In some feedback
NNs, each time an input is presented, the NN must iterate for a potentially long time
before it produces a response. Feedback NNs are usually more difficult to train than
feedforward NNs.

Some kinds of NNs (such as those with winner-take-all units) can be implemented as either
feedforward or feedback networks.

NNs also differ in the kinds of data they accept. Two major kinds of data are categorical and
quantitative.

Page 17 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

 Categorical variables take only a finite (technically, countable) number of possible
values, and there are usually several or more cases falling into each category.
Categorical variables may have symbolic values (e.g., "male" and "female", or "red",
"green" and "blue") that must be encoded into numbers before being given to the
network (see "How should categories be encoded?") Both supervised learning with
categorical target values and unsupervised learning with categorical outputs are called
"classification."

 Quantitative variables are numerical measurements of some attribute, such as length in
meters. The measurements must be made in such a way that at least some arithmetic
relations among the measurements reflect analogous relations among the attributes of
the objects that are measured. For more information on measurement theory, see the
Measurement Theory FAQ at ftp://ftp.sas.com/pub/neural/measurement.html.
Supervised learning with quantitative target values is called "regression."

Some variables can be treated as either categorical or quantitative, such as number of
children or any binary variable. Most regression algorithms can also be used for supervised
classification by encoding categorical target values as 0/1 binary variables and using those
binary variables as target values for the regression algorithm. The outputs of the network are
posterior probabilities when any of the most common training methods are used.

Here are some well-known kinds of NNs:

1. Supervised

1. Feedforward

 Linear
 Hebbian - Hebb (1949), Fausett (1994)
 Perceptron - Rosenblatt (1958), Minsky and Papert (1969/1988),

Fausett (1994)
 Adaline - Widrow and Hoff (1960), Fausett (1994)
 Higher Order - Bishop (1995)
 Functional Link - Pao (1989)

 MLP: Multilayer perceptron - Bishop (1995), Reed and Marks (1999),
Fausett (1994)

 Backprop - Rumelhart, Hinton, and Williams (1986)
 Cascade Correlation - Fahlman and Lebiere (1990), Fausett (1994)
 Quickprop - Fahlman (1989)
 RPROP - Riedmiller and Braun (1993)

 RBF networks - Bishop (1995), Moody and Darken (1989), Orr (1996)
 OLS: Orthogonal Least Squares - Chen, Cowan and Grant (1991)

 CMAC: Cerebellar Model Articulation Controller - Albus (1975), Brown
and Harris (1994)

 Classification only
 LVQ: Learning Vector Quantization - Kohonen (1988), Fausett (1994)

Page 18 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

 PNN: Probabilistic Neural Network - Specht (1990), Masters (1993),
Hand (1982), Fausett (1994)

 Regression only
 GNN: General Regression Neural Network - Specht (1991), Nadaraya

(1964), Watson (1964)

2. Feedback - Hertz, Krogh, and Palmer (1991), Medsker and Jain (2000)

 BAM: Bidirectional Associative Memory - Kosko (1992), Fausett (1994)
 Boltzman Machine - Ackley et al. (1985), Fausett (1994)
 Recurrent time series

 Backpropagation through time - Werbos (1990)
 Elman - Elman (1990)
 FIR: Finite Impulse Response - Wan (1990)
 Jordan - Jordan (1986)
 Real-time recurrent network - Williams and Zipser (1989)
 Recurrent backpropagation - Pineda (1989), Fausett (1994)
 TDNN: Time Delay NN - Lang, Waibel and Hinton (1990)

3. Competitive

 ARTMAP - Carpenter, Grossberg and Reynolds (1991)
 Fuzzy ARTMAP - Carpenter, Grossberg, Markuzon, Reynolds and Rosen

(1992), Kasuba (1993)
 Gaussian ARTMAP - Williamson (1995)
 Counterpropagation - Hecht-Nielsen (1987; 1988; 1990), Fausett (1994)
 Neocognitron - Fukushima, Miyake, and Ito (1983), Fukushima, (1988),

Fausett (1994)

2. Unsupervised - Hertz, Krogh, and Palmer (1991)

1. Competitive

 Vector Quantization
 Grossberg - Grossberg (1976)
 Kohonen - Kohonen (1984)
 Conscience - Desieno (1988)

 Self-Organizing Map
 Kohonen - Kohonen (1995), Fausett (1994)
 GTM: - Bishop, Svensén and Williams (1997)
 Local Linear - Mulier and Cherkassky (1995)

 Adaptive resonance theory
 ART 1 - Carpenter and Grossberg (1987a), Moore (1988), Fausett

(1994)
 ART 2 - Carpenter and Grossberg (1987b), Fausett (1994)
 ART 2-A - Carpenter, Grossberg and Rosen (1991a)

Page 19 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

 ART 3 - Carpenter and Grossberg (1990)
 Fuzzy ART - Carpenter, Grossberg and Rosen (1991b)

 DCL: Differential Competitive Learning - Kosko (1992)

2. Dimension Reduction - Diamantaras and Kung (1996)

 Hebbian - Hebb (1949), Fausett (1994)
 Oja - Oja (1989)
 Sanger - Sanger (1989)
 Differential Hebbian - Kosko (1992)

3. Autoassociation

 Linear autoassociator - Anderson et al. (1977), Fausett (1994)
 BSB: Brain State in a Box - Anderson et al. (1977), Fausett (1994)
 Hopfield - Hopfield (1982), Fausett (1994)

3. Nonlearning

1. Hopfield - Hertz, Krogh, and Palmer (1991)
2. various networks for optimization - Cichocki and Unbehauen (1993)

References:

Ackley, D.H., Hinton, G.F., and Sejnowski, T.J. (1985), "A learning algorithm for
Boltzman machines," Cognitive Science, 9, 147-169.

Albus, J.S (1975), "New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC)," Transactions of the ASME Journal of Dynamic
Systems, Measurement, and Control, September 1975, 220-27.

Anderson, J.A., and Rosenfeld, E., eds. (1988), Neurocomputing: Foundatons of
Research, Cambridge, MA: The MIT Press.

Anderson, J.A., Silverstein, J.W., Ritz, S.A., and Jones, R.S. (1977) "Distinctive
features, categorical perception, and probability learning: Some applications of a
neural model," Psychological Rveiew, 84, 413-451. Reprinted in Anderson and
Rosenfeld (1988).

Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford
University Press.

Bishop, C.M., Svensén, M., and Williams, C.K.I (1997), "GTM: A principled
alternative to the self-organizing map," in Mozer, M.C., Jordan, M.I., and Petsche, T.,
(eds.) Advances in Neural Information Processing Systems 9, Cambrideg, MA: The
MIT Press, pp. 354-360. Also see http://www.ncrg.aston.ac.uk/GTM/

Page 20 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Brown, M., and Harris, C. (1994), Neurofuzzy Adaptive Modelling and Control, NY:
Prentice Hall.

Carpenter, G.A., Grossberg, S. (1987a), "A massively parallel architecture for a self-
organizing neural pattern recognition machine," Computer Vision, Graphics, and
Image Processing, 37, 54-115.

Carpenter, G.A., Grossberg, S. (1987b), "ART 2: Self-organization of stable category
recognition codes for analog input patterns," Applied Optics, 26, 4919-4930.

Carpenter, G.A., Grossberg, S. (1990), "ART 3: Hierarchical search using chemical
transmitters in self-organizing pattern recognition architectures. Neural Networks, 3,
129-152.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B.
(1992), "Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps," IEEE Transactions on Neural Networks, 3,
698-713

Carpenter, G.A., Grossberg, S., Reynolds, J.H. (1991), "ARTMAP: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural
network," Neural Networks, 4, 565-588.

Carpenter, G.A., Grossberg, S., Rosen, D.B. (1991a), "ART 2-A: An adaptive
resonance algorithm for rapid category learning and recognition," Neural Networks, 4,
493-504.

Carpenter, G.A., Grossberg, S., Rosen, D.B. (1991b), "Fuzzy ART: Fast stable
learning and categorization of analog patterns by an adaptive resonance system,"
Neural Networks, 4, 759-771.

Chen, S., Cowan, C.F.N., and Grant, P.M. (1991), "Orthogonal least squares learning
for radial basis function networks," IEEE Transactions on Neural Networks, 2, 302-
309.

Cichocki, A. and Unbehauen, R. (1993). Neural Networks for Optimization and Signal
Processing. NY: John Wiley & Sons, ISBN 0-471-93010-5.

Desieno, D. (1988), "Adding a conscience to competitive learning," Proc. Int. Conf. on
Neural Networks, I, 117-124, IEEE Press.

Diamantaras, K.I., and Kung, S.Y. (1996) Principal Component Neural Networks:
Theory and Applications, NY: Wiley.

Elman, J.L. (1990), "Finding structure in time," Cognitive Science, 14, 179-211.

Page 21 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Fahlman, S.E. (1989), "Faster-Learning Variations on Back-Propagation: An Empirical
Study", in Touretzky, D., Hinton, G, and Sejnowski, T., eds., Proceedings of the 1988
Connectionist Models Summer School, Morgan Kaufmann, 38-51.

Fahlman, S.E., and Lebiere, C. (1990), "The Cascade-Correlation Learning
Architecture", in Touretzky, D. S. (ed.), Advances in Neural Information Processing
Systems 2,, Los Altos, CA: Morgan Kaufmann Publishers, pp. 524-532.

Fausett, L. (1994), Fundamentals of Neural Networks, Englewood Cliffs, NJ: Prentice
Hall.

Fukushima, K., Miyake, S., and Ito, T. (1983), "Neocognitron: A neural network
model for a mechanism of visual pattern recognition," IEEE Transactions on Systems,
Man, and Cybernetics, 13, 826-834.

Fukushima, K. (1988), "Neocognitron: A hierarchical neural network capable of visual
pattern recognition," Neural Networks, 1, 119-130.

Grossberg, S. (1976), "Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors," Biological Cybernetics,
23, 121-134

Hand, D.J. (1982) Kernel Discriminant Analysis, Research Studies Press.

Hebb, D.O. (1949), The Organization of Behavior, NY: John Wiley & Sons.

Hecht-Nielsen, R. (1987), "Counterpropagation networks," Applied Optics, 26, 4979-
4984.

Hecht-Nielsen, R. (1988), "Applications of counterpropagation networks," Neural
Networks, 1, 131-139.

Hecht-Nielsen, R. (1990), Neurocomputing, Reading, MA: Addison-Wesley.

Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley: Redwood City, California.

Hopfield, J.J. (1982), "Neural networks and physical systems with emergent collective
computational abilities," Proceedings of the National Academy of Sciences, 79, 2554-
2558. Reprinted in Anderson and Rosenfeld (1988).

Jordan, M. I. (1986), "Attractor dynamics and parallelism in a connectionist sequential
machine," In Proceedings of the Eighth Annual conference of the Cognitive Science
Society, pages 531-546. Lawrence Erlbaum.

Kasuba, T. (1993), "Simplified Fuzzy ARTMAP," AI Expert, 8, 18-25.

Page 22 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Kohonen, T. (1984), Self-Organization and Associative Memory, Berlin: Springer.

Kohonen, T. (1988), "Learning Vector Quantization," Neural Networks, 1 (suppl 1),
303.

Kohonen, T. (1995/1997), Self-Organizing Maps, Berlin: Springer-Verlag. First edition
was 1995, second edition 1997. See http://www.cis.hut.fi/nnrc/new_book.html for
information on the second edition.

Kosko, B.(1992), Neural Networks and Fuzzy Systems, Englewood Cliffs, N.J.:
Prentice-Hall.

Lang, K. J., Waibel, A. H., and Hinton, G. (1990), "A time-delay neural network
architecture for isolated word recognition," Neural Networks, 3, 23-44.

Masters, T. (1993). Practical Neural Network Recipes in C++, San Diego: Academic
Press.

Masters, T. (1995) Advanced Algorithms for Neural Networks: A C++ Sourcebook,
NY: John Wiley and Sons, ISBN 0-471-10588-0

Medsker, L.R., and Jain, L.C., eds. (2000), Recurrent Neural Networks: Design and
Applications, Boca Raton, FL: CRC Press, ISBN 0-8493-7181-3.

Minsky, M.L., and Papert, S.A. (1969/1988), Perceptrons, Cambridge, MA: The MIT
Press (first edition, 1969; expanded edition, 1988).

Moody, J. and Darken, C.J. (1989), "Fast learning in networks of locally-tuned
processing units," Neural Computation, 1, 281-294.

Moore, B. (1988), "ART 1 and Pattern Clustering," in Touretzky, D., Hinton, G. and
Sejnowski, T., eds., Proceedings of the 1988 Connectionist Models Summer School,
174-185, San Mateo, CA: Morgan Kaufmann.

Mulier, F. and Cherkassky, V. (1995), "Self-Organization as an Iterative Kernel
Smoothing Process," Neural Computation, 7, 1165-1177.

Nadaraya, E.A. (1964) "On estimating regression", Theory Probab. Applic. 10, 186-90.

Oja, E. (1989), "Neural networks, principal components, and subspaces," International
Journal of Neural Systems, 1, 61-68.

Orr, M.J.L. (1996), "Introduction to radial basis function networks,"
http://www.anc.ed.ac.uk/~mjo/papers/intro.ps or
http://www.anc.ed.ac.uk/~mjo/papers/intro.ps.gz

Page 23 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Pao, Y. H. (1989), Adaptive Pattern Recognition and Neural Networks, Reading, MA:
Addison-Wesley Publishing Company, ISBN 0-201-12584-6.

Pineda, F.J. (1989), "Recurrent back-propagation and the dynamical approach to neural
computation," Neural Computation, 1, 161-172.

Reed, R.D., and Marks, R.J, II (1999), Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, Cambridge, MA: The MIT Press, ISBN 0-
262-18190-8.

Riedmiller, M. and Braun, H. (1993), "A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm", Proceedings of the IEEE
International Conference on Neural Networks 1993, San Francisco: IEEE.

Rosenblatt, F. (1958), "The perceptron: A probabilistic model for information storage
and organization in the brain., Psychological Review, 65, 386-408.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986), "Learning internal
representations by error propagation", in Rumelhart, D.E. and McClelland, J. L., eds.
(1986), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1, 318-362, Cambridge, MA: The MIT Press.

Sanger, T.D. (1989), "Optimal unsupervised learning in a single-layer linear
feedforward neural network," Neural Networks, 2, 459-473.

Specht, D.F. (1990) "Probabilistic neural networks," Neural Networks, 3, 110-118.

Specht, D.F. (1991) "A Generalized Regression Neural Network", IEEE Transactions
on Neural Networks, 2, Nov. 1991, 568-576.

Wan, E.A. (1990), "Temporal backpropagation: An efficient algorithm for finite
impulse response neural networks," in Proceedings of the 1990 Connectionist Models
Summer School, Touretzky, D.S., Elman, J.L., Sejnowski, T.J., and Hinton, G.E., eds.,
San Mateo, CA: Morgan Kaufmann, pp. 131-140.

Watson, G.S. (1964) "Smooth regression analysis", Sankhy{\=a}, Series A, 26, 359-
72.

Werbos, P.J. (1990), "Backpropagtion through time: What it is and how to do it,"
Proceedings of the IEEE, 78, 1550-1560.

Widrow, B., and Hoff, M.E., Jr., (1960), "Adaptive switching circuits," IRE WESCON
Convention Record. part 4, pp. 96-104. Reprinted in Anderson and Rosenfeld (1988).

Williams, R.J., and Zipser, D., (1989), "A learning algorithm for continually running
fully recurrent neurla networks," Neural Computation, 1, 270-280.

Page 24 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Williamson, J.R. (1995), "Gaussian ARTMAP: A neural network for fast incremental
learning of noisy multidimensional maps," Technical Report CAS/CNS-95-003,
Boston University, Center of Adaptive Systems and Department of Cognitive and
Neural Systems.

--

Subject: How many kinds of Kohonen networks exist? (And
what is k-means?)

Teuvo Kohonen is one of the most famous and prolific researchers in neurocomputing, and
he has invented a variety of networks. But many people refer to "Kohonen networks"
without specifying which kind of Kohonen network, and this lack of precision can lead to
confusion. The phrase "Kohonen network" most often refers to one of the following three
types of networks:

 VQ: Vector Quantization--competitive networks that can be viewed as unsupervised
density estimators or autoassociators (Kohonen, 1995/1997; Hecht-Nielsen 1990),
closely related to k-means cluster analysis (MacQueen, 1967; Anderberg, 1973). Each
competitive unit corresponds to a cluster, the center of which is called a "codebook
vector". Kohonen's learning law is an on-line algorithm that finds the codebook vector
closest to each training case and moves the "winning" codebook vector closer to the
training case. The codebook vector is moved a certain proportion of the distance
between it and the training case, the proportion being specified by the learning rate,
that is:

 new_codebook = old_codebook * (1-learning_rate)

 + data * learning_rate

Numerous similar algorithms have been developed in the neural net and machine
learning literature; see Hecht-Nielsen (1990) for a brief historical overview, and Kosko
(1992) for a more technical overview of competitive learning.

MacQueen's on-line k-means algorithm is essentially the same as Kohonen's learning
law except that the learning rate is the reciprocal of the number of cases that have been
assigned to the winnning cluster. Suppose that when processing a given training case,
N cases have been previously assigned to the winning codebook vector. Then the
codebook vector is updated as:

 new_codebook = old_codebook * N/(N+1)

 + data * 1/(N+1)

This reduction of the learning rate makes each codebook vector the mean of all cases
assigned to its cluster and guarantees convergence of the algorithm to an optimum

Page 25 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

value of the error function (the sum of squared Euclidean distances between cases and
codebook vectors) as the number of training cases goes to infinity. Kohonen's learning
law with a fixed learning rate does not converge. As is well known from stochastic
approximation theory, convergence requires the sum of the infinite sequence of
learning rates to be infinite, while the sum of squared learning rates must be finite
(Kohonen, 1995, p. 34). These requirements are satisfied by MacQueen's k-means
algorithm.

Kohonen VQ is often used for off-line learning, in which case the training data are
stored and Kohonen's learning law is applied to each case in turn, cycling over the data
set many times (incremental training). Convergence to a local optimum can be
obtained as the training time goes to infinity if the learning rate is reduced in a suitable
manner as described above. However, there are off-line k-means algorithms, both
batch and incremental, that converge in a finite number of iterations (Anderberg, 1973;
Hartigan, 1975; Hartigan and Wong, 1979). The batch algorithms such as Forgy's
(1965; Anderberg, 1973) have the advantage for large data sets, since the incremental
methods require you either to store the cluster membership of each case or to do two
nearest-cluster computations as each case is processed. Forgy's algorithm is a simple
alternating least-squares algorithm consisting of the following steps:

1. Initialize the codebook vectors.
2. Repeat the following two steps until convergence:

A. Read the data, assigning each case to the nearest (using Euclidean distance)
codebook vector.
B. Replace each codebook vector with the mean of the cases that were assigned
to it.

Fastest training is usually obtained if MacQueen's on-line algorithm is used for the first
pass and off-line k-means algorithms are applied on subsequent passes (Bottou and
Bengio, 1995). However, these training methods do not necessarily converge to a
global optimum of the error function. The chance of finding a global optimum can be
improved by using rational initialization (SAS Institute, 1989, pp. 824-825), multiple
random initializations, or various time-consuming training methods intended for global
optimization (Ismail and Kamel, 1989; Zeger, Vaisy, and Gersho, 1992).

VQ has been a popular topic in the signal processing literature, which has been largely
separate from the literature on Kohonen networks and from the cluster analysis
literature in statistics and taxonomy. In signal processing, on-line methods such as
Kohonen's and MacQueen's are called "adaptive vector quantization" (AVQ), while
off-line k-means methods go by the names of "Lloyd" or "Lloyd I" (Lloyd, 1982) and
"LBG" (Linde, Buzo, and Gray, 1980). There is a recent textbook on VQ by Gersho
and Gray (1992) that summarizes these algorithms as information compression
methods.

Kohonen's work emphasized VQ as density estimation and hence the desirability of

Page 26 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

equiprobable clusters (Kohonen 1984; Hecht-Nielsen 1990). However, Kohonen's
learning law does not produce equiprobable clusters--that is, the proportions of training
cases assigned to each cluster are not usually equal. If there are I inputs and the
number of clusters is large, the density of the codebook vectors approximates the I/
(I+2) power of the density of the training data (Kohonen, 1995, p. 35; Ripley, 1996,
p. 202; Zador, 1982), so the clusters are approximately equiprobable only if the data
density is uniform or the number of inputs is large. The most popular method for
obtaining equiprobability is Desieno's (1988) algorithm which adds a "conscience"
value to each distance prior to the competition. The conscience value for each cluster is
adjusted during training so that clusters that win more often have larger conscience
values and are thus handicapped to even out the probabilities of winning in later
iterations.

Kohonen's learning law is an approximation to the k-means model, which is an
approximation to normal mixture estimation by maximum likelihood assuming that the
mixture components (clusters) all have spherical covariance matrices and equal
sampling probabilities. Hence if the population contains clusters that are not
equiprobable, k-means will tend to produce sample clusters that are more nearly
equiprobable than the population clusters. Corrections for this bias can be obtained by
maximizing the likelihood without the assumption of equal sampling probabilities
Symons (1981). Such corrections are similar to conscience but have the opposite
effect.

In cluster analysis, the purpose is not to compress information but to recover the true
cluster memberships. K-means differs from mixture models in that, for k-means, the
cluster membership for each case is considered a separate parameter to be estimated,
while mixture models estimate a posterior probability for each case based on the
means, covariances, and sampling probabilities of each cluster. Balakrishnan, Cooper,
Jacob, and Lewis (1994) found that k-means algorithms recovered cluster membership
more accurately than Kohonen VQ.

 SOM: Self-Organizing Map--competitive networks that provide a "topological"
mapping from the input space to the clusters (Kohonen, 1995). The SOM was inspired
by the way in which various human sensory impressions are neurologically mapped
into the brain such that spatial or other relations among stimuli correspond to spatial
relations among the neurons. In a SOM, the neurons (clusters) are organized into a
grid--usually two-dimensional, but sometimes one-dimensional or (rarely) three- or
more-dimensional. The grid exists in a space that is separate from the input space; any
number of inputs may be used as long as the number of inputs is greater than the
dimensionality of the grid space. A SOM tries to find clusters such that any two
clusters that are close to each other in the grid space have codebook vectors close to
each other in the input space. But the converse does not hold: codebook vectors that
are close to each other in the input space do not necessarily correspond to clusters that
are close to each other in the grid. Another way to look at this is that a SOM tries to
embed the grid in the input space such every training case is close to some codebook

Page 27 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

vector, but the grid is bent or stretched as little as possible. Yet another way to look at
it is that a SOM is a (discretely) smooth mapping between regions in the input space
and points in the grid space. The best way to undestand this is to look at the pictures in
Kohonen (1995) or various other NN textbooks.

The Kohonen algorithm for SOMs is very similar to the Kohonen algorithm for AVQ.
Let the codebook vectors be indexed by a subscript j, and let the index of the
codebook vector nearest to the current training case be n. The Kohonen SOM
algorithm requires a kernel function K(j,n), where K(j,j)=1 and K(j,n) is usually
a non-increasing function of the distance (in any metric) between codebook vectors j
and n in the grid space (not the input space). Usually, K(j,n) is zero for codebook
vectors that are far apart in the grid space. As each training case is processed, all the
codebook vectors are updated as:

 new_codebook = old_codebook * [1 - K(j,n) * learning_rate]
 j j

 + data * K(j,n) * learning_rate

The kernel function does not necessarily remain constant during training. The
neighborhood of a given codebook vector is the set of codebook vectors for which K
(j,n)>0. To avoid poor results (akin to local minima), it is usually advisable to start
with a large neighborhood, and let the neighborhood gradually shrink during training.
If K(j,n)=0 for j not equal to n, then the SOM update formula reduces to the formula
for Kohonen vector quantization. In other words, if the neighborhood size (for
example, the radius of the support of the kernel function K(j,n)) is zero, the SOM
algorithm degenerates into simple VQ. Hence it is important not to let the
neighborhood size shrink all the way to zero during training. Indeed, the choice of the
final neighborhood size is the most important tuning parameter for SOM training, as
we will see shortly.

A SOM works by smoothing the codebook vectors in a manner similar to kernel
estimation methods, but the smoothing is done in neighborhoods in the grid space
rather than in the input space (Mulier and Cherkassky 1995). This is easier to see in a
batch algorithm for SOMs, which is similar to Forgy's algorithm for batch k-means,
but incorporates an extra smoothing process:

1. Initialize the codebook vectors.
2. Repeat the following two steps until convergence or boredom:

A. Read the data, assigning each case to the nearest (using Euclidean distance)
codebook vector. While you are doing this, keep track of the mean and the
number of cases for each cluster.
B. Do a nonparametric regression using K(j,n) as a kernel function, with the
grid points as inputs, the cluster means as target values, and the number of cases
in each cluster as an case weight. Replace each codebook vector with the output
of the nonparametric regression function evaluated at its grid point.

Page 28 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

If the nonparametric regression method is Nadaraya-Watson kernel regression (see
What is GRNN?), the batch SOM algorithm produces essentially the same results as
Kohonen's algorithm, barring local minima. The main difference is that the batch
algorithm often converges. Mulier and Cherkassky (1995) note that other
nonparametric regression methods can be used to provide superior SOM algorithms. In
particular, local-linear smoothing eliminates the notorious "border effect", whereby the
codebook vectors near the border of the grid are compressed in the input space. The
border effect is especially problematic when you try to use a high degree of smoothing
in a Kohonen SOM, since all the codebook vectors will collapse into the center of the
input space. The SOM border effect has the same mathematical cause as the "boundary
effect" in kernel regression, which causes the estimated regression function to flatten
out near the edges of the regression input space. There are various cures for the edge
effect in nonparametric regression, of which local-linear smoothing is the simplest
(Wand and Jones, 1995). Hence, local-linear smoothing also cures the border effect in
SOMs. Furthermore, local-linear smoothing is much more general and reliable than the
heuristic weighting rule proposed by Kohonen (1995, p. 129).

Since nonparametric regression is used in the batch SOM algorithm, various properties
of nonparametric regression extend to SOMs. In particular, it is well known that the
shape of the kernel function is not a crucial matter in nonparametric regression, hence
it is not crucial in SOMs. On the other hand, the amount of smoothing used for
nonparametric regression is crucial, hence the choice of the final neighborhood size in
a SOM is crucial. Unfortunately, I am not aware of any systematic studies of methods
for choosing the final neighborhood size.

The batch SOM algorithm is very similar to the principal curve and surface algorithm
proposed by Hastie and Stuetzle (1989), as pointed out by Ritter, Martinetz, and
Schulten (1992) and Mulier and Cherkassky (1995). A principal curve is a nonlinear
generalization of a principal component. Given the probability distribution of a
population, a principal curve is defined by the following self-consistency condition:

1. If you choose any point on a principal curve,
2. then find the set of all the points in the input space that are closer to the chosen

point than any other point on the curve,
3. and compute the expected value (mean) of that set of points with respect to the

probability distribution, then
4. you end up with the same point on the curve that you chose originally.

See http://www.iro.umontreal.ca/~kegl/research/pcurves/ for more information about
principal curves and surfaces.

In a multivariate normal distribution, the principal curves are the same as the principal
components. A principal surface is the obvious generalization from a curve to a
surface. In a multivariate normal distribution, the principal surfaces are the subspaces
spanned by any two principal components.

A one-dimensional local-linear batch SOM can be used to estimate a principal curve

Page 29 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

by letting the number of codebook vectors approach infinity while choosing a kernel
function of appropriate smoothness. A two-dimensional local-linear batch SOM can be
used to estimate a principal surface by letting the number of both rows and columns in
the grid approach infinity. This connection between SOMs and principal curves and
surfaces shows that the choice of the number of codebook vectors is not crucial,
provided the number is fairly large.

If the final neighborhood size in a local-linear batch SOM is large, the SOM
approximates a subspace spanned by principal components--usually the first principal
component if the SOM is one-dimensional, the first two principal components if the
SOM is two-dimensional, and so on. This result does not depend on the data having a
multivariate normal distribution.

Principal component analysis is a method of data compression, not a statistical model.
However, there is a related method called "common factor analysis" that is often
confused with principal component analysis but is indeed a statistical model. Common
factor analysis posits that the relations among the observed variables can be explained
by a smaller number of unobserved, "latent" variables. Tibshirani (1992) has proposed
a latent-variable variant of principal curves, and latent-variable modifications of SOMs
have been introduced by Utsugi (1996, 1997) and Bishop, Svensén, and Williams
(1997).

The choice of the number of codebook vectors is usually not critical as long as the
number is fairly large. But results can be sensitive to the shape of the grid, e.g., square
or an elongated rectangle. And the dimensionality of the grid is a crucial choice. It is
difficult to guess the appropriate shape and dimensionality before analyzing the data.
Determining the shape and dimensionality by trial and error can be quite tedious.
Hence, a variety of methods have been tried for growing SOMs and related kinds of
NNs during training. For more information on growing SOMs, see Bernd Fritzke's
home page at http://pikas.inf.tu-dresden.de/~fritzke/

Using a 1-by-2 SOM is pointless. There is no "topological structure" in a 1-by-2 grid.
A 1-by-2 SOM is essentially the same as VQ with two clusters, except that the SOM
clusters will be closer together than the VQ clusters if the final neighborhood size for
the SOM is large.

In a Kohonen SOM, as in VQ, it is necessary to reduce the learning rate during training
to obtain convergence. Greg Heath has commented in this regard:

I favor separate learning rates for each winning SOM node (or k-means
cluster) in the form 1/(N_0i + N_i + 1), where N_i is the count of
vectors that have caused node i to be a winner and N_0i is an initializing
count that indicates the confidence in the initial weight vector assignment.
The winning node expression is based on stochastic estimation convergence
constraints and pseudo-Bayesian estimation of mean vectors. Kohonen

Page 30 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

derived a heuristic recursion relation for the "optimal" rate. To my surprise,
when I solved the recursion relation I obtained the same above expression
that I've been using for years.

In addition, I have had success using the similar form (1/n)/(N_0j + N_j
+ (1/n)) for the n nodes in the shrinking updating-neighborhood. Before
the final "winners-only" stage when neighbors are no longer updated, the
number of updating neighbors eventually shrinks to n = 6 or 8 for
hexagonal or rectangular neighborhoods, respectively.

Kohonen's neighbor-update formula is more precise replacing my constant
fraction (1/n) with a node-pair specific h_ij (h_ij < 1). However, as
long as the initial neighborhood is sufficiently large, the shrinking rate is
sufficiently slow, and the final winner-only stage is sufficiently long, the
results should be relatively insensitive to exact form of h_ij.

Another advantage of batch SOMs is that there is no learning rate, so these
complications evaporate.

Kohonen (1995, p. VII) says that SOMs are not intended for pattern recognition but for
clustering, visualization, and abstraction. Kohonen has used a "supervised
SOM" (1995, pp. 160-161) that is similar to counterpropagation (Hecht-Nielsen 1990),
but he seems to prefer LVQ (see below) for supervised classification. Many people
continue to use SOMs for classification tasks, sometimes with surprisingly (I am
tempted to say "inexplicably") good results (Cho, 1997).

 LVQ: Learning Vector Quantization--competitive networks for supervised
classification (Kohonen, 1988, 1995; Ripley, 1996). Each codebook vector is assigned
to one of the target classes. Each class may have one or more codebook vectors. A case
is classified by finding the nearest codebook vector and assigning the case to the class
corresponding to the codebook vector. Hence LVQ is a kind of nearest-neighbor rule.

Ordinary VQ methods, such as Kohonen's VQ or k-means, can easily be used for
supervised classification. Simply count the number of training cases from each class
assigned to each cluster, and divide by the total number of cases in the cluster to get
the posterior probability. For a given case, output the class with the greatest posterior
probability--i.e. the class that forms a majority in the nearest cluster. Such methods can
provide universally consistent classifiers (Devroye et al., 1996) even when the
codebook vectors are obtained by unsupervised algorithms. LVQ tries to improve on
this approach by adapting the codebook vectors in a supervised way. There are several
variants of LVQ--called LVQ1, OLVQ1, LVQ2, and LVQ3--based on heuristics.
However, a smoothed version of LVQ can be trained as a feedforward network using a
NRBFEQ architecture (see "How do MLPs compare with RBFs?") and optimizing any
of the usual error functions; as the width of the RBFs goes to zero, the NRBFEQ
network approaches an optimized LVQ network.

Page 31 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

There are several other kinds of Kohonen networks described in Kohonen (1995), including:

 DEC--Dynamically Expanding Context
 LSM--Learning Subspace Method
 ASSOM--Adaptive Subspace SOM
 FASSOM--Feedback-controlled Adaptive Subspace SOM
 Supervised SOM
 LVQ-SOM

More information on the error functions (or absence thereof) used by Kohonen VQ and
SOM is provided under "What does unsupervised learning learn?"

For more on-line information on Kohonen networks and other varieties of SOMs, see:

 The web page of The Neural Networks Research Centre, Helsinki University of
Technology, at http://www.cis.hut.fi/research/

 The SOM of articles from comp.ai.neural-nets at
http://websom.hut.fi/websom/comp.ai.neural-nets-new/html/root.html

 Akio Utsugi's web page on Bayesian SOMs at the National Institute of Bioscience and
Human-Technology, Agency of Industrial Science and Technology, M.I.T.I., 1-1,
Higashi, Tsukuba, Ibaraki, 305 Japan, at
http://www.aist.go.jp/NIBH/~b0616/Lab/index-e.html

 The GTM (generative topographic mapping) home page at the Neural Computing
Research Group, Aston University, Birmingham, UK, at
http://www.ncrg.aston.ac.uk/GTM/

 Nenet SOM software at http://www.mbnet.fi/~phodju/nenet/nenet.html
 Bernd Fritzke's home page at http://pikas.inf.tu-dresden.de/~fritzke/ has information on

growing SOMs and other related types of NNs

References:

Anderberg, M.R. (1973), Cluster Analysis for Applications, New York: Academic
Press, Inc.

Balakrishnan, P.V., Cooper, M.C., Jacob, V.S., and Lewis, P.A. (1994) "A study of the
classification capabilities of neural networks using unsupervised learning: A
comparison with k-means clustering", Psychometrika, 59, 509-525.

Bishop, C.M., Svensén, M., and Williams, C.K.I (1997), "GTM: A principled
alternative to the self-organizing map," in Mozer, M.C., Jordan, M.I., and Petsche, T.,
(eds.) Advances in Neural Information Processing Systems 9, Cambridge, MA: The
MIT Press, pp. 354-360. Also see http://www.ncrg.aston.ac.uk/GTM/

Bottou, L., and Bengio, Y. (1995), "Convergence properties of the K-Means
algorithms," in Tesauro, G., Touretzky, D., and Leen, T., (eds.) Advances in Neural
Information Processing Systems 7, Cambridge, MA: The MIT Press, pp. 585-592.

Page 32 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Cho, S.-B. (1997), "Self-organizing map with dynamical node-splitting: Application to
handwritten digit recognition," Neural Computation, 9, 1345-1355.

Desieno, D. (1988), "Adding a conscience to competitive learning," Proc. Int. Conf. on
Neural Networks, I, 117-124, IEEE Press.

Devroye, L., Györfi, L., and Lugosi, G. (1996), A Probabilistic Theory of Pattern
Recognition, NY: Springer,

Forgy, E.W. (1965), "Cluster analysis of multivariate data: Efficiency versus
interpretability," Biometric Society Meetings, Riverside, CA. Abstract in Biomatrics,
21, 768.

Gersho, A. and Gray, R.M. (1992), Vector Quantization and Signal Compression,
Boston: Kluwer Academic Publishers.

Hartigan, J.A. (1975), Clustering Algorithms, NY: Wiley.

Hartigan, J.A., and Wong, M.A. (1979), "Algorithm AS136: A k-means clustering
algorithm," Applied Statistics, 28-100-108.

Hastie, T., and Stuetzle, W. (1989), "Principal curves," Journal of the American
Statistical Association, 84, 502-516.

Hecht-Nielsen, R. (1990), Neurocomputing, Reading, MA: Addison-Wesley.

Ismail, M.A., and Kamel, M.S. (1989), "Multidimensional data clustering utilizing
hybrid search strategies," Pattern Recognition, 22, 75-89.

Kohonen, T (1984), Self-Organization and Associative Memory, Berlin: Springer-
Verlag.

Kohonen, T (1988), "Learning Vector Quantization," Neural Networks, 1 (suppl 1),
303.

Kohonen, T. (1995/1997), Self-Organizing Maps, Berlin: Springer-Verlag. First edition
was 1995, second edition 1997. See http://www.cis.hut.fi/nnrc/new_book.html for
information on the second edition.

Kosko, B.(1992), Neural Networks and Fuzzy Systems, Englewood Cliffs, N.J.:
Prentice-Hall.

Linde, Y., Buzo, A., and Gray, R. (1980), "An algorithm for vector quantizer design,"
IEEE Transactions on Communications, 28, 84-95.

Lloyd, S. (1982), "Least squares quantization in PCM," IEEE Transactions on

Page 33 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Information Theory, 28, 129-137.

MacQueen, J.B. (1967), "Some Methods for Classification and Analysis of
Multivariate Observations,"Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 1, 281-297.

Max, J. (1960), "Quantizing for minimum distortion," IEEE Transactions on
Information Theory, 6, 7-12.

Mulier, F. and Cherkassky, V. (1995), "Self-Organization as an iterative kernel
smoothing process," Neural Computation, 7, 1165-1177.

Ripley, B.D. (1996), Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press.

Ritter, H., Martinetz, T., and Schulten, K. (1992), Neural Computation and Self-
Organizing Maps: An Introduction, Reading, MA: Addison-Wesley.

SAS Institute (1989), SAS/STAT User's Guide, Version 6, 4th edition, Cary, NC: SAS
Institute.

Symons, M.J. (1981), "Clustering Criteria and Multivariate Normal Mixtures,"
Biometrics, 37, 35-43.

Tibshirani, R. (1992), "Principal curves revisited," Statistics and Computing, 2, 183-
190.

Utsugi, A. (1996), "Topology selection for self-organizing maps," Network:
Computation in Neural Systems, 7, 727-740, available on-line at
http://www.aist.go.jp/NIBH/~b0616/Lab/index-e.html

Utsugi, A. (1997), "Hyperparameter selection for self-organizing maps," Neural
Computation, 9, 623-635, available on-line at
http://www.aist.go.jp/NIBH/~b0616/Lab/index-e.html

Wand, M.P., and Jones, M.C. (1995), Kernel Smoothing, London: Chapman & Hall.

Zador, P.L. (1982), "Asymptotic quantization error of continuous signals and the
quantization dimension," IEEE Transactions on Information Theory, 28, 139-149.

Zeger, K., Vaisey, J., and Gersho, A. (1992), "Globally optimal vector quantizer
design by stochastic relaxation," IEEE Transactions on Signal Procesing, 40, 310-322.

--

Subject: How are layers counted?

Page 34 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

How to count layers is a matter of considerable dispute.

 Some people count layers of units. But of these people, some count the input layer and
some don't.

 Some people count layers of weights. But I have no idea how they count skip-layer
connections.

To avoid ambiguity, you should speak of a 2-hidden-layer network, not a 4-layer network
(as some would call it) or 3-layer network (as others would call it). And if the connections
follow any pattern other than fully connecting each layer to the next and to no others, you
should carefully specify the connections.

--

Subject: What are cases and variables?

A vector of values presented at one time to all the input units of a neural network is called a
"case", "example", "pattern, "sample", etc. The term "case" will be used in this FAQ
because it is widely recognized, unambiguous, and requires less typing than the other terms.
A case may include not only input values, but also target values and possibly other
information.

A vector of values presented at different times to a single input unit is often called an "input
variable" or "feature". To a statistician, it is a "predictor", "regressor", "covariate",
"independent variable", "explanatory variable", etc. A vector of target values associated
with a given output unit of the network during training will be called a "target variable" in
this FAQ. To a statistician, it is usually a "response" or "dependent variable".

A "data set" is a matrix containing one or (usually) more cases. In this FAQ, it will be
assumed that cases are rows of the matrix, while variables are columns.

Note that the often-used term "input vector" is ambiguous; it can mean either an input case
or an input variable.

--

Subject: What are the population, sample, training set,
design set, validation set, and test set?

It is rarely useful to have a NN simply memorize a set of data, since memorization can be
done much more efficiently by numerous algorithms for table look-up. Typically, you want
the NN to be able to perform accurately on new data, that is, to generalize.

There seems to be no term in the NN literature for the set of all cases that you want to be

Page 35 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

able to generalize to. Statisticians call this set the "population". Tsypkin (1971) called it the
"grand truth distribution," but this term has never caught on.

Neither is there a consistent term in the NN literature for the set of cases that are available
for training and evaluating an NN. Statisticians call this set the "sample". The sample is
usually a subset of the population.

(Neurobiologists mean something entirely different by "population," apparently some
collection of neurons, but I have never found out the exact meaning. I am going to continue
to use "population" in the statistical sense until NN researchers reach a consensus on some
other terms for "population" and "sample"; I suspect this will never happen.)

In NN methodology, the sample is often subdivided into "training", "validation", and "test"
sets. The distinctions among these subsets are crucial, but the terms "validation" and "test"
sets are often confused. Bishop (1995), an indispensable reference on neural networks,
provides the following explanation (p. 372):

Since our goal is to find the network having the best performance on new data,
the simplest approach to the comparison of different networks is to evaluate the
error function using data which is independent of that used for training. Various
networks are trained by minimization of an appropriate error function defined
with respect to a training data set. The performance of the networks is then
compared by evaluating the error function using an independent validation set,
and the network having the smallest error with respect to the validation set is
selected. This approach is called the hold out method. Since this procedure can
itself lead to some overfitting to the validation set, the performance of the
selected network should be confirmed by measuring its performance on a third
independent set of data called a test set.

And there is no book in the NN literature more authoritative than Ripley (1996), from which
the following definitions are taken (p.354):

Training set:
A set of examples used for learning, that is to fit the parameters [i.e., weights] of the
classifier.

Validation set:
A set of examples used to tune the parameters [i.e., architecture, not weights] of a
classifier, for example to choose the number of hidden units in a neural network.

Test set:
A set of examples used only to assess the performance [generalization] of a fully-
specified classifier.

The literature on machine learning often reverses the meaning of "validation" and "test"
sets. This is the most blatant example of the terminological confusion that pervades artificial
intelligence research.

Page 36 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

The crucial point is that a test set, by the standard definition in the NN literature, is never
used to choose among two or more networks, so that the error on the test set provides an
unbiased estimate of the generalization error (assuming that the test set is representative of
the population, etc.). Any data set that is used to choose the best of two or more networks is,
by definition, a validation set, and the error of the chosen network on the validation set is
optimistically biased.

There is a problem with the usual distinction between training and validation sets. Some
training approaches, such as early stopping, require a validation set, so in a sense, the
validation set is used for training. Other approaches, such as maximum likelihood, do not
inherently require a validation set. So the "training" set for maximum likelihood might
encompass both the "training" and "validation" sets for early stopping. Greg Heath has
suggested the term "design" set be used for cases that are used solely to adjust the weights in
a network, while "training" set be used to encompass both design and validation sets. There
is considerable merit to this suggestion, but it has not yet been widely adopted.

But things can get more complicated. Suppose you want to train nets with 5 ,10, and 20
hidden units using maximum likelihood, and you want to train nets with 20 and 50 hidden
units using early stopping. You also want to use a validation set to choose the best of these
various networks. Should you use the same validation set for early stopping that you use for
the final network choice, or should you use two separate validation sets? That is, you could
divide the sample into 3 subsets, say A, B, C and proceed as follows:

 Do maximum likelihood using A.
 Do early stopping with A to adjust the weights and B to decide when to stop (this

makes B a validation set).
 Choose among all 3 nets trained by maximum likelihood and the 2 nets trained by

early stopping based on the error computed on B (the validation set).
 Estimate the generalization error of the chosen network using C (the test set).

Or you could divide the sample into 4 subsets, say A, B, C, and D and proceed as follows:

 Do maximum likelihood using A and B combined.
 Do early stopping with A to adjust the weights and B to decide when to stop (this

makes B a validation set with respect to early stopping).
 Choose among all 3 nets trained by maximum likelihood and the 2 nets trained by

early stopping based on the error computed on C (this makes C a second validation
set).

 Estimate the generalization error of the chosen network using D (the test set).

Or, with the same 4 subsets, you could take a third approach:

 Do maximum likelihood using A.
 Choose among the 3 nets trained by maximum likelihood based on the error computed

on B (the first validation set)
 Do early stopping with A to adjust the weights and B (the first validation set) to decide

Page 37 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

when to stop.
 Choose among the best net trained by maximum likelihood and the 2 nets trained by

early stopping based on the error computed on C (the second validation set).
 Estimate the generalization error of the chosen network using D (the test set).

You could argue that the first approach is biased towards choosing a net trained by early
stopping. Early stopping involves a choice among a potentially large number of networks,
and therefore provides more opportunity for overfitting the validation set than does the
choice among only 3 networks trained by maximum likelihood. Hence if you make the final
choice of networks using the same validation set (B) that was used for early stopping, you
give an unfair advantage to early stopping. If you are writing an article to compare various
training methods, this bias could be a serious flaw. But if you are using NNs for some
practical application, this bias might not matter at all, since you obtain an honest estimate of
generalization error using C.

You could also argue that the second and third approaches are too wasteful in their use of
data. This objection could be important if your sample contains 100 cases, but will probably
be of little concern if your sample contains 100,000,000 cases. For small samples, there are
other methods that make more efficient use of data; see "What are cross-validation and
bootstrapping?"

References:

Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford
University Press.

Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press.

Tsypkin, Y. (1971), Adaptation and Learning in Automatic Systems, NY: Academic
Press.

--

Subject: How are NNs related to statistical methods?

There is considerable overlap between the fields of neural networks and statistics. Statistics
is concerned with data analysis. In neural network terminology, statistical inference means
learning to generalize from noisy data. Some neural networks are not concerned with data
analysis (e.g., those intended to model biological systems) and therefore have little to do
with statistics. Some neural networks do not learn (e.g., Hopfield nets) and therefore have
little to do with statistics. Some neural networks can learn successfully only from noise-free
data (e.g., ART or the perceptron rule) and therefore would not be considered statistical
methods. But most neural networks that can learn to generalize effectively from noisy data
are similar or identical to statistical methods. For example:

Page 38 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

 Feedforward nets with no hidden layer (including functional-link neural nets and
higher-order neural nets) are basically generalized linear models.

 Feedforward nets with one hidden layer are closely related to projection pursuit
regression.

 Probabilistic neural nets are identical to kernel discriminant analysis.
 Kohonen nets for adaptive vector quantization are very similar to k-means cluster

analysis.
 Kohonen self-organizing maps are discrete approximations to principal curves and

surfaces.
 Hebbian learning is closely related to principal component analysis.

Some neural network areas that appear to have no close relatives in the existing statistical
literature are:

 Reinforcement learning (although this is treated in the operations research literature on
Markov decision processes).

 Stopped training (the purpose and effect of stopped training are similar to shrinkage
estimation, but the method is quite different).

Feedforward nets are a subset of the class of nonlinear regression and discrimination
models. Statisticians have studied the properties of this general class but had not considered
the specific case of feedforward neural nets before such networks were popularized in the
neural network field. Still, many results from the statistical theory of nonlinear models apply
directly to feedforward nets, and the methods that are commonly used for fitting nonlinear
models, such as various Levenberg-Marquardt and conjugate gradient algorithms, can be
used to train feedforward nets. The application of statistical theory to neural networks is
explored in detail by Bishop (1995) and Ripley (1996). Several summary articles have also
been published relating statistical models to neural networks, including Cheng and
Titterington (1994), Kuan and White (1994), Ripley (1993, 1994), Sarle (1994), and several
articles in Cherkassky, Friedman, and Wechsler (1994). Among the many statistical
concepts important to neural nets is the bias/variance trade-off in nonparametric estimation,
discussed by Geman, Bienenstock, and Doursat, R. (1992). Some more advanced results of
statistical theory applied to neural networks are given by White (1989a, 1989b, 1990,
1992a) and White and Gallant (1992), reprinted in White (1992b).

While neural nets are often defined in terms of their algorithms or implementations,
statistical methods are usually defined in terms of their results. The arithmetic mean, for
example, can be computed by a (very simple) backprop net, by applying the usual formula
SUM(x_i)/n, or by various other methods. What you get is still an arithmetic mean
regardless of how you compute it. So a statistician would consider standard backprop,
Quickprop, and Levenberg-Marquardt as different algorithms for implementing the same
statistical model such as a feedforward net. On the other hand, different training criteria,
such as least squares and cross entropy, are viewed by statisticians as fundamentally
different estimation methods with different statistical properties.

Page 39 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

It is sometimes claimed that neural networks, unlike statistical models, require no
distributional assumptions. In fact, neural networks involve exactly the same sort of
distributional assumptions as statistical models (Bishop, 1995), but statisticians study the
consequences and importance of these assumptions while many neural networkers ignore
them. For example, least-squares training methods are widely used by statisticians and
neural networkers. Statisticians realize that least-squares training involves implicit
distributional assumptions in that least-squares estimates have certain optimality properties
for noise that is normally distributed with equal variance for all training cases and that is
independent between different cases. These optimality properties are consequences of the
fact that least-squares estimation is maximum likelihood under those conditions. Similarly,
cross-entropy is maximum likelihood for noise with a Bernoulli distribution. If you study
the distributional assumptions, then you can recognize and deal with violations of the
assumptions. For example, if you have normally distributed noise but some training cases
have greater noise variance than others, then you may be able to use weighted least squares
instead of ordinary least squares to obtain more efficient estimates.

Hundreds, perhaps thousands of people have run comparisons of neural nets with
"traditional statistics" (whatever that means). Most such studies involve one or two data sets,
and are of little use to anyone else unless they happen to be analyzing the same kind of data.
But there is an impressive comparative study of supervised classification by Michie,
Spiegelhalter, and Taylor (1994), which not only compares many classification methods on
many data sets, but also provides unusually extensive analyses of the results. Another useful
study on supervised classification by Lim, Loh, and Shih (1999) is available on-line. There
is an excellent comparison of unsupervised Kohonen networks and k-means clustering by
Balakrishnan, Cooper, Jacob, and Lewis (1994).

There are many methods in the statistical literature that can be used for flexible nonlinear
modeling. These methods include:

 Polynomial regression (Eubank, 1999)
 Fourier series regression (Eubank, 1999; Haerdle, 1990)
 Wavelet smoothing (Donoho and Johnstone, 1995; Donoho, Johnstone, Kerkyacharian,

and Picard, 1995)
 K-nearest neighbor regression and discriminant analysis (Haerdle, 1990; Hand, 1981,

1997; Ripley, 1996)
 Kernel regression and discriminant analysis (Eubank, 1999; Haerdle, 1990; Hand,

1981, 1982, 1997; Ripley, 1996)
 Local polynomial smoothing (Eubank, 1999; Wand and Jones, 1995; Fan and Gijbels,

1995)
 LOESS (Cleveland and Gross, 1991)
 Smoothing splines (such as thin-plate splines) (Eubank, 1999; Wahba, 1990; Green

and Silverman, 1994; Haerdle, 1990)
 B-splines (Eubank, 1999)
 Tree-based models (CART, AID, etc.) (Haerdle, 1990; Lim, Loh, and Shih, 1997;

Hand, 1997; Ripley, 1996)

Page 40 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

 Multivariate adaptive regression splines (MARS) (Friedman, 1991)
 Projection pursuit (Friedman and Stuetzle, 1981; Haerdle, 1990; Ripley, 1996)
 Various Bayesian methods (Dey, 1998)
 GMDH (Farlow, 1984)

Why use neural nets rather than any of the above methods? There are many answers to that
question depending on what kind of neural net you're interested in. The most popular variety
of neural net, the MLP, tends to be useful in the same situations as projection pursuit
regression, i.e.:

 the number of inputs is fairly large,
 many of the inputs are relevant, but
 most of the predictive information lies in a low-dimensional subspace.

The main advantage of MLPs over projection pursuit regression is that computing predicted
values from MLPs is simpler and faster. Also, MLPs are better at learning moderately
pathological functions than are many other methods with stronger smoothness assumptions
(see ftp://ftp.sas.com/pub/neural/dojo/dojo.html) as long as the number of pathological
features (such as discontinuities) in the function is not too large. For more discussion of the
theoretical benefits of various types of neural nets, see How do MLPs compare with RBFs?

Communication between statisticians and neural net researchers is often hindered by the
different terminology used in the two fields. There is a comparison of neural net and
statistical jargon in ftp://ftp.sas.com/pub/neural/jargon

For free statistical software, see the StatLib repository at http://lib.stat.cmu.edu/ at Carnegie
Mellon University.

There are zillions of introductory textbooks on statistics. One of the better ones is Moore
and McCabe (1989). At an intermediate level, the books on linear regression by Weisberg
(1985) and Myers (1986), on logistic regression by Hosmer and Lemeshow (1989), and on
discriminant analysis by Hand (1981) can be recommended. At a more advanced level, the
book on generalized linear models by McCullagh and Nelder (1989) is an essential
reference, and the book on nonlinear regression by Gallant (1987) has much material
relevant to neural nets.

Several introductory statistics texts are available on the web:

 David Lane, HyperStat, at http://www.ruf.rice.edu/~lane/hyperstat/contents.html
 Jan de Leeuw (ed.), Statistics: The Study of Stability in Variation , at

http://www.stat.ucla.edu/textbook/
 StatSoft, Inc., Electronic Statistics Textbook, at

http://www.statsoft.com/textbook/stathome.html
 David Stockburger, Introductory Statistics: Concepts, Models, and Applications, at

http://www.psychstat.smsu.edu/sbk00.htm
 University of Newcastle (Australia) Statistics Department, SurfStat Australia,

Page 41 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

http://surfstat.newcastle.edu.au/surfstat/

A more advanced book covering many topics that are also relevant to NNs is:

 Frank Harrell, REGRESSION MODELING STRATEGIES With Applications to Linear
Models, Logistic Regression, and Survival Analysis, at
http://hesweb1.med.virginia.edu/biostat/rms/

References:

Balakrishnan, P.V., Cooper, M.C., Jacob, V.S., and Lewis, P.A. (1994) "A study of the
classification capabilities of neural networks using unsupervised learning: A
comparison with k-means clustering", Psychometrika, 59, 509-525.

Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford
University Press.

Cheng, B. and Titterington, D.M. (1994), "Neural Networks: A Review from a
Statistical Perspective", Statistical Science, 9, 2-54.

Cherkassky, V., Friedman, J.H., and Wechsler, H., eds. (1994), From Statistics to
Neural Networks: Theory and Pattern Recognition Applications, Berlin: Springer-
Verlag.

Cleveland and Gross (1991), "Computational Methods for Local Regression,"
Statistics and Computing 1, 47-62.

Dey, D., ed. (1998) Practical Nonparametric and Semiparametric Bayesian Statistics,
Springer Verlag.

Donoho, D.L., and Johnstone, I.M. (1995), "Adapting to unknown smoothness via
wavelet shrinkage," J. of the American Statistical Association, 90, 1200-1224.

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., and Picard, D. (1995), "Wavelet
shrinkage: asymptopia (with discussion)?" J. of the Royal Statistical Society, Series B,
57, 301-369.

Eubank, R.L. (1999), Nonparametric Regression and Spline Smoothing, 2nd ed.,
Marcel Dekker, ISBN 0-8247-9337-4.

Fan, J., and Gijbels, I. (1995), "Data-driven bandwidth selection in local polynomial:
variable bandwidth and spatial adaptation," J. of the Royal Statistical Society, Series B,
57, 371-394.

Farlow, S.J. (1984), Self-organizing Methods in Modeling: GMDH Type Algorithms,
NY: Marcel Dekker. (GMDH)

Page 42 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annals of Statistics,
19, 1-141. (MARS)

Friedman, J.H. and Stuetzle, W. (1981) "Projection pursuit regression," J. of the
American Statistical Association, 76, 817-823.

Gallant, A.R. (1987) Nonlinear Statistical Models, NY: Wiley.

Geman, S., Bienenstock, E. and Doursat, R. (1992), "Neural Networks and the
Bias/Variance Dilemma", Neural Computation, 4, 1-58.

Green, P.J., and Silverman, B.W. (1994), Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach, London: Chapman & Hall.

Haerdle, W. (1990), Applied Nonparametric Regression, Cambridge Univ. Press.

Hand, D.J. (1981) Discrimination and Classification, NY: Wiley.

Hand, D.J. (1982) Kernel Discriminant Analysis, Research Studies Press.

Hand, D.J. (1997) Construction and Assessment of Classification Rules, NY: Wiley.

Hill, T., Marquez, L., O'Connor, M., and Remus, W. (1994), "Artificial neural network
models for forecasting and decision making," International J. of Forecasting, 10, 5-15.

Kuan, C.-M. and White, H. (1994), "Artificial Neural Networks: An Econometric
Perspective", Econometric Reviews, 13, 1-91.

Kushner, H. & Clark, D. (1978), Stochastic Approximation Methods for Constrained
and Unconstrained Systems, Springer-Verlag.

Lim, T.-S., Loh, W.-Y. and Shih, Y.-S. (1999?), "A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new classification
algorithms," Machine Learning, forthcoming, preprint available at
http://www.recursive-partitioning.com/mach1317.pdf, and appendix containing
complete tables of error rates, ranks, and training times at http://www.recursive-
partitioning.com/appendix.pdf

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd ed., London:
Chapman & Hall.

Michie, D., Spiegelhalter, D.J. and Taylor, C.C., eds. (1994), Machine Learning,
Neural and Statistical Classification, NY: Ellis Horwood; this book is out of print but
available online at http://www.amsta.leeds.ac.uk/~charles/statlog/

Moore, D.S., and McCabe, G.P. (1989), Introduction to the Practice of Statistics, NY:

Page 43 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

W.H. Freeman.

Myers, R.H. (1986), Classical and Modern Regression with Applications, Boston:
Duxbury Press.

Ripley, B.D. (1993), "Statistical Aspects of Neural Networks", in O.E. Barndorff-
Nielsen, J.L. Jensen and W.S. Kendall, eds., Networks and Chaos: Statistical and
Probabilistic Aspects, Chapman & Hall. ISBN 0 412 46530 2.

Ripley, B.D. (1994), "Neural Networks and Related Methods for Classification,"
Journal of the Royal Statistical Society, Series B, 56, 409-456.

Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press.

Sarle, W.S. (1994), "Neural Networks and Statistical Models," Proceedings of the
Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS
Institute, pp 1538-1550. (ftp://ftp.sas.com/pub/neural/neural1.ps)

Wahba, G. (1990), Spline Models for Observational Data, SIAM.

Wand, M.P., and Jones, M.C. (1995), Kernel Smoothing, London: Chapman & Hall.

Weisberg, S. (1985), Applied Linear Regression, NY: Wiley

White, H. (1989a), "Learning in Artificial Neural Networks: A Statistical Perspective,"
Neural Computation, 1, 425-464.

White, H. (1989b), "Some Asymptotic Results for Learning in Single Hidden Layer
Feedforward Network Models", J. of the American Statistical Assoc., 84, 1008-1013.

White, H. (1990), "Connectionist Nonparametric Regression: Multilayer Feedforward
Networks Can Learn Arbitrary Mappings," Neural Networks, 3, 535-550.

White, H. (1992a), "Nonparametric Estimation of Conditional Quantiles Using Neural
Networks," in Page, C. and Le Page, R. (eds.), Computing Science and Statistics.

White, H., and Gallant, A.R. (1992), "On Learning the Derivatives of an Unknown
Mapping with Multilayer Feedforward Networks," Neural Networks, 5, 129-138.

White, H. (1992b), Artificial Neural Networks: Approximation and Learning Theory,
Blackwell.

--

Next part is part 2 (of 7).

Page 44 of 44Neural Network FAQ, part 1 of 7: Introduction

1/19/2011ftp://ftp.sas.com/pub/neural/FAQ.html

