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AGENDA
� Motivation for interactive rough-granular computation (IRGC)
� Granules and their interactions 

– elementary (atomic)
– granules obtained by fusion of existing granules 

�relational structures (e.g., tolerance classes, 
approximation spaces) and their clusters

�approximation of changes and trajectories of changes
�rules of coexistence of local states: discovery of process 

models from data and domain knowledge 
�coalitions

� Interactive granules in approximation of complex concepts from 
data and domain knowledge

� Research topics: 
– searching for relevant interactive granules
– adaptation in IRGC
– discovery of interaction structures

� Software: RoughICE; TunedIT
� Conclusions: IRGC in WisTech program

Interaction is a fundamental dimension for 
modeling and engineering complex 

computational systems. More generally, 
interaction is a critical issue in the 

understanding of complex systems of any 
sorts: as such, it has emerged in several well-

established scientific areas other than 
computer science, like biology, physics, 

social and organizational sciences.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli, 
The Multidisciplinary Patterns of Interaction from 
Sciences to Computer Science. In: D. Goldin, S. 
Smolka, P. Wagner  (eds.): Interactive computation: 
The new paradigm, Springer 2006

Why interactive computations on 
granules are needed?

[Existing] Algorithms are 
metaphorically dumb and blind 
because they cannot adapt 
interactively while they compute. 
Peter Wegner: Why interaction is more  powerful
than algorithms. COMM ACM 40(5): (1997) 81-91

ADAPTIVE JUDGMENT

While employing IRGC, interactions 
and process mining we must stay in 
touch with the reality we are trying 
to model (describe) and predict.

If for some reason the decisions we 
are making are inconsistent with real 
life, we need to adapt our judgment.
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COMPUTATIONS IN IRGC

�Are performed on complex concepts 
called granules
– Involve uncertainty, noise, vagueness
–Manage parts of (descriptions and 

patterns for) complex concepts

�Are interactive
–Performed by many autonomous, 

interacting units (agents)
– Influenced by changes in data/knowledge 

and in the way co-operation goes.

Over 1000 pages 
describing:

� Various approaches to 
granularity

� Foundations of GrC
� Methodologies and 

algorithms
� Applications
� …

Plays a key role in 
implementation of 
the strategy of 
divide-and-conquer 
in human problem-
solving – Lotfi Zadeh

J.M. Bower, 
H.Bolouri: 
Computational 
Modeling of Genetic 
and Biochemical 
Newtorks, MIT 2001

(INFORMATION) GRANULES:
OBJECTS CONSTRUCTED IN THE 

GRANULATION AND 
DEGRANULATION PROCESSES

E.G., IN SEARCHING FOR COMPLEX 
CONCEPT APPROXIMATION

EXAMPLES OF GRANULES:
FROM

NEIGHBORHOODS OF OBJECTS TO
CLUSTERS, 

APPROXIMATION SPACES,
CLASSIFIERS,

ONTOLOGIES AND THEIR 
APPROXIMATION,

BEHAVIORAL PATTERNS,
PROCESS MODELS, 

ADAPTIVE SCHEMES OF AGENTS

ROUGH SETS 

PawlakZdzislaw
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ROUGH MEREOLOGY

MEREOLOGY
St. LEŚNIEWSKI (1916)

x is_a_ part_of y

ROUGH  MEREOLOGY
L. Polkowski and A. Skowron (1994-......)

x is_a_ part_of y in a degree

L. Polkowski, A. Skowron, Rough mereology, ISMIS’94, LNAI 869, Springer, 
1994, 85-94
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INDUCTION

What if InfA(xo) for xo ∈ U* - U 
is different from any InfA(x)
for x ∈ U ?

similarity of InfA(xo)
with InfA(x)

partial matching of 
InfA(xo) with InfA(x) 
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GENERALIZATIONS OF GRANULES 
BY GRANULE FUSION:  

TOLERANCE GRANULES
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GENERALIZATIONS OF TOLERANCE GRANULES
GENERALIZATION OPERATORS 

by Ryszard Michalski
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generalization over tolerance
granule

cluster

GRANULES REPRESENTING 
STRUCTURES OF OBJECTS
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properties of time windows

1 j T

v1 vj vT

… …

TIME WINDOWS

FUSION AND GENARALIZATION 
OF GRANULES

� fusion of granules:
– tolerance granules
–clusters over tolerance granules
– relational structures and their clusters, e.g., 

approximation spaces
– …
– degrees of matching: fusion, propagation
– …

INTERACTIVE COMPUTATIONS 
ON GRANULES 

IN
DISCOVERY OF PROCESS 

MODELS FROM DATA 
AND

DOMAIN KNOWLEDGE
(PROCESS MINING)

Interacive processes

There are two components:
1.Process – changes of states of the 

system occur with time.
2. Interaction – the change of a given 

state in the process depends not only 
on time but also on exchange of 
information with other states.

E
G

INTERACTIVE GRANULES

• cellular automata
• differential equations
• approximation of changes
• MAS
• coexistence of local states
• interactions with experts
• reinforcement learning
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INTERACTIONS 
REPRESENTED BY CHANGES 

OF LOCAL STATES. 
THE CHANGES ARE DEFINED 
BY INTERACTIONS OF LOCAL 
STATES IN  NEIGHBORHOODS

i j

e.g.,cellular
automata

PROBLEMS

� States are complex and only uncertain 
information about them is available

� How to define neighborhoods?
� How to approximate changes in states 

as the results of interactions?
� …

DISCOVERY OF INTERACTION 
MODELS FROM DATA AND 

DOMAIN KNOWLEDGE

DEFINING INTERACTION 
vs

INDUCING MODELS OF 
INTERACTION

PROCESS MODELS AND 
INTERACTIONS 

examples: coupled map lattice, oscilator

neighborhood 
relation

Feng, J., Jost, J., Minping, Q. (eds): Network: From Biology 
to Theory, Springer, Berlin, 2007
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Approximation of 
functions G,H:
- rough, fuzzy methods
- statistical methods

DISCOVERY PROCESS MODELS FROM DATA:

METHODS FOR APPROXIMATION OF 
FUNCTIONS CHARACTERIZING 

CHANGES

a1 … am d
(x,y)

…

degrees 
of 

changes

attributes relevant for characterizing 
changes

HIERARCHICAL 
LEARNING IS 

NEEDED !

current and 
next 

configurations
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A trajectory of a granule

Suppose we track a single trajectory in
a process

Time 0

Granule 
corresponding 
to initial state

A trajectory of a granule

Suppose we track a single trajectory in
a process

Time t

Granule G 
corresponding 

to state at time t

A trajectory of a granule

Suppose we track a single trajectory in
a process

Time t+1

Granule G 
corresponding 

to state at time t

Granule Q  
corresponding to 
state at time t+1
Q is obtained as 

„composition” of G 
with approximation 

of changes 
obtained in 

interaction with 
other granules 

INTERACTIONS OF GRANULES IN 
TRAJECTORY APPROXIMATION

current
object granule

granular components 
of 

function approximation

interaction 
module 1

possible degrees 
of changes 

for object granule

new 
object granule

interaction 
module 2

a fragment of 
approximated 

trajectory

analogy to 
fuzzification

analogy to 
defuzzification

and conflict 
resolution

Example: trajectory approximation
Suppose we track a single trajectory in

a process

Up to this point the actual and 
predicted trajectories are 

sufficiently close

The actual 
trajectory P

The predicted 
trajectory P’

Example: trajectory approximation
Adaptation must be used to fix the

deviation of the model
The actual 
trajectory P

The predicted 
trajectory P’

At this point we have to adapt the 
underlying model criteria to make 

it more relevant
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INTERACTIONS IN MAS
- complex states

- partial information  

- conflicts 

- negotiations,

- cooperation

- coalition,

- competitions,

- intentions,

-…
agent ai
and its 

neighborhood

ai

aj

interaction 
between 
agents  

ai and aj

begin
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Each granule has a 
scheme of interaction 
obtained by specifying:
� Property; 
� Select_Action;
� Perception;
� Predict_...
� Cancel

→←
aa IandI

are perceived only 
through Perception.

G1

G2

G3

Gk

…
G4

E

Granule fusion:
coalition of G 1,…Gk

with functionalities for interaction with E
and members of the coalition

membrane

Membrane 
Computing

G. Paun et al

INTERACTIONS OF GRANULES 
ARE BASED 

ON LOCAL LOGICS

� set of (high level) concepts with
(approximate) rules of inference

� concepts and rules are adaptively
changing

INTERACTIONS FORCED BY 
DEPENDENCIES OR RULES 
(DISCOVERED FROM DATA) 
PRESERVING COEXISTENCE 

OF LOCAL STATES 
IN CONCURRENT SYSTEMS

SPECIFICATION OF 
CONCURRENT SYSTEMS BY 

INFORMATION SYSTEMS

� Pawlak, Z.: Concurrent versus sequential the rough 
sets perspective. Bulletin of the EATCS 48 (1992) 
178—190

� Skowron, A., Suraj, Z.: Rough sets and concurrency. 
Bull. Acad. Polon. Sci. 41(3) (1993)  237—254

� Suraj, Z.: Rough set methods for the synthesis and 
analysis of concurrent processes. In: L. Polkowski, S. 
Tsumoto, T.Y. Lin (eds), Rough Set Methods and 
Applications Studies in Fuzziness and Soft Computing 
56, Springer/Physica Verlag (2000)  379-488
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MAIN IDEA WE USE IN PROCERSS 
MINING

DATA
A

THEORY 
OF 

DATA A
Th(A)

PROCESS MODEL 
CONSISTENT 

WITH Th(A)

e.g., 
information 

system

e.g., set of rules 
defined  by 
information 

system

e.g., Petri net with 
reachability 
markings 

consistent with all 
rules in Th(A)

ADVANTAGES 

�Complex Petri Nets can be generated 
automatically from their specification 
by data tables

�Petri Net can be adaptively modified  
with changes of data

CONTINUATION

�Which kinds of rules should be used 
(e.g., non-deterministic, 
probabilistic, temporal, spatio-temporal)? 

�How to characterize the expressibility
of different rule sets?

�How to extend the approach by 
adding information on transition 
relation or temporal dependencies?

Research by Z. Suraj and his team, also M. Moshkov and 
A. Skowron,…

DISCOVERY OF STRUCTURES OF INTERACTING 
PROCESSES ALONG DOMAIN ONTOLOGY

PN
generating

(consistent with) G

G set of paths 
of interaction of  P1 and P2

PN1

generating
(consistent with) G1

PN2

generating
(consistent with) G2

G1 set of paths 
of process P1

G2 set of paths 
of process P2

How PN is constructed from PN1 and PN2 ?

INTERACTION WITH EXPERTS

APPROXIMATION 
OF 

VAGUE COMPLEX CONCEPTS
USING 

DOMAIN ONTOLOGY 
APPROXIMATION 
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…when you have a technical description x of the object 
and have some impression x* about this object you have 

two forms of description: a formal description and a 
holistic description or Gestalt description. Using both 
descriptions during training can help to find a better 

decision function. This technique remains master-class 
learning, like musicians training in master classes. The 
teacher does not show exactly how to play. He talks to 

students and gives some images transmitting some 
hidden information - and this helps. So, the challenge is 

to create an algorithm which using additional 
information, will generalize better than classical 

algorithms.

Vladimir Vapnik (2008): 
http://learningtheory.org

I believe that understanding human 
experience will be a driving challenge

for work in AI in the years to come, and that 
the work that will result will

profoundly impact our knowledge of how we 
live and interact with the world

and with each other.

Henry Kautz (2005) Artificial Intelligence: The 
Next Twenty-Five Years, AI Magazine, 26(4): 
Winter 2005, 85–97

UNDERSTANDING THE ORGANIZATION 
AND PRINCIPLES OF HIGHER BRAIN 

FUNCTIONS: HIERARCHICAL LEARNING

� Organization of cortex – for instance visual cortex 
–is strongly hierarchical.

� Hierarchical learning systems show superior 
performance in several engineering applications.

� This is just one of several possible connections, 
still to be characterized, between learning theory 
and the ultimate problem in natural science – the 
organization and the principles of higher brain 
functions.

T. Poggio, S. Smale: The Mathematics of Learning: 
Dealing with Data, Notices AMS, Vol.50, May 2003

ROUGH SET BASED 
ONTOLOGY APPROXIMATION 

Expert’s 
Perception

Ld LE

Knowledge transfer from 
expert using positive and 

negative examples

Feature Space

UAV COMPLEX 
CONCEPT    

APPROXIMATION
fC1 fC

2

fC3 d

J. Bazan, S.H. Nguyen. H.S. Nguyen, A. Skowron (RSCTC 2004)
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AN EXAMPLE OF BEHAVIORAL 
GRAPH FOR SINGLE VEHICLE

Acceleration
on the right lane

Deceleration
on the right lane

Stable speed
on the right lane

Acceleration and
changing lanes from

right to left

Stable speed and
changing lanes from

right to left

Stable speed and
changing lanes from

left to right

Deceleration and
changing lanes from

left to right

Acceleration
on the left lane

Deceleration
on the left lane

Stable speed
on the left lane

BEHAVIORAL GRAPH FOR A GROUP OF 
OBJECTS

( TWO VEHICLE OF OBJECTS DURING OVERTAKING)

1. Vehicle A is
 behind B on the right lane

2. Vehicle A is changing
lanes from right to left,

vehicle B is driving on the
right lane

3. Vehicle A  is moving back
to the right lane,

vehicle B is driving on the
right lane

4. Vehicle A is driving on
the left lane and

A is passing B (B is
driving on the right lane)

6. Vehicle A is before B on
the right lane

5. Vehicle A is changing
lanes from left to right,

vehicle B is driving on the
right lane

Results of experiments for concept: 
‘’Is the vehicle driving safely?’’

Decision 
class

Method Accuracy Coverage Real

accuracy

YES RS1
RS2

0.978

0.962
0.946
0.992

0.925
0.954

NO RS1
RS2

0.633
0.862

0.740
0.890

0.468
0.767

All classes
(YES + NO)

RS1
RS2

0.964

0.958
0.935
0.987

0.901
0.945

Real accuracy = Accuracy * Coverage
Pawel Gora 

SUNSPOT CLASSIFICATION

solar image close-up (hi-res)

Son Nguyen et al

HARD SAMPLES
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OUTLIER CLASSIFICATION COMPLEX DYNAMIC SYSTEMS
(AUTONOMOUS MULTIAGENT SYSTEMS)

� Systems of complex objects with the 
following features:
– objects are changing over time
– dependencies between objects
– cooperation between objects
– objects able to perform flexible 

autonomous complex actions 

� Examples:
– Complex dynamic system: a patient (e.g., a 

newborn infant)

– Complex object: a disease (e.g., respiratory 
failure)

THE RESPIRATORY FAILURE
� The respiratory failure develops when 
the rate of gas exchange between the 
atmosphere and blood is unable to 
match the body's metabolic demands

� Arterial blood gas can be used to define 
respiratory failure – lower level of blood 
oxygen and accumulation of carbon dioxide 
– Clinical symptoms: increased rate of breathing, 

accessory respiratory muscles use, peripheral 
cyanosis

– Other useful procedures: X-ray lung 
examination, lung biopsy, bronchoalveolar
lavage, echocardiography

Data sets

� The experiments have been performed on 
the data sets obtained from Neonatal 
Intensive Care Unit in Department of 
Pediatrics, Collegium Medicum, Jagiellonian 
University, Cracow. 
– The data were collected between 2002 and 2004.
– The detailed information about treatment of 340 newborns: 

� perinatal history, birth weight, gestational age, lab tests 
results, imagine techniques results, detailed diagnoses 
during hospitalization, procedures and medication.

� Train&test method has been performed to 
estimate accuracy, sensitivity and specificity.
– A train data set consists of 5810 objects and a 

test data set consists of 5289 objects

AN EXAMPLE OF BEHAVIORAL GRAPH
(the simple model of behavior for a single patient in sepsis)

Four possibilities of transition from the node: Sepsis without multi-organ failure

6 nodes and

17 connections

Sepsis is not present
(multi-organ failure

is not detected)

Sepsis without
multi-organ failure

Progression of
multi-organ failure
in sepsis on level 2

Progression of
multi-organ failure
in sepsis on level 1

Progression of
multi-organ failure
in sepsis on level 3

Progression of
multi-organ failure
in sepsis on level 4

1

3

4

2

THE RESPIRATORY FAILURE
AS A COMPLEX PROCESS

The respiratory failure

Sepsis
(generalized 
reaction on 

infection leading 
to multiorgan 

failure) Ureaplasma
lung infection 

(acquired during 
pregnancy or birth)

PDA
(patent ductus 

arteriosus)

RDS
(respiratory

distress 
syndrome)
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BEHAVIORAL GRAPH AS 
A BEHAVIORAL 

PATTERN
(the risk pattern of death due 

to respiratory failure)

� The visualization of 
infant behavior by a 
path in the behavioral 
graph. 

� Behavioral graph
(behavioral pattern) as 
a classifier 

Stabile and mild respiratory
failure in sepsis

Stabile and moderate respiratory
failure in RDS and PDA

Stabile and severe respiratory
failure in sepsis, RDS and PDA

Stabile and severe
respiratory failure in RDS

Exacerbation of respiratory failure
from mild to moderate in sepsis

Stabile and moderate
respiratory failure

in sepsis

Stabile and severe respiratory
failure in RDS and PDA

Stabile and severe respiratory
failure in PDA

Exacerbation of respiratory
failure from moderate

to severe in RDS and PDA

Stabile and moderate respiratory
failure in sepsis, RDS and PDA

Exacerbation of respiratory failure
from moderate to severe in sepsis

Stabile and severe respiratory
failure in sepsis

Stabile and severe respiratory
failure in sepsis and PDA

Stabile and severe respiratory
failure in sepsis and RDS

Exacerbation of respiratory
failure from moderate to severe

in sepsis, RDS and PDA

Exacerbation of respiratory failure
from mild to severe in sepsis

Results of experiments for the risk pattern 
of death due to respiratory failure

Decision class Results

Yes (the high risk of death) 0.992 (sensitivity)

No (the low risk of death) 0.936 (specificity)

All classes (Yes + No) 0.956 (accuracy)

� Measures description:
– sensitivity - the proportion those cases having 

a positive test result of all positive cases tested,
– specificity - the proportion of true negatives of all 

the negative cases tested,
– accuracy - the ratio of the number of all properly 

classified cases to the total number of tested cases.

THE APPROACH WAS EXTENDED FOR 
AUTOMATED PLANNING OF 

TREATMENT 
OF INFANTS WITH RESPIRATORY 

FAILURE
� As a measure of planning success (or 

failure), we use the special classifier that 
can predict the similarity between two 
plans as a number between 0.0 and 1.0. 
– This classifier has been constructed on the 

basis of the ontology specified by human 
experts and clinical data sets

� The average similarity between plans for 
all tested situations was 0.82

THE PROBLEM OF 
COMPARISON OF PLANS

a1s1 a2s2 a3s3 s4

b1t1 b2t2 b3t3 t4

Plan 1:
(e.g., proposed by 
human experts)

Plan 2:
(e.g., generated

automatically by our 
computer system)

Problem: How to compare Plan 1 and Plan 2?

Solution: A tool to estimate similarity
between plans.

AN EXAMPLE OF MEDICAL ONTOLOGY
TO SUPPORT THE ESTIMATION OF SIMILARITY BETWEEN 
PLANS OF THE TREATMENT OF NEWBORN INFANTS WITH 

THE RESPIRATORY FAILURE

General similarity in the
approach to the respiratory

failure treatment

Similarity in
treatment of sepsis Similarity in

treatment of RDS

Similarity of a causal
treatment of sepsis

Similarity in
treatment of
Ureaplasma

Similarity in
treatment of PDA

Similarity of  a
symptom treatment

of sepsis
Similarity of
antibiotics

use

Similarity of
anti-mycotic
agents use

Similarity of
catecholamin use

Similarity of
corticosteroid use

Similarity of hemostatic
agents use

Similarity of mechanical
ventilation mode

Similarity of
sucralfat

administration
Similarity of
PDA closing
procedure

Similarity in use of macrolide
antibiotics in treatment of

Ureaplasma infection

16 concepts 
and

18 connections

Any concept
represents
different aspect
of similarity
between medical
plans

RESULTS OF EXPERIMENTS
FOR THE AUTOMATED PLANNING OF TREATMENT 

OF INFANTS WITH RESPIRATORY FAILURE

� As a measure of planning success (or 
failure) in our experiments, we use the 
special classifier that can predict the 
similarity between two plans as a 
number between 0.0 and 1.0 
– The classifier has been constructed on the 

basis of the ontology specified by human 
experts and data sets

� The average similarity between plans 
for all tested situations was 0.82
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On the WWW

http://logic.mimuw.edu.pl/~bazan/roughice/

TUNEDIT: www.tunedit.org

Automated evaluation of machine-learning and 
data-mining algorithms

Generation of reproducible experimental results 
→ for high-quality research papers

Collaboration between researchers: sharing of 
algorithms, datasets, experimental results and 
other resources; project: IRGC in discovery of 
new features

Benchmarks of algorithms: currently stores 
performance data for nearly 100 algorithms 
tested on several tens of datasets. Included: 
Weka, Rseslib algorithms, UCI datasets

CONCLUSIONS
Wisdom Technology (WisTech) Program

The basic meta-equation of WisTech
wisdom =    network of knowledge sources + 

adaptive judgment +

interactive processes
IRGC = systems based on interactive  

computations on granules with use of 
domain (expert) knowledge, process mining 
and concept learning  

CONCLUSIONS
We discussed  some issues of WisTech in the framewo rk of 
ROUGH GRANULAR COMPUTING. In our further study we 
plan to develop foundations for WisTech based on RG C. 

Why WisTech?

Aristotle's man of practical wisdom, the phronimos, 
… is observant of  principles and, at the same 
time, open to their modification. He begins with 
nomoi – established law - and employs practical 
wisdom to determine how it should be applied in 
particular situations and when departures are 
warranted. Rules provide the guideposts for 
inquiry and critical reflection.

L. P. Thiele. The Heart of Judgment: Practical Wisdom, Neuroscience, 
and Narrative. Cambridge Univ. Press, 2006. p.5.

http://logic.mimuw.edu.pl/

THANK YOU !
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ATTRIBUTE

x
a

...

|

...
2

1

ii vv αα

α
α

=

object from U *

the result of measurement by a on x

formulas defining partition of Va

formula 
selected by v

EXAMPLE: LIGHT CONTROL

b

a c

a b c

u1 1 1 0
u2 0 2 0
u3 0 0 2

u1, u2, u3 - states

a, b, c           - movement directions

0, 1, 2 - light color  (red, green, green arrow)

Global states

Local processes

TRAJECTORY APPROXIMATION

G: GRANULE 
REPRESENTING 
CURRENT STATE

Q: GRANULE 
REPRESENTING 

NEXT STATE

Q= „COMPOSITION” of G with approximation 
of  changes 

� In some cases hints for adaptation can 
be acquired from experts but quite 
often they will be expressed in 
natural language and complex vague 
concepts will be involved in them. Such 
hints with vague complex concepts should 
be approximated.


