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Summary. Rough sets is a paradigm introduced in order to deal with uncertainty
due to ambiguity of classification caused by incompleteness of knowledge. The idea
proposed by Z. Pawlak in 1982 goes back to classical idea of representing uncertain
and/or inexact notions due to the founder of modern logic, Gottlob Frege: uncertain
notions should possess around them a region of uncertainty consisting of objects
that can be qualified with certainty neither into the notion nor to its complement.
The central tool in realizing this idea in rough sets is the relation of uncertainty
based on the classical notion of indiscernibility due to Gottfried W. Leibniz: objects
are indiscernible when no operator applied to each of them yields distinct values.

In applications, knowledge comes in the form of data; those data in rough sets
are organized into an information system: a pair of the form (U,A) where U is a
set of objects and A is a set of attributes, each of them a mapping a : U → Va, the
value set of a.

Each attribute a does produce the a-indiscernibility relation IND(a) = {(u, v) :
a(u) = a(v)}. Each set of attributes B does induce the B-indiscernibility relation
IND(B) =

⋂
IND(a) : a ∈ B. Objects u, v that are in the relation IND(B) are

B-indiscernible. Classes [u]B of the relation IND(B) form B–elementary granules
of knowledge.

Rough sets allow for establishing dependencies among groups of attributes: a
group B depends functionally on group C when IND(C) ⊆ IND(B): in that case
values of attributes in B are functions of values of attributes in C.

An important case is when data are organized into a decision system: a triple
(U,A, d) where d is a new attribute called the decision. The decision gives a clas-
sification of object due to an expert, an external oracle; establishing dependencies
between groups B of attributes in A and the decision is one of tasks of rough set
theory.

The language for expressing dependencies is the descriptor logic. A descriptor is
a formula (a = v) where v ∈ Va, interpreted in the set U as [a = v] = {u : a(u) = v}.
Descriptor formulas are obtained from descriptors by means of connectives ∨,∧,¬,⇒
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of propositional calculus; their semantics is: [α ∨ β] = [α] ∪ [β], [α ∧ β] = [α] ∩ [β],
[¬α] = U \ [α], [α⇒ β] = [¬α] ∪ [β].

In the language of descriptors, dependency between a group B of attributes
and the decision is expressed as a decision rule:

∧
a∈B(a = va) ⇒ (d = v); a set

of decision rules is a decision algorithm. There exist a number of algorithms for
inducing decision rules.

Indiscernibility relations proved to be too rigid for classification, and the search
has been in rough sets for more flexible similarity relations. Among them one class
that is formally rooted in logic is the class of rough inclusions. They allow for forming
granules of knowledge more robust than traditional ones. Algorithms based on them
allow for a substantial knowledge reduction yet with good classification quality.

The problem that is often met in real data is the problem of missing values.
Algorithms based on granulation of knowledge allow for solving this problem with
a good quality of classification.

In this Chapter, we discuss:

• Basics of rough sets;
• Language of descriptors and decision rules;
• Algorithms for rule induction;
• Examples of classification on real data;
• Granulation of knowledge;
• Algorithms for rule induction based on granulation of knowledge;
• Examples of classification of real data;
• The problem of missing values in data.

2.1 Basics of rough sets

Introduced by Pawlak in [20], rough set theory is based on ideas that –
although independently fused into a theory of knowledge – borrow some
thoughts from Gottlob Frege, Gottfried Wilhelm Leibniz, Jan  Lukasiewicz,
Stanislaw Leśniewski, to mention a few names of importance.

Rough set approach rests on the assumption that knowledge is classifi-
cation of entities into concepts (notions). To perform the classification task,
entities should be described in a formalized symbolic language.

In case of the rough set theory, this language is the language of attributes
and values. The formal framework for allowing this description is an informa-
tion system, see Pawlak [21].

2.1.1 Information systems: formal rendering of knowledge

An information system is a pair (U,A), in which U is a set of objects and A
is a set of attributes. Each attribute a ∈ A is a mapping a : U → Va from the
universe U into the value set Va of a. A variant of this notion is a basic in data
mining notion of a decision system: it is a pair (U,A ∪ {d}), where d /∈ A is
the decision. In applications, decision d is the attribute whose value is set by
an expert whereas attributes in A, called in this case conditional attributes,
are selected and valued by the system user. Description of entities is done in
the attribute–value language.



2 Rough Sets In Data Analysis . . . 35

2.1.2 Attribute–value language. Indiscernibility

Attribute–value language is built from elementary formulas called descriptors;
a descriptor is a formula of the form (a = v), where v ∈ Va. From descriptors,
complex formulas are formed by means of connectives ∨,∧,¬,⇒ of proposi-
tional calculus: if α, β are formulas then α∨β, α∧β, ¬α, α⇒ β are formulas.
These formulas and no other constitute the syntax of the descriptor logic.

Semantics of descriptor logic formulas is defined recursively: for a descrip-
tor (a = v), its meaning [a = v] is defined as the set {u ∈ U : a(u) = v}. For
complex formulas, one adopts the recursive procedure, given by the following
identities:

• [α ∨ β] = [α] ∪ [β].
• [α ∧ β] = [α] ∩ [β].
• [¬α] = U \ [α].
• [α⇒ β] = [¬α] ∪ [β].

Descriptor logic allows for coding of objects in the set U as sets of descrip-
tors: for an object u ∈ U , the information set InfA(u) is defined as the set
{(a = a(u)) : a ∈ A}. It may happen that two objects, u and v, have the same
information set: InfA(u) = InfA(v); in this case, one says that u and v are
A–indiscernible. This notion maybe relativized to any set B ⊆ A of attributes:
the B–indiscernibility relation is defined as IND(B) = {(u, v) : InfB(u) =
InfB(v)}, where InfB(u) = {(a = a(u)) : a ∈ B} is the information set of u
restricted to the set B of attributes.

A more general notion of a template was proposed and studied in [18]: a
template is a formula of the form (a ∈Wa), where Wa ⊆ Va is a set of values
of the attribute a; the meaning [a ∈ Wa] of the template (a ∈ Wa) is the set
{u ∈ U : a(u) ∈ Wa}. Templates can also (like descriptors) be combined by
means of propositional connectives with semantics defined as with descriptors.

The indiscernibility relations are very important in rough sets: one eas-
ily may observe that for u ∈ U , and the formula in descriptor logic:
φBu :

∧
a∈B(a = a(u)), the meaning [φBu ] is equal to the equivalence class

[u]B = {v ∈ U : (u, v) ∈ IND(B) of the equivalence relation IND(B).
The moral is: classes [u]B are definable, i.e., they have descriptions in

the descriptor logic; also unions of those classes are definable: for a union
X =

⋃
j∈J [uj ]Bj of such classes, the formula

∨
j∈J φ

Bj
uj has the meaning equal

to X.
Concepts X ⊆ U that are definable are also called exact; other concepts are

called rough. The fundamental difference between the two kinds of concepts
is that only exact concepts are “seen” in data; rough concepts are “blurred”
and they can be described by means of exact concepts only; to this aim, rough
sets offer the notion of an approximation.
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2.1.3 Approximations

Due to Fregean idea [6], an inexact concept should possess a boundary into
which objects that can be classified with certainty neither to the concept
nor to its complement fall. This boundary to a concept is constructed from
indiscernibility relations induced by attributes (features) of objects.

To express the B–boundary of a concept X induced by the set B of at-
tributes, approximations over B are introduced, i.e.,
BX =

⋃
{[u]B : [u]B ⊆ X} (the B–lower approximation)

BX =
⋃
{[u]B : [u]B ∩X 6= ∅} (the B–upper approximation).

The difference BdBX = BX \BX is the B–boundary of X; when non–empty
it does witness that X is rough.
For a rough concept X, one has the double strict inclusion: BX ⊂ X ⊂ BX
as the description of X in terms of two nearest to it exact concepts.

2.1.4 Knowledge reduction. Reducts

Knowledge represented in an information system (U,A) can be reduced: a
reduct B of the set A of attributes is a minimal subset of A with the prop-
erty that IND(B) = INDd(A). Thus, reducts are minimal with respect to
inclusion sets of attributes which preserve classification, i.e., knowledge.

Finding all reducts is computationally hard: the problem of finding a min-
imal length reduct is NP–hard, see [35].

An algorithm for finding reducts based on Boolean Reasoning technique
was proposed in [35]; the method of Boolean Reasoning consists in solving a
problem by constructing a Boolean function whose prime implicants would
give solutions to the problem [3].

The Skowron–Rauszer algorithm for reduct induction: a case
of Boolean Reasoning

In the context of an information system (U,A), the method of Boolean Rea-
soning for reduct finding proposed by Skowron and Rauszer [35], given input
(U,A) with U = {u1, ..., un}, starts with the discernibility matrix,
MU,A = [ci,j = {a ∈ A : a(ui) 6= a(uj)}]1≥i,j≤n,
and builds the Boolean function in the CNF form,
fU,A =

∧
ci,j 6=∅,i<j

∨
a∈ci,j

a, where a is the Boolean variable assigned to the
attribute a ∈ A.

The function fU,A is converted to its DNF form: f∗U,A :
∨
j∈J

∧
k∈Kj

aj,k.
Then: sets of the form Rj = {aj,k : k ∈ Kj} for j ∈ J , corresponding to

prime implicants
∧
k∈Kj

aj,k are all reducts of A.
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On the soundness of the algorithm We give here a proof of the soundness
of the algorithm in order to acquaint the reader with this method which is
also exploited in a few variants described below; the reader will be able to
supply own proofs in those cases on the lines shown here.

We consider a set B of attributes and the valuation valB on the Boolean
variable set {a : a ∈ A}: valB(a) = 1 in case a ∈ B and 0, otherwise.

Assume that the Boolean function fU,A is satisfied under this valuation:
valB(fU,A) = 1. This means that valB(

∨
a∈ci,j

a) = 1 for each ci,j 6= ∅.
An equivalent formula to this statement is: ∀i, j.ci,j 6= ∅ ⇒ ∃a ∈ ci,j .a ∈ B.
Applying tautology p ⇒ q ⇔ ¬q ⇒ ¬p to the last implication, we obtain:
∀a ∈ B.a /∈ ci,j ⇒ ∀a ∈ A.a /∈ ci,j for each pair i, j. By definition of the set
ci,j , the last implication reads: IND(B) ⊆ IND(A). This means IND(B) =
IND(A) as IND(A) ⊆ IND(B) always because B ⊆ A.

Now, we have valB(f∗U,A) = 1 as well; this means that valB(
∧
k∈Kj

aj,k) =
1 for some jo ∈ J . In turn, by definition of valB , this implies that B ⊆ {ajo,k :
k ∈ Kjo}.

A conclusion from the comparison of values of valB on fU,A and f∗U,A is
that : IND(B) = IND(A) if and only if B ⊆ {aj,k : k ∈ Kj} for the j − th
prime implicant of fU,A. Thus, any minimal with respect to inclusion set B
of attributes such that IND(B) = IND(A) coincides with a set of attributes
{aj,k : k ∈ Kj} corresponding to a prime implicant of the function fU,A.

Choosing a reduct R, and forming the reduced information system (U,R)
one is assured that no information encoded in (U,A) has been lost.

2.1.5 Decision systems. Decision rules: an introduction

A decision system (U,A ∪ {d}) encodes information about the external clas-
sification d (by an oracle, expert etc.). Methods based on rough sets aim
at finding a description of the concept d in terms of conditional attributes
in A in the language of descriptors. This description is fundamental for ex-
pert systems, knowledge based systems and applications in Data Mining and
Knowledge Discovery.

Formal expressions for relating knowledge in conditional part (U,A) to
knowledge of an expert in (U, d) are decision rules; in descriptor logic they
are of the form φBU ⇒ (d = w), where w ∈ Vd, the value set of the decision.

Semantics of decision rules is given by general rules set in sect. 2.1.2: the
rule φBU ⇒ (d = w) is certain or true in case [φBu ] ⊆ [d = w], i.e., in case when
each object v that satisfies φBu , i.e., (u, v) ∈ IND(B), satisfies also d(v) = w;
otherwise the rule is said to be partial.

The simpler case is when the decision system is deterministic, i.e.,
IND(A) ⊆ IND(d). In this case the relation between A and d is functional,
given by the unique assignment fA,d : InfA(u)→ Infd(u), or, in the decision
rule form as the set of rules:

∧
a∈A(a = a(u)) ⇒ (d = d(u)). Each of these

rules is clearly certain.
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In place of A any reduct R of A can be substituted leading to shorter
certain rules.

In the contrary case, some classes [u]A are split into more than one deci-
sion class [v]d leading to ambiguity in classification. In order to resolve the
ambiguity, the notion of a δ–reduct was proposed in [35]; it is called a relative
reduct in [2].

To define δ– reducts, first the generalized decision δB is defined for any
B ⊆ A: for u ∈ U , δB(u) = {v ∈ Vd : d(u′) = v ∧ (u, u′) ∈ IND(B) for some
u′ ∈ U}. A subset B of A is a δ–reduct to d when it is a minimal subset od A
with respect to the property that δB = δA.

δ–reducts can be obtained from the modified Skowron and Rauszer algo-
rithm [35]: it suffices to modify the entries ci,j to the discernibility matrix, by
letting cdi,j = {a ∈ A∪{d} : a(ui) 6= a(uj)} and then setting c′i,j = cdi,j \{d} in
case d(ui) 6= d(uj) and c′i,j = ∅ in case d(ui) = d(uj). The algorithm described
above input with entries c′i,j forming the matrix Mδ

U,A outputs all δ–reducts
to d encoded as prime implicants of the associated Boolean function fδU,A.

For any δ–reduct R, rules of the form φRu ⇒ δ = δR(u) are certain.

An example of reduct finding and decision rule induction

We conclude the first step into rough sets with a simple example of a decision
system, its reducts and decision rules.

Table 2.1 shows a simple decision system.

Table 2.1. Decision system Simple

obj. a1 a2 a3 a4 d

u1 1 0 0 1 0
u2 0 1 0 0 1
u3 1 1 0 0 1
u4 1 0 0 1 1
u5 0 0 0 1 1
u6 1 1 1 1 0

Reducts of the information system (U,A = {a1, a2, a3, a4}) can be found
from the discernibility matrix MU,A in Table 2.2; by symmetry, cells ci,j = cj,i
with i > j are not filled. Each attribute ai is encoded by the Boolean variable i.

After reduction by means of absorption rules of sentential calculus: (p ∨
q)∧p⇔ p, (p∧ q)∨p⇔ p, the DNF form f∗U,A is 1∧2∧3∨1∧2∧4∨1∧3∧4.
Reducts of A in the information system (U,A) are : {a1, a2, a3}, {a1, a2, a4},
{a1, a3, a4}.

δ–reducts of the decision d in the decision system Simple, can be found
from the modified discernibility matrix Mδ

U,A in Table 2.3.
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Table 2.2. Discernibility matrix MU,A for reducts in (U,A)

obj. u1 u2 u3 u4 u5 u6

u1 ∅ {1, 2, 4} {2, 4} ∅ {1} {2, 3}
u2 − ∅ {1} {1, 2, 3} {2, 4} {1, 3, 4}
u3 − − ∅ {2, 4} {2, 4} {3, 4}
u4 − − − ∅ {1} {2, 3}
u5 − − − − ∅ {1, 2, 3}
u6 − − − − − ∅

Table 2.3. Discernibility matrix Mδ
U,A for δ–reducts in (U,A, d)

obj. u1 u2 u3 u4 u5 u6

u1 ∅ {1, 2, 4} {2, 4} ∅ {1} ∅
u2 − ∅ ∅ ∅ ∅ {1, 3, 4}
u3 − − ∅ ∅ ∅ {3, 4}
u4 − − − ∅ ∅ {2, 3}
u5 − − − − ∅ {1, 2, 3}
u6 − − − − − ∅

From the Boolean function fδU,A we read off δ–reducts R1 = {a1, a2, a3},
R2 = {a1, a2, a4}, R3 = {a1, a3, a4}.

Taking R1 as the reduct for inducing decision rules, we read the following
certain rules:

r1 : (a1 = 0) ∧ (a2 = 1) ∧ (a3 = 0)⇒ (d = 1);
r2 : (a1 = 1) ∧ (a2 = 1) ∧ (a3 = 0)⇒ (d = 1);
r3 : (a1 = 0) ∧ (a2 = 0) ∧ (a3 = 0)⇒ (d = 1);
r4 : (a1 = 1) ∧ (a2 = 1) ∧ (a3 = 1)⇒ (d = 0);
and two possible rules
r5 : (a1 = 1) ∧ (a2 = 0) ∧ (a3 = 0)⇒ (d = 0);
r6 : (a1 = 1) ∧ (a2 = 0) ∧ (a3 = 0)⇒ (d = 1),

each with certainty factor =.5 as there are two objects with d=0.

2.1.6 Decision rules: advanced topics

In order to precisely discriminate between certain and possible rules, the no-
tion of a positive region along with the notion of a relative reduct was proposed
and studied in [35].

Positive region posB(d) is the set {u ∈ U : [u]B ⊆ [u]d}=
⋃
v∈Vd

B[(d = v)];
posB(d) is the greatest subset X of U such that (X,B ∪{d}) is deterministic;
it generates certain rules. Objects in U \ posB(d) are subjected to ambiguity:
given such u, and the collection v1, .., vk of decision d values on the class
[u]B , the decision rule describing u can be formulated as,

∧
a∈B(a = a(u))⇒∨

i=1,...,k(d = vi); each of the rules
∧
a∈B(a = a(u)) ⇒ (d = vi) is possible

but not certain as only for a fraction of objects in the class [u]B the decision
takes the value vi on.
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Relative reducts are minimal sets B of attributes with the property that
posB(d) = posA(d); they can also be found by means of discernibility matrix
M∗U,A [90]: c∗i,j = cdi,j \ {d} in case either d(ui) 6= d(uj) and ui, uj ∈ posA(d)
or pos(ui) 6= pos(uj) where pos is the characteristic function of posA(d);
otherwise, c∗i,j = ∅.

For a relative reduct B, certain rules are induced from the determin-
istic system (posB(d), A ∪ {d}), possible rules are induced from the non–
deterministic system (U \ posB(d), A ∪ {d}). In the last case, one can find
δ–reducts to d in this system and turn the system into a deterministic one
(U \ posB(d), A, δ) inducing certain rules of the form

∧
a∈B(a = a(u)) ⇒∨

v∈δ(u)(d = v).
A method for obtaining decision rules with minimal number of descriptors

[22], [34], consists in reducing a given rule r : φ/B, u ⇒ (d = v) by finding
a set Rr ⊆ B consisting of irreducible attributes in B only, in the sense that
removing any a ∈ Rr causes the inequality [φ/Rr, u ⇒ (d = v)] 6= [φ/Rr \
{a}, u⇒ (d = v)] to hold. In case B = A, reduced rules φ/Rr, u⇒ (d = v) are
called optimal basic rules (with minimal number of descriptors). The method
for finding of all irreducible subsets of the set A [34], consists in considering
another modification of discernibility matrix: for each object uk ∈ U , the
entry c′i,j into the matrix Mδ

U,A for δ–reducts is modified into cki,j = c′i,j in
case d(ui) 6= d(uj) and i = k ∨ j = k, otherwise cki,j = ∅. Matrices Mk

U,A

and associated Boolean functions fkU,A for all uk ∈ U allow for finding all
irreducible subsets of the set A and in consequence all basic optimal rules
(with minimal number of descriptors).

Decision rules are judged by their quality on the basis of the training set and
by quality in classifying new unseen as yet objects, i.e., by their performance
on the test set. Quality evaluation is done on the basis of some measures: for
a rule r : φ ⇒ (d = v), and an object u ∈ U , one says that u matches r in
case u ∈ [φ]. match(r) is the number of objects matching r. Support supp(r)
of r is the number of objects in [φ] ∩ [(d = v)]; the fraction cons(r)= supp(r)

match(r)

is the consistency degree of r: cons(r) = 1 means that the rule is certain.
Strength, strength(r), of the rule r is defined, as the number of objects

correctly classified by the rule in the training phase [15], [1], [8]; relative
strength is defined as the fraction rel − strength(r)= supp(r)

|[(d=v)]| . Specificity
of the rule r, spec(r), is the number of descriptors in the premise φ of the
rule r.

In the testing phase, rules vie among themselves for object classification
when they point to distinct decision classes; in such case, negotiations among
rules or their sets are necessary. In these negotiations, rules with better char-
acteristics are privileged.

For a given decision class c : d = v, and an object u in the test set,
the set Rule(c, u) of all rules matched by u and pointing to the decision v,
is characterized globally by Support(Rule(c, u))=

∑
r∈Rule(c,u) strength(r) ·
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spec(r). The class c for which Support(Rule(c, u)) is the largest wins the
competition and the object u is classified into the class c : d = v.

It may happen that no rule in the available set of rules is matched by the
test object u and partial matching is necessary, i.e., for a rule r, the matching
factor match−fact(r, u) is defined as the fraction of descriptors in the premise
φ of r matched by u to the number spec(r) of descriptors in φ. The rule for
which the partial support Part− Support(Rule(c, u))=

∑
r∈Rule(c,u)match−

fact(r, u) ·strength(r) ·spec(r) is the largest wins the competition and it does
assign the value of decision to u.

2.2 Discretization of continuous valued attributes

The important problem of treating continuous values of attributes has been
resolved in rough sets with the help of discretization of attributes technique,
common to many paradigms like decision trees, etc.; for a decision system
(U,A, d), a cut is a pair (a, c), where a ∈ A, c in reals. The cut (a, c) induces
the binary attribute ba,c(u) = 1 if a(u) ≥ c and it is 0, otherwise. Given a
finite sequence pa=ca0 < ca1 < .... < cam of reals, the set Va of values of a
is split into disjoint intervals: (←, ca0), [ca0 , c

a
1), ...., [cam,→); the new attribute

Da(u) = i when bca
i+1

= 0, bca
i

= 1, is a discrete counterpart to the continuous
attribute a. Given a collection P = {pa : a ∈ A} (a cut system), the set
D = {Da : a ∈ A} of attributes transforms the system (U,A, d) into the
discrete system (U,DP , d) called the P–segmentation of the original system.
The set P is consistent in case generalized decision in both systems is identical,
i.e., δA = δDP

; a consistent P is irreducible if P ′ is not consistent for any
proper subset P ′ ⊂ P ; P is optimal if its cardinality is minimal among all
consistent cut systems, see [16], [17].

2.3 Classification

Classification methods can be divided according to the adopted methodology,
into classifiers based on reducts and decision rules, classifiers based on tem-
plates and similarity, classifiers based on descriptor search, classifiers based
on granular descriptors, hybrid classifiers.

For a decision system (U,A, d), classifiers are sets of decision rules. Induction
of rules was a subject of research in rough set theory since its beginning. In
most general terms, building a classifier consists in searching in the pool of
descriptors for their conjuncts that describe decision classes sufficiently well.
As distinguished in [37], there are three main kinds of classifiers searched for:
minimal, i.e., consisting of the minimum possible number of rules describ-
ing decision classes in the universe, exhaustive, i.e., consisting of all possible
rules, satisfactory, i.e., containing rules tailored to a specific use. Classifiers
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are evaluated globally with respect to their ability to properly classify objects,
usually by error which is the ratio of the number of correctly classified objects
to the number of test objects, total accuracy being the ratio of the number of
correctly classified cases to the number of recognized cases, and total cover-
age, i.e, the ratio of the number of recognized test cases to the number of test
cases.

Minimum size algorithms include LEM2 algorithm due to Grzymala–Busse [9]
and covering algorithm in the RSES package [33]; exhaustive algorithms in-
clude, e.g., LERS system due to Grzymala–Busse [7], systems based on dis-
cernibility matrices and Boolean reasoning [34], see also [1], [2], implemented
in the RSES package [33].

Minimal consistent sets of rules were introduced in Skowron and Rauszer
[35]. Further developments include dynamic rules, approximate rules, and rel-
evant rules as described in [1], [2], as well as local rules (op. cit.) effective
in implementations of algorithms based on minimal consistent sets of rules.
Rough set based classification algorithms, especially those implemented in the
RSES system [33], were discussed extensively in [2].

In [1], a number of techniques were verified in experiments with real data,
based on various strategies:

discretization of attributes (codes: N-no discretization, S-standard dis-
cretization, D-cut selection by dynamic reducts, G-cut selection by generalized
dynamic reducts);

dynamic selection of attributes (codes: N-no selection, D-selection
by dynamic reducts, G-selection based on generalized dynamic reducts);

decision rule choice (codes: A-optimal decision rules, G-decision rules
on basis of approximate reducts computed by Johnson’s algorithm, simulated
annealing and Boltzmann machines etc., N-without computing of decision
rules);

approximation of decision rules (codes: N-consistent decision rules,
P-approximate rules obtained by descriptor dropping);

negotiations among rules (codes: S-based on strength, M-based on
maximal strength, R-based on global strength, D-based on stability).

Any choice of a strategy in particular areas yields a compound strategy
denoted with the alias being concatenation of symbols of strategies chosen in
consecutive areas, e.g., NNAND etc.

We record here in Table 2.4 an excerpt from the comparison (Table 8, 9,
10 in [1]) of best of these strategies with results based on other paradigms in
classification for two sets of data: Diabetes and Australian credit from UCI
Repository [40].

An adaptive method of classifier construction was proposed in [43]; reducts
are determined by means of a genetic algorithm, see [2], and in turn reducts
induce subtables of data regarded as classifying agents; choice of optimal
ensembles of agents is done by a genetic algorithm.
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Table 2.4. A comparison of errors in classification by rough set and other paradigms

paradigm system/method Diabetes Austr.credit

Stat.Methods Logdisc 0.223 0.141
Stat.Methods SMART 0.232 0.158
Neural Nets Backpropagation2 0.248 0.154

Neural Networks RBF 0.243 0.145
Decision Trees CART 0.255 0.145
Decision Trees C4.5 0.270 0.155
Decision Trees ITrule 0.245 0.137
Decision Rules CN2 0.289 0.204
Rough Sets NNANR 0.335 0.140
Rough Sets DNANR 0.280 0.165
Rough Sets best result 0.255(DNAPM) 0.130(SNAPM)

2.4 Approaches to classification in data based
on similarity

Algorithms mentioned in sect. 2.3 were based on indiscernibility relations
which are equivalence relations. A softer approach is based on similarity re-
lations, i.e., relations that are reflexive and possibly symmetric but need not
be transitive. Classes of these relations provide coverings of the universe U
instead of its partitions.

2.4.1 Template approach

Classifiers of this type were constructed by means of templates matching a
given object or closest to it with respect to a certain distance function, or
on coverings of the universe of objects by tolerance classes and assigning the
decision value on basis of some of them [18]; we include in Table 2.5 excerpts
from classification results in [18].

Table 2.5. Accuracy of classification by template and similarity methods

paradigm system/method Diabetes Austr.credit

Rough Sets Simple.templ./Hamming 0.6156 0.8217
Rough Sets Gen.templ./Hamming 0.742 0.855
Rough Sets Simple.templ./Euclidean 0.6312 0.8753
Rough Sets Gen.templ./Euclidean 0.7006 0.8753
Rough Sets Match.tolerance 0.757 0.8747
Rough Sets Clos.tolerance 0.743 0.8246

A combination of rough set methods with the k–nearest neighbor idea is a
further refinement of the classification based on similarity or analogy in [42].
In this approach, training set objects are endowed with a metric, and the test
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objects are classified by voting by k nearest training objects for some k that
is subject to optimization.

2.4.2 Similarity measures based on rough inclusions

Rough inclusions offer a systematic way for introducing similarity into object
sets. A rough inclusion µ(u, v, r) (read: u is a part of v to the degree of at
least r) introduces a similarity that is not symmetric.

Rough inclusions in an information system (U,A) can be induced in some
distinct ways as in [25], [27]. We describe here just one method based on
using Archimedean t–norms, i.e., t–norms t(x, y) that are continuous and
have no idempotents, i.e., values x with t(x, x) = x except 0, 1 offer one
way; it is well–known, see, e.g., [23], that up to isomorphism, there are two
Archimedean t–norms: the  Lukasiewicz t–norm L(x, y) = max{0, x + y − 1}
and the product (Menger) t–norm P (x, y) = x · y. Archimedean t–norms
admit a functional characterization, see, e.g, [23]: t(x, y) = g(f(x) + f(y)),
where the function f : [0, 1] → R is continuous decreasing with f(1) = 0,
and g : R → [0, 1] is the pseudo–inverse to f , i.e., f ◦ g = id. The t–
induced rough inclusion µt is defined [24] as µt(u, v, r) ⇔ g( |DIS(u,v)|

|A| ) ≥ r

where DIS(u, v) = {a ∈ A : a(u) 6= a(v)}. With the  Lukasiewicz t–norm,
f(x) = 1 − x = g(x) and IND(u, v) = U × U \ DIS(u, v), the formula be-
comes: µL(u, v, r) ⇔ |IND(u,v)|

|A| ≥ r; thus in case of  Lukasiewicz logic, µL
becomes the similarity measure based on the Hamming distance between in-
formation vectors of objects reduced modulo |A|; from probabilistic point of
view, it is based on the relative frequency of descriptors in information sets of
u, v. This formula permeates data mining algorithms and methods, see [10].

2.5 Granulation of knowledge

The issue of granulation of knowledge as a problem on its own, has been posed
by L.A. Zadeh [44]. Granulation can be regarded as a form of clustering,
i.e., grouping objects into aggregates characterized by closeness of certain
parameter values among objects in the aggregate and greater differences in
those values from aggregate to aggregate. The issue of granulation has been a
subject of intensive studies within rough set community in, e.g., [14], [29], [31].

Rough set context offers a natural venue for granulation, and indiscernibil-
ity classes were recognized as elementary granules whereas their unions serve
as granules of knowledge.

For an information system (U,A), and a rough inclusion µ on U , granula-
tion with respect to similarity induced by µ is formally performed by exploit-
ing the class operator Cls of mereology [13]. The class operator is applied to
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any non–vacuous property F of objects (i.e. a distributive entity) in the uni-
verse U and produces the object ClsF (i.e., the collective entity) representing
wholeness of F . The formal definition of Cls is: assuming a part relation in
U and the associated ingredient relation ing, ClsF does satisfy conditions,

1. if u ∈ F then u is ingredient of ClsF .
2. if v is an ingredient of ClsF then some ingredient w of v is an ingredient

as well of a T that is in F ;
in plain words, each ingredient of ClsF has an ingredient in common with

an object in F . An example of part relation is the proper subset ⊂ relation
on a family of sets; then the subset relation ⊆ is the ingredient relation, and
the class of a family F of sets is its union

⋃
F . The merit of class operator is

in the fact that it always projects hierarchies onto the collective entity plane
containing objects.

For an object u and a real number r ∈ [0, 1], we define the granule gµ(u, r)
about u of the radius r, relative to µ, as the class ClsF (u, r), where the
property F (u, r) is satisfied with an object v if and only if µ(v, u, r) holds.

It was shown [24] that in case of a transitive µ, v is an ingredient of the
granule gµ(u, r) if and only if µ(v, u, r). This fact allows for writing down the
granule gµ(u, r) as a distributive entity (a set, a list) of objects v satisfying
µ(v, u, r).

Granules of the form gµ(u, r) have regular properties of a neighborhood
system [25]. Granules generated from a rough inclusion µ can be used in
defining a compressed form of the decision system: a granular decision system
[25]; for a granulation radius r, and a rough inclusion µ, we form the collection
UGr,µ = {gµ(u, r)}. We apply a strategy G to choose a covering CovGr,µ of the
universe U by granules from UGr,µ. We apply a strategy S in order to assign
the value a∗(g) of each attribute a ∈ A to each granule g ∈ CovGr,µ: a∗(g) =
S({a(u) : u ∈ g}). The granular counterpart to the decision system (U,A, d)
is a tuple (UGr,µ,G,S, {a∗ : a ∈ A}, d∗). The heuristic principle that H: objects,
similar with respect to conditional attributes in the set A, should also reveal
similar (i.e., close) decision values, and therefore, granular counterparts to
decision systems should lead to classifiers satisfactorily close in quality to those
induced from original decision systems that is at the heart of all classification
paradigms, can be also formulated in this context [25]. Experimental results
bear out the hypothesis [28].

The granulated data set offers a compression of the size of the training set
and a fortiori, a compression in size of the rule set. Table 2.6 shows this on
the example of Pima Indians Diabetes data set [40]. Exhaustive algorithm of
RSES [33] has been applied as the rule inducting algorithm. Granular covering
has been chosen randomly, majority voting has been chosen as the strategy S.
Results have been validated by means of 10–fold cross validation, see, e.g., [5].
The radii of granulation have been determined by the chosen rough inclusion
µL: according to its definition in sect.2.4.2, an object v is in the granule gr(u)
in case at least r fraction of attributes agree on u and v; thus, values of r are
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multiplicities of the fraction 1
|A| less or equal to 1. The radius “nil” denotes

the results of non–granulated data analysis.

Table 2.6. 10-fold CV; Pima; exhaustive algorithm. r=radius, macc=mean accu-
racy, mcov=mean coverage, mrules=mean rule number, mtrn=mean size of training
set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629 692
0.125 0.0618 0.0895 5.9 22.5
0.250 0.6627 0.9948 450.1 120.6
0.375 0.6536 0.9987 3593.6 358.7
0.500 0.6645 1.0 6517.6 579.4
0.625 0.6877 0.9987 7583.6 683.1
0.750 0.6864 0.9987 7629.2 692
0.875 0.6864 0.9987 7629.2 692

For the exhaustive algorithm, the accuracy in granular case exceeds or
equals that in non–granular case from the radius of .625 with slightly smaller
sizes of training as well as rule sets and it reaches 95.2 percent of accuracy in
non–granular case, from the radius of .25 with reductions in size of the training
set of 82.6 percent and in the rule set size of 94 percent. The difference in
coverage is less than .4 percent from r = .25 on, where reduction in training
set size is 82.6 percent, and coverage in both cases is the same from the radius
of .375 on with reductions in size of both training and rule set of 48, resp., 53
percent.

The fact of substantial reduction in size of the training set as well in size
of the rule set coupled with the fact of a slight only decrease in classification
accuracy testifies to validity of the idea of granulated data sets; this can be
of importance in case of large biological or medical data sets which after
granulation would become much smaller and easier to analyze.

2.5.1 Concept–dependent granulation

A variant of granulation idea is the concept-dependent granulation [28] in
which granules are computed relative to decision classes, i.e., the restricted
granule gµd(u, r) is equal to the intersection gµ(u, r)∩[d = d(u)] of the granule
gµ(u, r) with the decision class [d = d(u)] of u. At the cost of an increased
number of granules, the accuracy of classification is increased. In Table 2.7,
we show the best results of classification obtained by means of various rough
set methods on Australian credit data set [40]. The best result is obtained
with concept–dependent granulation.
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Table 2.7. Best results for Australian credit by some rough set based algorithms;
in case ∗, reduction in object size is 49.9 percent, reduction in rule number is 54.6
percent; in case ∗∗, resp., 19.7, 18.2; in case ∗ ∗ ∗, resp., 3.6, 1.9

source method accuracy coverage

[1] SNAPM(0.9) error = 0.130 −
[18] simple.templates 0.929 0.623
[18] general.templates 0.886 0.905
[18] closest.simple.templates 0.821 1.0
[18] closest.gen.templates 0.855 1.0
[18] tolerance.simple.templ. 0.842 1.0
[18] tolerance.gen.templ. 0.875 1.0
[43] adaptive.classifier 0.863 −
[28] granular∗.r = 0.642 0.8990 1.0
[28] granular∗∗.r = 0.714 0.964 1.0
[28] granular∗∗∗.concept.r = 0.785 0.9970 0.9995

2.6 Missing values

Incompleteness of data sets is an important problem in data especially bio-
logical and medical in which case often some attribute values have not been
recorded due to difficulty or impossibility of obtaining them. An informa-
tion/decision system is incomplete in case some values of conditional attributes
from A are not known; some authors, e.g., Grzymala–Busse [8], [9], make dis-
tinction between values that are lost (denoted ?), i.e., they were not recorded
or were destroyed in spite of their importance for classification, and values that
are missing (denoted ∗) as those values that are not essential for classification.
Here, we regard all lacking values as missing without making any distinction
among them denoting all of them with ∗. Analysis of systems with missing
values requires a decision on how to treat such values; Grzymala–Busse in his
work [8], analyzes nine such methods known in the literature, among them,
1. most common attribute value, 2. concept–restricted most common attribute
value, (...), 4. assigning all possible values to the missing location, (...), 9.
treating the unknown value as a new valid value. Results of tests presented
in [8] indicate that methods 4,9 perform very well among all nine methods.
For this reason we adopt these methods in this work for the treatment of
missing values and they are combined in our work with a modified method 1:
the missing value is defined as the most frequent value in the granule closest
to the object with the missing value with respect to a chosen rough inclusion.

Analysis of decision systems with missing data in existing rough set liter-
ature relies on an appropriate treatment of indiscernibility: one has to reflect
in this relation the fact that some values acquire a distinct character and
must be treated separately; in case of missing or lost values, the relation
of indiscernibility is usually replaced with a new relation called a charac-
teristic relation. Examples of such characteristic functions are given in, e.g.,
Grzymala–Busse [9]: the function ρ is introduced, with ρ(u, a) = v meaning
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that the attribute a takes on u the value v. Semantics of descriptors is changed,
viz., the meaning [(a = v)] has as elements all u such that ρ(u, a) = v,
in case ρ(u, a) =? the entity u is not included into [(a = v)], and in case
ρ(u, a) = ∗, the entity u is included into [(a = v)] for all values v 6= ∗, ?. Then
the characteristic relation is R(B) = {(u, v) : ∀.a ∈ B.ρ(u, a) =?⇒ (ρ(u, a) =
ρ(v, a) ∨ ρ(u, a) = ∗ ∨ ρ(v, a) = ∗)}, where B ⊆ A. Classes of the relation
R(B) are then used in defining approximations to decision classes from which
certain and possible rules are induced, see [9]. Specializations of the character-
istic relation R(B) were defined in [38] (in case of only lost values) and in [11]
(in case of only “don’t care” missing values). An analysis of the problem of
missing values along with algorithms IApriori Certain and IAprioriPossible
for certain and possible rule generation was given in [12].

We will use the symbol ∗ commonly used for denoting the missing value;
we will use two methods 4, 9 for treating ∗, i.e, either ∗ is a “don’t care”
symbol meaning that any value of the respective attribute can be substituted
for ∗,thus ∗ = v for each value v of the attribute, or ∗ is a new value on its
own, i.e., if ∗ = v then v can be only ∗.

Our procedure for treating missing values is based on the granular struc-
ture (UGr,µ,G,S, {a∗ : a ∈ A}); the strategy S is the majority voting,
i.e., for each attribute a, the value a∗(g) is the most frequent of values in
{a(u) : u ∈ g}, with ties broken randomly. The strategy G consists in random
selection of granules for a covering.

For an object u with the value of ∗ at an attribute a, and a granule
g = g(v, r) ∈ UGr,µ, the question whether u is included in g is resolved according
to the adopted strategy of treating ∗: in case ∗ = don’t care, the value of ∗ is
regarded as identical with any value of a hence |IND(u, v)| is automatically
increased by 1, which increases the granule; in case ∗ = ∗, the granule size
is decreased. Assuming that ∗ is sparse in data, majority voting on g would
produce values of a∗ distinct from ∗ in most cases; nevertheless the value of ∗
may appear in new objects g∗, and then in the process of classification, such
value is repaired by means of the granule closest to g∗ with respect to the
rough inclusion µL, in accordance with the chosen method for treating ∗.

In plain words, objects with missing values are in a sense absorbed by close
to them granules and missing values are replaced with most frequent values
in objects collected in the granule; in this way the method 4 or 9 in [8] is
combined with the idea of the most frequent value 1, in a novel way.

We have thus four possible strategies:

• Strategy A: in building granules ∗=don’t care, in repairing values of ∗,
∗=don’t care;

• Strategy B: in building granules ∗=don’t care, in repairing values of ∗,
∗ = ∗;

• Strategy C: in building granules ∗ = ∗, in repairing values of ∗, ∗=don’t
care;

• Strategy D: in building granules ∗ = ∗, in repairing values of ∗, ∗ = ∗.
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2.7 Case of real data with missing values

We include results of tests with Breast cancer data set [40] that contains
missing values. We show in Tables 2.8, 2.9, 2.10, 2.11, results for intermediate
values of radii of granulation for strategies A,B,C,D and exhaustive algorithm
of RSES [33]. For comparison, results on error in classification by the en-
dowed system LERS from [8] for approaches similar to our strategies A and D
(methods 4 and 9, resp., in Tables 2 and 3 in [8]) in which ∗ is either always ∗
(method 9) or ∗ is always don’t care (method 4) are recalled in Tables 2.8 and
2.11. We have applied here the 1-train–and–9 test, i.e., the data set is split
randomly into 10 equal parts and training set is one part whereas the rules
are tested on each of remaining 9 parts separately and results are averaged.

Table 2.8. Breast cancer data set with missing values. Strategy A: r=granule ra-
dius, mtrn=mean granular training sample size, macc=mean accuracy, mcov=mean
covering, gb=LERS method 4, [8]

r mtrn macc mcov gb

0.555556 9 0.7640 1.0 0.7148
0.666667 14 0.7637 1.0
0.777778 17 0.7129 1.0
0.888889 25 0.7484 1.0

Table 2.9. Breast cancer data set with missing values. Strategy B: r=granule ra-
dius, mtrn=mean granular training sample size, macc=mean accuracy, mcov=mean
covering

r mtrn macc mcov

0.555556 7 0.0 0.0
0.666667 13 0.7290 1.0
0.777778 16 0.7366 1.0
0.888889 25 0.7520 1.0

Table 2.10. Breast cancer data set with missing values. Strategy C: r=granule ra-
dius, mtrn=mean granular training sample size, macc=mean accuracy, mcov=mean
covering

r mtrn macc mcov

0.555556 8 0.7132 1.0
0.666667 14 0.6247 1.0
0.777778 17 0.7328 1.0
0.888889 25 0.7484 1.0
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Table 2.11. Breast cancer data set with missing values. Strategy D: r=granule ra-
dius, mtrn=mean granular training sample size, macc=mean accuracy, mcov=mean
covering, gb=LERS method 9 [8]

r mtrn macc mcov gb

0.555556 9 0.7057 1.0 0.6748
0.666667 16 0.7640 1.0
0.777778 17 0.6824 1.0
0.888889 25 0.7520 1.0

A look at Tables 2.8–2.11 shows that granulated approach gives with
Breast cancer data better results than obtained earlier with the LERS method.
This strategy deserves therefore attention.

2.8 Applications of rough sets

A number of software systems for inducing classifiers were proposed based on
rough set methodology, among them LERS by Grzymala–Busse ; TRANCE
due to Kowalczyk; RoughFamily by S lowiński and Stefanowski; TAS by Suraj;
PRIMEROSE due to Tsumoto; KDD-R by Ziarko; RSES by Skowron et al;
ROSETTA due to Komorowski, Skowron et al; RSDM by Fernandez–Baizan
et al; GROBIAN due to Duentsch and Gediga RoughFuzzyLab by Swiniarski.
All these systems are presented in [30].

Rough set techniques were applied in many areas of data exploration,
among them in exemplary areas:

Processing of audio signals: [4].

Pattern recognition: [36].

Signal classification: [41].

Image processing: [39].

Rough neural computation modeling: [26].

Self organizing maps: [19].

Learning cognitive concepts: [32].
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2.9 Concluding remarks

Basic ideas, methods and results obtained within the paradigm of rough sets
by efforts of many researchers, both in theoretical and application oriented
aspects, have been recorded in this Chapter. Further reading, in addition to
works listed in References, may be directed to the following monographs or
collections of papers:
A. Polkowski L, Skowron, A (eds.) (1998) Rough Sets in Knowledge Dis-
covery, Vols. 1 and 2, Physica Verlag, Heidelberg

B. Inuiguchi M, Hirano S, Tsumoto S (eds.) (2003) Rough Set Theory and
Granular Computing, Springer, Berlin

C. Transactions on Rough Sets I. Lecture Notes in Computer Science (2004)
3100, Springer, Berlin

D. Transactions on Rough Sets II. Lecture Notes in Computer Science
(2004) 3135, Springer Verlag, Berlin

E. Transactions on Rough Sets III. Lecture Notes in Computer Science
(2005) 3400, Springer, Berlin

F. Transactions on Rough Sets IV. Lecture Notes in Computer Science
(2005) 3700, Springer Verlag, Berlin

G. Transactions on Rough Sets V. Lecture Notes in Computer Science
(2006) 4100, Springer, Berlin

H. Transactions on Rough Sets VI. Lecture Notes in Computer Science
(2006) 4374, Springer, Berlin
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