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Chapter 1 
Introduction 

Many potential inventions are never discovered because the thought processes of scientists and engineers 
are channeled along well-traveled paths. In contrast, the evolutionary process tends to  opportunistically 
solve problems without considering whether the evolved solution comports with human preconceptions 
about whether the goal is impossible. 

Most identification and control problems are complex and non-linear. Taking the evolutionary process 
as an example, solutions can be found the evolutionary way, by trial-and-error and the 'survival of 
the fittest'-principle, without the necessity of prior knowledge of a system or knowledge of (sometimes) 
complicated identification and control theories. 

In 1948 Turing [I] saw the possibility of employing evolutionary and natural selection to  create solutions. 
In the 1975 Holland [2] implemented Genetic Algorithms (GA), which can be seen as a predecessor of 
Genetic Programming. In 1992 Koza publicized his book "Genetic Programming: on the programming of 
computers by means of natural selection" [3] and thereby giving this new research field its name: Genetic 
Programming (or in short GP). Since then the interest in GP has grown rapidly. 

The assignment was to explore the possibilities of GP, in particular for identification applications. In the 
first part of this report, the concept of GP will be further explained. Then, in the second part, the first 
results of GP runs for identification purposes will be evaluated. 



Chapter 2 
Genetic programming? 

Genetic programming can be categorized as a form of Artificial Intelligence (AI), Machine Learning 
(ML), cr Evduticnary Computing (EC). In all of these research field, scientists try t o  make computers 
'intelligent' or 'self-learning'. Why? Because up until recently every computer-program written, was 
handmade. While hardware speed is exponentialiy getting faster, software deveiopment is not. Every 
line of code has to  be written by a programmer which is very time-consuming. So, for several years, 
scientists have been trying to automate this process. How can computers learn to solve problems without 
being explicitly told how to? The existing methods of machine learning, AI, neural networks, etc., do 
find solutions in an 'intelligent' way, but the solutions are not represented in a convenient way. This is 
where GP differs from all methods named above: it finds a solution in the form of a computer program, 
which is executable. A GP algorithm works on a population of individuals, each of which represent a 
potential solution to the problem. GP uses the following steps: 

1. Generate an initial population of random compositions of the functions and terminals of the problem 
(computer programs). 

2. Execute each program in the population and assign it a fitness value according to  how well it solves 
the problem. 

3. Create new computer programs, also called offspring 

a. Copy the best existing programs (also called reproduction) 

b. Create new programs by mutation 

c. Create new programs by crossover 

4. The best computer program that appeared in any generation, the best-sefar solution, is designated 
as the result of a GP-run. 

A flowchart of the steps in GP as described above is shown in figure 2.1. 

2.1 Represent at ion 

In most cases the individuals in a populations (the urograms) are represented in a tree structure. For 
example the formula 

a - b  y = -  
3 (1) 

can be presented as in figure 2.2.The smallest part of a tree is called a node, connected nodes are called 
a branch, see figure 2.2. The depth of a node is the minimal number of nodes that must be traversed to 
get from the root node of the tree to the selected node . The most left node in figure 2.2 has depth 3 [4]. 
The tree form is often used to display formulas in GP because it facilitates the use of genetic operations, 
as will become clearer later on. 

2.2 Fitness & Selection 
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Figure 2.1: Flowchart of GP 
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Figure 2.2: Tree-form representation of equation (1) 

2.2.1 Fitness 

The most difficult and most important concept of GP  is the fitness function. Because this function 
determines how well an individual is able to solve the problem, fitness functions are very problem specific. 

The fitness function gives feedback to  the GP algorithm regarding which individuals of the population 
should have higher probability t o  be allowed to  crossover, mutate or reproduce and which individuals 
should have higher probability t o  be removed from the population. The fitness functions assigns numeric 



values to the individuals to provide a measure of the appropriateness of a solution. Also a fitness functions 
needs t o  be able t o  distinguish a more successful solution from a less successful solution. 

Fitness is usually computed over a number of fitness cases. These fitness cases form the basis for evaluating 
the individuals in a population. The number of fitness cases should be sufficiently large as to produce a 
range of different numerical (raw) fitness values. The fitness cases are typically only a small finite sample 
of the entire domain space of interest, but should be representative of the domain space as a whole, 
because they form the basis for generalizing the results obtained to the entire domain space. 

Different forms of fitness functions are: 

Raw fitness 

The raw fitness r (i) is very problem specific. Therefor it is also problem specific what fitness value 
is a 'good' value. For one problem it could be that the larger r (i) the better, for another problem 
it could be the other way around. In general, the raw fitness can be defined as the sum of errors 
between the solution of an individual and the solution given by the fitness cases. As the goal is to 
minimize the error, a small value (or even zero) is the desired value of fitness. 

where S (i, j) is the value returned by the individual i for fitness case j (of Nf cases) and C (j) is 
the desired value for the fitness case j. For symbolic regression problems, the raw fitness can also 
be the sum of the squares of the errors, so the influence (penalties) of distance points is larger. 

Standardized fitness 

The standardized fitness s(i) recalculates the raw fitness so that the value assigned to  the best 
individual is zero. If for a particular problem a lesser value of raw fitness is better, the standardized 
fitness equals the raw fitness. 

Adjusted fitness 

The adjusted fitness a (i) can be calculated from the standardized fitness in the following way: 

1 
a (i) = - 

1 + s (2) 
The value of the adjusted fitness always lies between 0 and 1, and the better the individual the 
bigger the value. The main benefit of the adjusted fitness is that it exaggerates the importance of 
small differences in the value of the standardized fitness as the standardized fitness approaches 0, 
which often occurs in later generations of a run. 

Normalized fitness 

The value of the normalized fitness n (i), as the adjusted fitness, is a value between 0 and 1. The 
difference is that the sum of the normalized fitness values equals 1. Better individuals of the 
population have a larger normalized fitness value. It can be calculated from the adjusted fitness 
as follows: 

2.2.2 Select ion 

After the fitness of the individuals in a population is assessed, it must be determined which individuals 
will selected to be subjected to the different GP operations to  produce new individuals. Several selection 
methods are available: 



Fitness proportionate 

A individual is given a probability (to produce offspring) of 

where f i  is the assigned fitness value. - Rank selection 

Rank selection is based or, the fitness order into which the individuals can be sorted. The selection 
probability is assigned to individuals as a function of their rank in the population. 

Tournament selection 

Tournament selection is not based on competition in the population as a whole. Instead, a small 
group of individuals is randomly chosen from the population. In this small group the tournament 
finds place: the better of the individuals are allowed to create offspring. 

Tournament selection has become one of the most popular selection methods, because it does not 
need a fitness evaluation of all the individuals, which reduces computing time considerably. 

2.2.3 Generational versus steady st ate GP algorithm 

There are two ways t o  execute a GP run. The first one is the generational GP run. During such a 
run, generation upon generation is created using for example the fitness proportionate selection method. 
From an old generation individuals are selected to  create new individuals by crossover, mutation, or 
reproduction until a new generation is filled with these new individuals. The old generation is then 
discarded, and the process is started over again to produce a new generation, until some end criterion is 
met. 

The other option is the steady state GP. No new generations are created now. The GP run starts to 
create a population with the specified number of individuals. Then, the tournament selection method 
is applied. Not all individuals are allowed to compete, just a small set of them, taken randomly from 
the population. Instead of putting the newly created individuals in a new generation, they are put back 
in the population, replacing the individuals that 'lost' during the tournament. Note that the 'winning' 
individuals are also returned to the population. 

2.3 Functions and terminals 
r n l  ~ n e  terminal and function sets are the alphabet of the progranii to be made. In fact, they rreprese~t the 
search space of a problem. The terminal set consists of variables (inputs) and constants of the programs. 
They are called terminals because they terminate or end a branch of a tree in a tree-based GP. 

The function set is composed of the statements, operators, and functions available to the GP system. For 
example: 

Boolean functions 

Arithmetic functions 

Transcendental functions (trigonometric, logarithmic) 

Variable assignment functions 

Indexed memory functions 

e Conditional statements 



Loop statements 

Control transfer statements 

The functions and terminals chosen for a GP run, should be powerful enough t o  be able to solve the 
problem at  hand. The smaller a function set is, the easier and faster it will be to  find a solution, but only 
for simple problems. For more complex problems a larger function set is needed. One should be aware 
not to choose a set that is too large. A large function set enlarges the search space and will make the 
search for a solution harder. 

Another important property of the function set is the ciosure property. Each function should be abie to 
handle all values it might get as input. The most common exampie of a function that does not fulfill the 
closure property is the division operator. It cannot handle zero as an input. A solution is to define a new 
operator: the protected division. It acts like a normal division, except when it receives a zero as input. 
In that case it will return something else, a very large number or zero, for example. 

2.4 Algorit hrn control parameters 

The GP control parameters outline the way the GP run is executed. There are several parameters to be 
set before executing a GP run. A few examples: 

Termination criterion. This criterion prescribes when the run should stop. This is generally a 
predefined number of generations or an error tolerance on the fitness. 

Population size. This is the number of individuals in the population. 

Crossover-, mutation- and reproduction probabilities. These parameters control the degree of 
crossover, mutation and reproduction that will take place during the run. These parameters are 
often expressed in weighted values. A crossover probability of 0.7 and a mutation probability of 
0.3 are often used values in GP-runs. 

Selection method. See section 2.2. 

Maximum individual size. This value refers to the maximum depth the individuals can obtain. 
When taking this parameter too large, the solutions will probably become too complicated, and 
computing time will go up. On the other hand, taking the parameter too small, can result in 
solutions that are too short to  solve the whole problem. 

2.5 Initialization 

The first thing that is done when starting up a GP run is the initialization. During initialization the 
population is filled with individuals for later evolution. There are two ways to  do this: f i l l  and grow. 
Grow produces trees of irregular shape because nodes are selected at  random from the function and 
terminal set. Once a branch contains a terminal node, that branch is ended, even if the maximum depth 
has not been reached. 

Instead of selecting nodes randomly, the full method selects only nodes from the function set until the 
maximum depth is reached. Then it selects only terminal nodes. The result is that all branches go till 
maximum depth [4]. 



2.6 Genetic operations 

During a GP run, several operations are used on the individuals of the population t o  generate new 
generations. First an individual is selected from the population by means of the selection method 
described in paragraph 2.2. Then the operation that will be performed on the individual is chosen. 
All operations have an assigned probability value and this value corresponds with the probability that 
that operation will be chosen. More about these probabilities will be explained in paragraph 4.2. The 
most important operations will be explained here. 

2.6.1 Crossover 

The most important genetic operation in G P  is the crossover operation. In the crossover operation, two 
solutions are combined to form two new solutions. The parents are chosen from the population by a 
function of the fitness as described in section 2.2. The crossover operation combines the properties of two 
parents by swapping a part of one parent with a part of the other, see figure 2.3. 

I Parent 1 Parent 2 

I Child 1 Child 2 

Figure 2.3: Example of crossover 

2.6.2 Mutation 

In the mutation operation, a single program is probabilistically selected from the population based on 
fitness. 

Two types of mutation are possible: 

I. a function can only replace a function or a terminal can only replace a terminal. 

2. an entire subtree can replace another subtree. 

A mutation point is chosen randomly, the function or subtree rooted at  that point is deleted and a new 
function or subtree is grown there using the same random growth process that was used to  generate the 
initial population, see figure 2.4. 



I node rnutatlon 

Figure 2.4: Examples of mutation 

2.6.3 Reproduct ion or Copying 

An individual is selected based on its fitness value and copied. The copy is placed into the population, 
which results in two versions of the same individual in the population 

2.6.4 Automatically defined functions 

An automatically defined function (ADF) is a function that is dynamically evolved during a run of genetic 
programming and that may be called by a calling program (or subprogram) that is concurrently being 
evolved. The program individual containing ADFs is a tree just like any program in regular tree-based 
GP. However, when using ADFs, a tree is divided into two parts or branches: one is the result-producing 
branch, which is evaluated during fitness calculation, and the other is the function-definzng branch, which 
contains the definition of one or more ADFs [4] [5]. Because two different types of branches' are used, it 
is not possible to  use the simple crossover operation as described above. The crossover operation should 
be modified to  make sure that only branches of the same type are used for crossover. 

A weakness of the ADF approach is that the architecture (i.e. the two types of branches) of the overall 
program has to be defined beforehand. It would be much better if the complete structure of an individual 
could evolve including all ADF specifications. Koza [6] has proposed architecture altering operations as 
a method to  achieve this goal. He posed six architecture aitering genetic operations that can add initial 
ADF structures, clone them, and change the number of parameters. 



Chapter 3 
Applications Software 

Overview of applications of GP 
Since the introduction of GP by Koza, a variety of applications have been researched. Here is an  overview 
of the applications that have been published. 

algorithms control (robots and agents) interactive evolution 
art control (spacecraft) modeling 
biotechnology decision making natural languages 
computer graphics electrical engineering optimization 
computing financial prediction pattern recognition 
control (general) hybrid systems prediction 
control (process) image processing signal processing 

3.2 Software 

The G P  algorithm has been programmed using several different programming languages, including: C, 
C++, JAVA, LISP, and Prolog. Most programs are open source code and are available on the  internet. 
Examples are: 

GPC++ by A. Fraser 

G P  Quick (C++) by A. Singleton 

OMEGA, Predictive Modeling System by Cap Gemini 

Genetic programming studio (Lil-gg) 

Evolve (C++) 

Commercial soRware is also available: 

Discipulus by Register Machine Learning Technologies Inc. Detailed information can be found at  
http://www.aimlearning.com. 

Genetic Search Toolbox for use with Matlab and Simulink by Optimal Synthesis Inc. Detailed 
information can be found a t  http://www.optisyn.com/gs/pagelw. 



Chapter 4 
GP in practice 

To test the possibilities of GP, I used the program GP Quick 2.1 written in C++ by Andy Singleton. 
Changes to the program were made, to accommodate the problems I wanted to solve, but the GP kernel 
itself stayed mainly as it was. 

The fitness cases c2n be specified in a file. There is no limitation to how many fitness cases can be used. 
However obviously, the more points, the longer the calculation of fitness will take. 

The results of the GP run are written to a file. At the start of a run, information about the run, like the 
function set used and other GP parameters, are written to this file. During the run, information about 
the 'best-so-far'-result is written to the file. The solutions and their fitness are also displayed on screen. 

Solutions are displayed in prefix notation (see for explanation of prefix notation see appendix A) . A 
matlab program is used to convert the prefix solutions given by the GP program to infix notation. 

The selection method used in all runs is the Tournament selection (thus steady state GP is applied), as 
this was the only form of selection provided by the program. 

The program can handle arithmetic, exponential, goniometric and boolean functions but cannot generate 
ADFs. 

All calculations were made using a computer with a pentium pro processor, 128 MB internal memory, 
running Microsoft Windows 95. 

All control parameters were held at the same values during all the runs described below unless mentioned 
otherwise, with the exception of the population size and the number of fitness cases. Small problems 
don't need a large population size to converge fast to an accurate solution. Complex problems may need 
a larger population t o  obtain good results. Obviously there is a compromise between the speed and 
population size. A very large population size may be helpful to  fully explore the search space, but needs 
much more time t o  compute. On the other hand: a very small population might not contain all elements 
for a perfect solution. The same goes for the number of fitness cases. As all the cases are evaluated 
to compute the fitness of an individual, it is easy to  understand that there is a direct link between the 
number of fitness cases and the computing time needed. 

4.1 Simple symbolic regression 

Regression is often used to  fit data to a curve. A function is predefined and with aid of the measured data, 
the unkmwn parameters 2re ca!cn!~ited. Using GP, it is p=,ssih!e to etirr?ate not only the parameters, 
but also the symbolic form of the function. The only thing needed is data of input and output. GP will 
then map the input to the output. 



Suppose have obtained the 

and we would like to fit a function y = f (x). The steps that should be taken are as follows. 

following data: 

First we would define the terminal set. The output only depends on one input so the terminal set only 
contains XI: 

T =  1x1) 

The terminal set should officially also contain a constant function. The constant function generates 
random (constant) values for use during the run. As the constant function is automatically inserted by 
GP Quick, we don't have to  specify it explicitly in the terminal set. 

x =  

Then the function set is to be defined. As the function to be fitted obviously is y = x2, we would only 
need a multiplication function. Unfortunately, most problems are not as simple as this one, so a more 

- - 
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'" 

general. function set is chosen: 

- 
1 
4 
9 
16 
25 
36 
49 

As problems get more complicated it is wise to add for example a sine and an exponential function to 
the set, to  address a wider range of solutions. 

The third step is to define a fitness function. For this problem a raw fitness is adequate: 

where G P  (xi) is the result of the solution given by GP, evaluated at  xi. 

The last preparatory step to be taken is to  set an end criterion. In this case the problem is solved when 
the fitness has value 0. An alternative for an end criterion could be the number of programs created, or 
elapsed time. 

After start-up of the run, the initialization takes place. The best-result obtained after initialization in 
this pa r t ida r  ruri is: 

In figure 4.1 the result is displayed. 

After 50 individuals have been created, the best-so-far solution is: 

which is plotted in figure 4.2. 

After 1.26 [s] 70 individuals have been created and the exact result y = x? is found. In figure 4.3 the 
fitness of all the best individuals during the run is plotted. 



Figure 4.1: Best-of-run in initialization 

Figure 4.2: Best-so-far after 50 iterations 

N u m b e r  o f m d l v l d v a l r  c r e a t e d  

Figure 4.3: Best-of-run fitness values 

When executing the same problem several times, the exact same solution is found everytime. The form 
of the (solution) tree may differ, but when simplified, the solution is the same. What really differs is 



the computing time. To understand this take a look at  the figure 4.4. All the trees represent the same 
formula, but contain a different number of nodes. The more nodes the GP algorithm has to  traverse, the 
longer it takes. This is one reason why computing times can differ from run to run. Other reasons for 
differences in computing time will be discussed in the next paragraph. 

Figure 4.4: Same solutions, different tree forms 

4.2 A simple model and the influence of control parameters 

Research is being done on how to  optimally select the control parameters for a run, but no real theoretical 
basis has been found yet. So, the user has to select the control parameters at  random, or based on previous 
experience. To develop some sense in how the parameters influence a run a simple model is created to 
generate data. This data is then used to  execute several runs, with different sets of parameters. 

Using Simulink fitness cases are generated of the system: 

taking u = sin (t) ,  B = 2, and K = 10. The values of x, x, and u are then given to  the GP algorithm. 
This problem is in fact not much different from a symbolic regression problem with two variables. The 
only difference is that x and x are dependent variables. It is possible, in theory, to  let GP estimate this 
dependency also, so that only x and u are needed for GP. To accomplish this, the GP program should 
have a differentiation function in the function set available. This is not (yet) possible in GP Quick and 
therefore the data is differentiated beforehand. 

To test the influence of several control parameters this problem is evaluated one hundred times per value 
of a control parameter. The end criterion is set to 10.000 iterations (i.e. created individuals). By looking 
at  the number of failed runs (i.e. the runs that did not come up with the perfect solution within 10.000 
iterations), something can be said about the parameter. The mean time is the average time it took the 
good runs to convert to the perfect solution. The same goes for the mean number of iterations. 

Number of fitness cases and population size 

It can easily been seen and understood that the rise in time is proportional to the rise in population size 
and the rise in number of fitness cases. In both cases there are more individuals and/or fitness cases 
to be processed, which drives up the time. What strikes one most is the great number of failed runs at 
a population size of 3000. An explanation is that there are too much individuals to  be processed for a 
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solution to emerge within the limit of 10.000 iterations. To test this, one more run was done but now the 
limit was set to 20.000 iterations, with the following results: 

I Po~ulation size 1 3000 1 
Number of fitness cases ( 50 
Number of failed runs 1 0  

Now, all runs converged to  a perfect solution. The average number of iterations needed t o  achieve iies 
very close to  the iirst limit of 10.000 iterations. In figure 4.5 a histogram is drawn of the results of the 
hundred runs. Approximately half of the runs needed more than 10.000 iterations for a perfect result, 

Mean time [s] 
Mean number of iterations 

iteration 

2.585 
9894 

Figure 4.5: Iterations needed for perfect result (100 runs) 

which is precisely why in the first test so many runs failed. 

Some more tests pointed out that for this problem with as few as 15 fitness cases and a population size of 
50 a perfect solution can be found, within a reasonable time. However, as can be expected, the number 
of faded runs adso goes up, with decreasing values. So for the following tests the population size is set to 
500 and the number of fitness cases to 50. As the average number of iterations needed for perfect result 
is 2500, the termination criterion is now set to 2500 iterations. This will speed up the calculations. 

Note that these values are only valid for this problem. Every problem has its own optimal population 
size and optimal number of individuals needed to solve the problem. It is a process of trial and error to 
find these values. For some problems it might be worth the time t o  find these optimal values, as it will 
decrease computing time. On the other hand, as computer speed is still increasing, the solution will be 
found even though the parameters are chosen larger than optimal, without much influence on computing 
time. 

Crossover probability 

The crossover probability indicates the probability that the genetic operation being used is the crossover 
operation. Crossover is a heavily discussed operation, because it can greatly influence the speed and 
performance of a run. As one can imagine, individuals created by crossover tend to be far more different 



from their parents then individuals created by mutation and reproduction. This characteristic feature is 
needed during a run to overcome a local suboptimal solution for example. On the other hand, research 
also pointed out that a large part of the offspring has a significantly lower fitness than their parents. A 
balance should be found between creating totally new individuals and destroying good traits in parents. 

In fig. 4.6 the number of failed runs (of 100 runs) is displayed for different values of the crossover 
probability. As can be seen, a crossover probability of 0.7 is optimal for this problem. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Crmsow probability 

Figure 4.6: Influence of crossover probability 

Mutation probability 

The mutation operator has less influence than the crossover operation on the performance of a run. Fig. 
4.7 indicates that a probability of 0.2 is optimal. In literature a combination of 0.7 crossover- and 0.3 
mutation probability is often found. 

Copy probability 

The copy- or reproduction operation, as the mutation operation, has not much influence on the GP 
run. It doesn't create any new individuals, it only makes copies of good individuals. This is useful 
keeping in mind the destroying quality of the crossover operation. In figure 4.7 a value of 0.6 for the 
copy probability is the best value, although it doesn't differ much from the other values. When the copy 
probability is near to 1, the performance of the run becomes worse. This can easily be understood: as 
the copy operator becomes the main GP operation in a run, the chance of creating new individuals (by 
mutation or crossover) is very unlikely. Only runs that have (by accident) created the right solution 
during initialization succeed. Long runs will in the end also produce a good result, but in this case that 
is not likely to happen, because of the restraint of 2500 iterations. 
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Mutation probability Cqy pcbahility 

Figure 4.7: Influence of mutation and copy probability 

4.3 Model of the pendulum 

As the final goal of this project is to model the pendulum, with actual data from the pendulum, first a 
try-out is done with data generated by a model of the pendulum. The model used is: 

with 

with J = 0.034, c, = 16, B, = 0.0554, B, = 0.3164, and a! = 15 equation (11) alters in: 

As input u for the pendulum model a chirp signal was used. The corresponding value of 0 was then 
calculated using Simulink. 8 and were zero-phase differentiated from 0. Then u, 0, 6 ,  and 8 were given 
to the GP algorithm. 

Three runs were executed, each using a different function set. 

First run 
For the first run the following function set is used: 

After 13680.9 [s] the best-so-far solution was: 



This model is simulated in Sirnulink. Comparing the results of the original model and the GP model 
gives the result plotted in figure 4.8. The results are fairly good, since not all functions that were used 
to  create the data set were available during the GP run. The GP model was also tested with an input it 
was not trained for (step input), see figure 4.9. 

Time [s] 

-20 1 I 
0 1 2 3 4 5 6 7 8 9 1 0  

Time [s] 

Figure 4.8: Response to  chirp input (first run) 

Time [s] 

l ime [s] 

Figure 4.9: Response to  step input (first run) 



Second run 
To extend the search space the exponential function is added to  the function set for the second run. After 
6426.13 [s] the result displayed in equation 15 and plotted in figure 4.10 is found. 

What is surprising is that the exponential fmction is not used in this result. In spite of this is the result 
somewhat better than in the previous sun. Busing the sun the exponential function has been used. It  
probably helped to  overcome some local minimum in which the previous run got stuck. The results are 
shown in fig. 4.10. Due t o  numerical problems the step response of this model could not be calculated. 
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Figure 4.10: Response to  chirp input (second run) 

Third run 
In the third run the exponential function is replaced by the sigmoid function as defined in equation (12). 
The result, equation (16), resembles the original model, equation (13) very much, two of the three terms 
have been estimated almost accurately. 

The response to  chirp- and step input of this model is shown in figure 4.11 and figure 4.12. The result is 
okay, except for the peak in the chirp response after about 7 seconds where a numerical problem manifests 
itself. 

4.4 Data from the pendulum 

Using a data set obtained from the pendulum, again three runs were executed to  estimate a model. As 
input signal u = 0.06 sin(t) was used. The position 6 was measured and the velocity 8 and acceleration 
0 were calculated from 6 using a zero-phase derivation function in Matlab. After that  both signals 
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Figure 4.11: Response to chirp input (third run) 
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Figure 4.12: Response to step input (third run) 

were filtered to remove noise with a zero-phase second-order lowpass Butterworth filter, with a cut-off 
frequency of w, = 20 [Hz]. 

The population size was set to 3000 and 3000 fitness cases were used. The end criterium was zero error 
between the data and the GP model. Since this criterium was not met in any of the runs after (sometimes) 
several days of computing, the runs were stopped manually. Although the fitness of the best individual 
in the run was not significantly improving by then, it is not said that if the runs were continued for more 



days that a better solution would not emerge. But as convergence rate t o  a better solution was very slow, 
the runs were stopped and the best models are presented here. 

First run 
The function set of the first run is made up as follows: 

After 350105 [s] the  result is: 

When autovalidating this model, i.e. simply filling in the datapoints used during the run, the result is 
as shown in figure 4.13. The fitness function in the GP run unfortunately only evaluates the error in the 
output. It  does not take into account the stability of the model. As a simple straightforward function, 
equation (17) maps the inputs fairly good to the output, but when simulated in Simulink the model is 
unstable and doesn't provide an answer. 
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Figure 4.13: Result of first run 

Second run 
In the second run the following function set was used: 

F =  {+,-,*,/,exp) 

Again, after 164474 [s], the function is a map of input t o  output (as shown in figure 4.14), but as a model 
it is worthless as it is unstabIe. This model is not as good as the model of the first run. This is probably 
due to  less computing time. The first run has run for twice as much time as this run. The problem was 



that this run was stopped prematurely because the computer crashed and had to  be restarted. There 
was no more time t o  run the test again. 
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Figure 4.14: Result of second run 

Third run 
During the last run the exponential function was replaced by the sigmoid function. This resulted is the 
following equation: 

This equation is very hard to  comprehend in physical terms. This model is, just as the previous two, 
unstable. A plot of the function is shown in fig. 4.15. 



Figure 4.15: Result of third run 



Chapter 5 
Conclusion 

In this report the basics of GP have been explained and illustrated with several problems. The simple 
problems were easily and exactly solved by the GP algorithm, whereas the bigger problems posed some 
problems. There are still many possibilities open to solve those problems. The GP algorithm can be 
adjusted. And as the fitness function has a major influence on how well GP performs, other fitness 
functions should be tried. More fitness cases could be used but as it took GP four days to come up with 
the solutions presented in paragraph 4.4 further improvements have not yet been tried for the pendulum 
problem. 

Identification of a real system with GP did not result in a good model. The problem is that the stability 
of a model is not evaluated now, often resulting in mathematically good functions but unstable models. A 
recurring problem was a division by zero. The fitness function should be revised so that when a division 
by zero occurs a major penalty is given. To improve identification with GP differentiation and integration 
functions could be implemented in the GP program. It would then become unnecessary to  differentiate 
or integrate data before hand and the order of a system could then be determined by GP. 

By using the sigmoid function, prior knowledge of the system is put into the GP run. It is debatable 
wether this is acceptable. In an ideal situation (i.e. a very fast computer), no prior knowledge should be 
given to  the GP run and the solution would be good all the same. Here, prior knowledge is used. The 
question is wether this prior knowledge will force the solution in a specific direction, thereby possibly 
missing important other solutions, or that it will merely help to  speed up the convergence to a solution. 

Human competitive results have already been achieved in several research fields. For example, controllers 
have been found by GP that are a significant improvement on controllers designed by humans [7]. Genetic 
Programming is becoming a powerful method for generating (mathematical) models for all sorts of 
problems, especially when taking into account the rapidly evolving speed of computer hardware. In 
the future it will be easier to compute complex models in less time, so the interest in GP will probably 
be growing in the coming years. 
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