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To the memory of Professor Zdzis�law Pawlak

Abstract. This article comes up a couple of months after the death of
Professor Zdzis�law Pawlak who created in 1982 the theory of rough sets
as a vehicle to carry out Concept Approximation and a fortiori, Decision
Making, Data Mining, Knowledge Discovery and other activities.

At the roots of rough set theory, was a deep knowledge of ideas going
back to Frege, Russell, �Lukasiewicz, Popper, and others.

Rough sets owe this attitude the intrinsic clarity of ideas, elegant
simplicity (not to be confused with easy triviality), and a fortiori a wide
spectrum of applications.

Over the years, rough set theory has been enriched with new ideas.
One of those additions has been rough mereology, an attempt at intro-

ducing a regular form of tolerance relations on objects in an information
system, in order to provide a more flexible scheme of relating objects
than indiscernibility. The theory of mereology, proposed long ago (1916)
by S. Lesniewski, proved a valuable source of inspiration. As a result, a
more general theory has emerged, still far from completion.

Rough mereology, operating with so called rough inclusions, allows
for definitions of a class of logics, that in turn have applications to dis-
tributed systems, perception analysis, granular computing etc. etc. In
this article, we give a survey of the present state of art in the area of
rough mereological theory of reasoning, as we know it, along with com-
ments on some problems.

Keywords: rough sets, granular computing, rough inclusions, rough
mereology, granular logics, granular computing, perception calculus,
foundations for rough sets.

1 Inexact Concepts: Approximate Reasoning

The case of inexact concepts was discussed by Gottlob Frege (Grundlagen II,
1903) on the margin of his theory of concepts:”..inexact concepts must have a
boundary in which one cannot decide whether the object belongs in the concept
or in its complement.. .” In the realm of mathematics, topology realized this
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idea accurately: around a set not definable in topological terms, i.e., not clopen,
there is the nonempty boundary, whose elements have any neighborhood neither
in the set nor in its complement. In computer science, this idea was rendered by
Professor Pawlak (1982) in his theory of rough sets.

In learning concepts, the obvious prerequisite is to employ a symbolic language
for coding objects along with some formulas, i.e.,”knowledge”, that form the
starting point for attempts at concept description.

1.1 Rough Sets: A Program Envisioned by Zdzis�law Pawlak

Let us go back to the idea of a rough set by Zdzis�law Pawlak. An abstract set-
ting for this idea, see Pawlak [4], [5] is a pair (U,R), where U is a universe of
objects and R is an equivalence relation on U (or, for that matter, a family of
equivalences on U) called a knowledge base (some authors use the term an ap-
proximation space). The relation R induces a partition into equivalence classes
[u]R, interpreted as elementary blocks of knowledge (some say: elementary gran-
ules of knowledge).

A practical way of implementing this idea is by using an information system
[4], i.e., a pair (U,A) where A is a set of attributes, each of them a mapping
a : U → V on U valued in the value set V ; the equivalence R is then produced
as the indiscernibility relation; R = IND with uINDv iff a(u) = a(v) for each
a ∈ A.

An exact concept relative to (U,A) is defined as the union of classes of the
relation IND; other concepts are declared inexact.

A variant of an information system is a decision system, in which one attribute,
say d is added, i.e., a decision system is a triple (U,A, d) with d /∈ A. The decision
d represents a classification of objects into decision classes by an external source
of knowledge.

Decision logic, see [4], formulates in a logical form dependencies among groups
of attributes. Its primitive formulas are descriptors of the form (a, v), where
a ∈ A∪{d} and v a value of a, and formulas are formed by means of propositional
connectives ∨,∧,→,¬. The meaning of a descriptor (a, v) is [a, v]={u ∈ U :
a(u) = v}, and it is extended recursively to meanings of formulas; in particular,
[p ∨ q] = [p] ∪ [q], [p ∧ q] = [p] ∩ [q], [¬p] = U \ [p].

A decision rule is a formula of the form
∧

a(a, va) ⇒ (d, v) that does express
a relation between conditional attributes in A and the decision; a set of decision
rules is a decision algorithm. In this way rough sets allow for classification and
decision solvers.

Concept approximation is achieved by means of rough set approximations;
for a concept X ⊆ U , the lower, resp., the upper approximation to X is the
set, resp., AX = {u : [u]A ⊆ X} and AX = {u : [u] ∩ X 
= ∅}. In this way a
concept X is sandwiched between two exact sets. The set BdX = AX \ AX is
the boundary of X , in conformity with the Frege idea of sect.1 of the existence
of a boundary for inexact concepts.

All these notions have given way to a rich specter of theoretical analysis and
application works in the language explained just above.
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The question was also: how to enrich the language to absorb many new de-
velopments like granular computing, perception calculus and so on? Below we
give a subjective view on the status of this question based on some of the author
works in years that passed since the year 1997, see, e.g., [15], [8], [9], [10], [11],
[12], [13], [14]. Some earlier papers are quoted in the papers mentioned here.

2 Alternative Approaches

Can we have a collective view on concepts that may co–exist with the orthodox,
naive–set–theory–based distributive approach exposed above? The answer seems
to be ”yes”.

2.1 A Neoaristotelian Approach: Ontology and Mereology Due to
Lesniewski

“Aristotle says in the seventh book of Metaphysics: ”If anything were com-
pounded of but one element that one would be the thing itself” (Duns Scotus,
Treatise on God as First Principle [18]).

A view contradictory to our set theory. Taken as a principle, it led Stanis�law
Leśniewski [3] to a new theory of sets (1916) based on the aristotelian notion
of part: transitive and non-reflexive relation on nonempty collection of objects.
But when the element is defined as a part or the whole object, then each object
is an element of itself. Mereology is the theory of collective concepts based on
part relation.

Out of distributive concepts, collective concepts are formed by means of the
class operator of Mereology.

Mereology is based on the predicate π of part, defined for individual entities,
subject to :

P1. xπy ∧ yπz ⇒ xπz.
P2. ¬(xπx).
The element relation elπ induced by π is defined as follows:

x elπ y ⇔ x = y or x π y.

Class of a property M is defined in case a distributive concept M is non–
empty; it is subject to,

C1. x ∈M ⇒ x elπ Cls(M).
C2. x elπ Cls(M) ⇒ ∃u, v.u elπ x ∧ u elπ v ∧ v ∈M .
Hence, Cls(M) collects, in one whole object, all objects whose each part has

a part in common with an object in M ; see remark no. 2 in sect.2.2, below.

2.2 Rough Inclusions

In approximate reasoning mereology works well when diffused to approximate
mereology based on the notion of a part to a degree expressed in the form of the
predicate μ(x, y, r) subject to requirements:
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RM1. μ(x, y, 1) ⇔ x el y.

RM2. μ(x, y, 1) ⇒ ∀z.[μ(z, x, r) ⇒ μ(z, y, r)].

RM3. μ(x, y, r) ∧ s < r ⇒ μ(x, y, s).

The relation el is the element relation of the underlying mereology; predicate
μ acts on individual objects x, y indicating the degree r to which x is a part of y.

The motivation for this approach can be itemized as follows:

1. Mereology , represented by the predicate el is an alternative theory of sets;
rough set theory built on Mereology can be an interesting alternative to
traditional rough set theory;

2. Traditional, naive, set theory and Mereology are related: the strict contain-
ment ⊂ is a part relation and ⊆ is the corresponding element relation. In
consequence, e.g., for a family of sets F , the class of F is the union of F :
Cls(F ) =

⋃
F .

3. The consequence of the preceding item is that constructs of traditional, naive
set – based rough set theory, are a particular case of a more general approach
based on a predicate μ – a rough inclusion.

2.3 Rough Inclusions: Specific Definitions

One may ask what form are rough inclusions taking. We consider an information
system (U,A) and for u, v ∈ U we let, DIS(u, v)={a ∈ A : a(u) 
= a(v)}, and
IND(u, v) = A \DIS(u, v).

Rough inclusions from archimedean t–norms. Consider an archimedean
t–norm, i.e., a t–norm t : [0, 1] × [0, 1] → [0, 1] with properties that (i) t is
continuous; (ii)t(x, x) < x for x ∈ (0, 1) (i.e., no idempotents except 0,1).

For the norm t as above, a functional representation holds: t(x, y) = gt(ft(x)+
ft(y)) with ft continuous and decreasing automorphism on [0,1], and gt its
pseudo–inverse, see,e.g., [7].

We let, μt(u, v, r) iff gt(
|DIS(u,v)|

|A| ) ≥ r. This defines a rough inclusion μt.
Standard examples of archimedean t–norms are : the �Lukasiewicz norm
tL(x, y) = max{0, x+y−1}, and the product (Menger) norm tM (x, y) = x ·y.

A justification of probabilistic reasoning. In case of the norm tL, one has:
ftL(x) = 1 − x = gtL(x) for x ∈ [0, 1], hence, μtL(u, v, r) iff 1 − |DIS(u,v)|

|A| ≥ r iff
|IND(u,v)|

|A| ≥ r.
It is important in applications to have also a rough inclusion on subsets of the

universe U ; to this end, for subsets X,Y ⊆ U , we let, μtL(X,Y, r) iff gtL( |X\Y |
|U| ) ≥

r iff 1 − |X\Y |
|U| ≥ r iff |X∩Y |

|U| ≥ r.
The last formula is applied very often in Data Mining and Decision Making

as a measure of quality of rules; in rough set decision making, formulas for
accuracy and coverage of a rule (see, e.g., Tsumoto’s chapter, pp. 307 ff., in
[16]) as well as Ziarko’s Variable Precision Model approach [20] are based on the
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probabilistic approach. Similarly, one can apply Menger’s t–norm to produce the
corresponding rough inclusion.

We restrict ourselves in this article’s applications to the �Lukasiewicz related
t–norms defined above.

The case of continuous t–norms. It is well–known (cf., e.g., [7], [2], papers
by Mostert and Shields, Faucett quoted therein) that any archimedean t–norm
is isomorphic either to the �Lukasiewicz or to the Menger t–norm. Thus, in the
realm of archimedean t–norms we have a little choice. Passing to continuous
t–norms, it results from the work of Mostert–Shields and Faucett (quoted in
[7],[2]) that the structure of a continuous t–norm t depends on the set F of
idempotents (i.e, values x such that t(x, x) = x); we denote with Ot the countable
family of open intervals Ai ⊆ [0, 1] with the property that each Ai is free of
idempotents and

⋃
iAi = [0, 1] \ F . Then, t(x, y) is an isomorph to either tL or

tM when x, y ∈ Ai for some i, and t(x, y) = min{x, y}, otherwise. It is well–
known (Arnold, Ling quoted in [7]) that in a representation for min of the form
min(x, y) = g(f(x) + f(y)), f cannot be either continuous or decreasing.

Rough inclusions from reference objects. We resort to residua of continu-
ous t–norms.For a continuous t–norm t(x, y), the residuum x⇒t y is defined as
the max{z : t(x, z) ≤ y}. Clearly, x⇒t y = 1 iff x ≤ y for each t.

For an information system (U,A), let us select an object s ∈ U referred to as
a reference. For a continuous t–norm t, we define a rough inclusion νIND

t based
on sets IND(u, v), by letting,

νIND
t (x, y, r) iff

|IND(x, s)|
|A| ⇒ |IND(y, s)|

|A| ≥ r. (1)

Let us examine the three basic t–norms. In case of tL, we have: x ⇒tL y =
min{1, 1− x+ y}; thus νIND

tL
(x, y, r) iff |IND(y, s)| − |IND(x, s)| ≥ (1− r)|A|.

In case of tM , we have: x ⇒tM y = 1 when x ≤ y and y when x > y; hence
νIND

tM
(x, y, 1) iff |IND(x, s)| ≤ |IND(y, s)| and νIND

tM
(x, y, r) with r < 1 iff

|IND(x, s)| > |IND(y, s)| ≥ r · |A|.
Finally, in case of tm = min, we have x ⇒tm y is 1 in case x ≤ y and y

x

otherwise. Thus, νtm(x, y, r) iff |IND(y,s)|
|IND(x,s)| ≥ r.

Regarding objects x, y as close to each other when ν(x, y, r) with r close to
1, we may feel some of the above formulas counterintuitive as objects x with
”smaller” reference set IND(x, s) may come closer to a given y; a remedy is
to define dual rough inclusions, based on the set DIS(x, s) in which case the
inequalities in definitions of IND–based rough inclusions will be reverted. In
any case, one has a few possibilities here. We state a problem to investigate.

RESEARCH PROBLEM 1. Create a full theory of t–norm–based rough
inclusions.

Now, we would like to review some applications to rough mereological
constructs.
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3 Application 1: Granulation of Knowledge

As said above, indiscernibility classes of IND are regarded as elementary gran-
ules of knowledge, and their unions form a Boolean algebra of granules of knowl-
edge relative to a given information system (U,A). Rough sets know also some
other forms of granules, based on, e.g., entropy (see the paper by Ślȩzak in [17].

Using a rough inclusion μ, or ν, one can produce granules on which a more
subtle topological structure can be imposed. The tool is the class operator. Given
r, and u ∈ U , we define a property Pu

μ (v, r) that holds iff μ(v, u, r), and then we
form the class of this property: gμ

r (u)=Cls(Pu
μ (v, r). Granules have some regular

properties:
1. if y el u then y el gμ

r (u)
2. if v el gμ

r (u) and w el v then w el gμ
r (u)

3. if μ(v, u, r) then v el gμ
r (u).

(2)

Properties 1-3 follow from properties in sect. 2.2 and the fact that el is a partial
order, in particular it is transitive.

The case of an archimedean rough inclusion. In case of a rough inclusion
μt induced by an archimedean t–norm t, one may give a better description of
granule behavior, stating the property 3 in (2) in a more precise way,

v el gμt
r (u) iff μt(v, u, r). (3)

Rough inclusions on granules. Regarding granules as objects, calls for a
procedure for evaluating rough inclusion degrees among granules. First, we have
to define the notion of an element among granules. We let, for granules g, h,

g el h iff [z el g implies there is t such that
z el t, t el h], (4)

and, more generally, for granules g, h, and a rough inclusion μ,

μ(g, h, r) if and only if for w el g there is v such that
μ(w, v, r), v el h. (5)

Then: μ is a rough inclusion on granules. This procedure may be iterated to
granules of granules, etc., etc. Let us note that due to our use of class operator
(being, for our set theoretical representation of granules, the union of sets op-
erator), we always remain on the level of collections of objects despite forming
higher–level granules.

We also have,

if vingr gμt
r (u) then gμt

s (v) ingr gμt

t(r,s)(u), (6)

showing a kind of weak topology on granules.
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Granular information systems. Given a rough inclusion μ on the set U
of objects, we define an r–net, where r ∈ (0, 1), as a set Nr = {u1, .., uk} ⊂
U such that the granule set Gr = {gμ

r (u1), .., gμ
r (uk)} is a covering of U . For

each of granules gμ
r (uj), j ∈ {1, .., k}, we select the decision value and values

of conditional attributes in the set A by means of some strategies, respectively,
A,D. The resulting decision system (Gr,A(A),D(d)) is the (Gr,D,A)–granular
decision system. Decision rules induced from the granular decision system can
be regarded as an approximation to decision rules from the original system; one
may expect the former will be shorter subrules of the latter in general.

Example 1. A simple example that illustrates the idea is given. Table 1 is a
simple decision system ([17], p.18).

Table 1. A simple test table

obj a1 a2 a3 a4 d

o1 1 1 1 2 1
o2 1 0 1 0 0
o3 2 0 1 1 0
o4 3 2 1 0 1
o5 3 1 1 0 0
o6 3 2 1 2 1
o7 1 2 0 1 1
o8 2 0 0 2 0

This system produces 14 decision rules generated by the RSES 2 system [19]:
(a1=1),(a2=1)⇒(d=1[1]) 1; (a1=1),(a2=0)⇒(d=0[1]) 1;
(a1=2),(a2=0)⇒(d=0[2]) 2; (a1=3),(a2=2)⇒(d=1[2]) 2;
(a1=3),(a2=1)⇒(d=0[1]) 1; (a1=1),(a2=2)⇒(d=1[1]) 1;
(a2=1),(a4=2)⇒(d=1[1]) 1; (a2=0),(a4=0)⇒(d=0[1]) 1;
(a2=0),(a4=1)⇒(d=0[1]) 1; (a2=2),(a4=0)⇒(d=1[1]) 1;
(a2=1),(a4=0)⇒(d=0[1]) 1; (a2=2),(a4=2)⇒(d=1[1]) 1;
(a2=2),(a4=1)⇒(d=1[1]) 1; (a2=0),(a4=2)⇒(d=0[1]) 1.

Applying the t-norm tL with r = .5 and using the strategy of majority voting
with random resolution of ties, we produce the table Table 2 of the granular
counterpart to Table 1 with four granules g1 − g4, centered at objects, resp.,
o1, o2, o3, o7.

For Table 2, there are 10 rules generated by the system RSES:
(ga1=1)⇒(gd=1[2]) 2; (ga1=3)⇒(gd=0[1]) 1;
(ga1=2)⇒(gd=0[1]) 1; (ga2=1)⇒(gd=1[1]) 1;
(ga2=0)⇒(gd=0[2]) 2; (ga2=2)⇒(gd=1[1]) 1;
(ga3=1),(ga4=2)⇒(gd=1[1]) 1; (ga3=1),(ga4=0)⇒(gd=0[1]) 1;
(ga3=1),(ga4=1)⇒(gd=0[1]) 1; (ga3=0),(ga4=1)⇒(gd=1[1]) 1.
We call a rule r1 subordinated to rule r2 if the set of descriptors (a = v) in

the antecedent of r1 is a subset of the set of descriptors in the antecedent of
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Table 2. A granular decision system for Table 1

granobj ga1 ga2 ga3 ga4 gd

g1 1 1 1 2 1
g2 3 0 1 0 0
g3 2 0 1 1 0
g4 1 2 0 1 1

r2 and decision values are identical in both rules. This means that r1 is shorter
but has the same predictive ability. Comparing the two sets of rules, one finds
that 60 percent of rules for Table 2 are subordinated to rules for table 1. This
means that the rules for Table 2 approximate the rules for the original Table 1
to degree of 0.6. In connection with this, we state

RESEARCH PROBLEM 2: verify experimentally the feasibility of this ap-
proach to real data of importance. This implies software solutions as well.

4 Application 2: Rough Mereological Logics

Rough inclusions can be used to define logics for rough sets; for a rough inclusion
μ on subsets of the universe U of an information system (U,A), we define an
intensional logic RMLμ. We assume a set P of unary open predicates given, from
which formulas are formed by means of connectives C of implication and N of
negation; the intension I(μ) assigns to a predicate φ ∈ P a mapping I(μ)(φ) :
E → [0, 1], where E is the family of exact sets (or, granules) defined in (U,A).
For each predicate p its meaning in the set U is given as [[p]] = {u ∈ U : p(u)}.

For an exact set G, the extension of φ at G is defined as I(μ)∨G(φ)=I(μ)(φ)(G)
and it is interpreted as the value of truth (or, the state of truth) of φ at G.

We adopt the following interpretation of logical connectives N of negation
and C of implication,

[[Np]] = U \ [[p]], [[Cpq]] = (U \ [[p]]) ∪ [[q]].
These assignments of meaning extend by recursion from predicates in P to

formulas.
The value I(μ)∨G(φ) of the extension of φ at an exact set G is defined as

follows,

I(μ)∨G(φ) ≥ r ⇔ μ(G, [[φ]], r). (7)

We call a meaningful formula φ a theorem with respect to μ if and only if
I(μ)∨G(φ) = 1 for each G ∈ E.

The case of the �Lukasiewicz t–norm. We give some facts concerning the
rough inclusion μtL induced by the �Lukasiewicz t–norm tL; in this case we have
by results of sect.2.3 that,

I(μtL)∨G(φ) ≥ r ⇔ |G ∩ [[φ]]|
|G| ≥ r. (8)



Rough Mereological Reasoning in Rough Set Theory 87

In what follows, I(μtL)∨G(φ) is identified with the value of |G∩[[φ]]|
|G| .

One verifies that,

I(μtL)∨G(Nφ) = 1 − I(μtL)∨G(φ)), (9)

and,
I(μtL)∨G(Cφψ) ≤ 1 − I(μtL )∨G(φ) + I(μtL )∨G(ψ). (10)

The formula on the right hand side of inequality (10) is of course the �Luka
- siewicz implication of many–valued logic. We may say that in this case the logic
RMLμtL is a sub–�Lukasiewicz many–valued logic, meaning in particular, that if
a sentential form of the formula φ(x) is a theorem of [0, 1]–valued �Lukasiewicz
logic then φ(x) is a theorem of the logic RML.

One verifies directly that derivation rules:

(MP) p(x),Cp(x)q(x)
q(x) (modus ponens)

and

(MT) ¬q(x),Cp(x)q(x)
¬p(x) (modus tollens)

are valid in the logic RMLμ for each regular rough inclusion μ. In the con-
text of intensional logic RML, we may discuss modalities L (of necessity) and
M (of possibility).

Necessity, possibility. We define, with the help of a regular rough inclusion
μ, functors L of necessity and M of possibility (the formula Lφ is read ”it is
necessary that φ” and the formula Mφ is read: ”it is possible that φ”) with
partial states of truth as follows,

I(μ)∨G(Lφ) ≥ r ⇔ μ(G, [[p(x)]], r), (11)

and, similarly,
I(μ)∨G(φ)) ≥ r ⇔ μ(G, [[p(x)]], r). (12)

It seems especially interesting to look at operators L,M with respect to the
rough inclusion μtL of �Lukasiewicz. Then,

In the logic RMLμtL , a meaningful formula φ(x) is satisfied necessarily (i.e., it
is necessary in degree 1) with respect to an exact set G if and only if G ⊆ [[φ(x)]];
similarly, φ(x) is possible (i.e., possible in degree 1) with respect to the set G if
and only if G ⊆ [[φ(x)]].

Clearly, by duality of rough set approximations, the crucial relation,

I(μtL)∨G(Lφ) = 1 − I(μtL)∨G(MNφ), (13)

holds between the two modalities with respect to each rough inclusion μ.
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A Calculus of modalities. We now may present within our intensional logic
RMLμtL an otherwise well–known fact, obtained within different frameworks by
a few authors (e.g, Or�lowska, Pawlak–Or�lowska, Rasiowa–Skowron, Vakarelov,
see [7]) that rough sets support modal logic S5.

Proposition 1. The following formulas of modal logic are theorems of RML
with respect to every regular rough inclusion μ:

1. (K) CL(Cp(x)q(x))CLp(x)Lq(x).
2. (T) CLp(x)p(x).
3. (S4) CLp(x)LLp(x).
4. (S5) CMp(x)LMp(x).

RESEARCH PROBLEM 3: establish properties of rough mereological logics, in
particular relations to fuzzy logics.

4.1 A Formalization of Calculus of Perceptions

An example of a flexibility and power of our calculus based on rough inclu-
sions, is a formalization of calculus of perceptions, a phrase coined by L. Zadeh.
Perceptions are vague statements often in natural language, and we interpret
them semantically as fuzzy entities in the sense of fuzzy set theory of Zadeh.
Fuzzy entities in turn form a hierarchy of predicates interpreted in the universe
of an information system. A query related to the perception induces constraints
interpreted as exact sets (granules); measuring the truth value of predicates con-
stituting the formal rendering of a perception against those exact sets gives the
truth value of perceptions.

Example 2. A very simple example illustrates the idea.
Premises: Joan has a child of about ten years old.
Query: How old is Joan?
We address this query with reference to knowledge encoded in Table 3, where

child is the child age, and age is the mother age. We will use the t–norm tL

Table 3. A decision system child age-mother age

object child age

1 15 58
2 10 42
3 10 30
4 24 56
5 28 62
6 40 67
7 25 60
8 26 63
9 38 70
10 16 38
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The interpretation of the concept μ10 - ”about ten”, over the domain D10 =
[0, 30], is given as,

μ120(x) =

⎧
⎨

⎩

x
5 for x ∈ [0, 5]

1 for x ∈ [5, 15]
2 − x

15 for x ∈ [15, 30]

The interpretation of the concept ”Old”, over the domain DOld = [30, 70], is
given as,

μOld(x) =
{

0.02(x− 30) for x ∈ [30, 60]
0.04(x− 60) + 0.6 for x ∈ [60, 70] (14)

The answer to the query will be presented as a fuzzy entity, defined as follows:
given cut levels a, b ∈ (0, 1) for notions ”about ten”, ”Old”, respectively; choice
of a sets constraint on objects in Table 3, interpreted as a granule G, and then,
choice of cut level b produces a meaning [age ≥ b] for predicate age ≥ b induced
from Table 3. For values of a, b, the value of I(μ)∨G(age ≥ b) is the truth degree
of the statement:”for given a, b, the age of Joan is at least the value at the cut
level b with the truth degree of I(μ)∨G(age ≥ b)”.

In our case, let a = .5 = b; then, the granule G defined by the interval,

about ten.5 = [2.5, 22.5], (15)

is G={1, 2, 3, 10}. Now, for b = .5, the meaning [age ≥ .5] is {1, 4, 5, 6, 7, 8, 9}.
The age defined by b = .5 is 55.

The truth degree of the statement:
” the age of Joan is at least 55” is |{1,2,3,10}∩{1,4,5,6,7,9}|

|{1,2,3,10}| =.25, for the given
a, b. The complete answer is thus a fuzzy set over the domain [0, 1]2 ×Dage.

RESEARCH PROBLEM 4: construct an interface for inducing constraints
and fuzzy predicates from a vague input in Natural Language (a restricted for-
malized subset of).

5 Application 3: Networks of Cognitive Agents

A granular agent ag in its simplest form is a tuple

ag∗ = (Uag, Aag, μag, P redag, UncPropag, GSyntag, LSyntag),

where (Uag, Aag) = isag is an information system of the agent ag, μag is a
rough inclusion induced from isag, and Predag is a set of first–order predicates
interpreted in Uag in the way indicated in Sect. IV. UncPropag is the function
that describes how uncertainty measured by rough inclusions at agents connected
to ag propagates to ag. The operator GSyntag, the granular synthesizer at ag,
takes granules sent to the agent from agents connected to it, and makes those
granules into a granule at ag; similarly LSyntag, the logic synthesizer at ag,
takes formulas sent to the agent ag by its connecting neighbors and makes them
into a formula describing objects at ag.
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A network of granular agents is a directed acyclic graph N = (Ag,C), where
Ag is its set of vertices, i.e., granular agents, and C is the set of edges, i.e., con-
nections among agents, along with disjoint subsets In,Out ⊂ Ag of, respectively,
input and output agents.

5.1 On Workings of an Elementary Subnetwork of Agents

We consider an agent ag ∈ Ag and - for simplicity reasons - we assume that
ag has two incoming connections from agents ag1, ag2; the number of outgo-
ing connections is of no importance as ag sends along each of them the same
information.

We assume that each agent is applying the rough inclusion μtL induced by
the �Lukasiewicz t–norm tL, see sect. 2.3, in its granulation procedure; also, each
agent is applying the rough inclusion on sets of the form given in sect. 2.3 in
evaluations related to extensions of formulae intensions.

Example 3. The parallel composition of information systems. Clearly,
there exists a fusion operator oag that assembles from objects x ∈ Uag1 , y ∈ Uag2

the object o(x, y) ∈ Uag; we assume that oag = idag1 × idag2 , i.e., oag(x, y) =
(x, y). Similarly, we assume that the set of attributes at ag, equals: Aag = Aag1 ×
Aag2 , i.e., attributes in Aag are pairs (a1, a2) with ai ∈ Aagi (i = 1, 2) and that
the value of this attribute is defined as: (a1, a2)(x, y)=(a1(x), a2(y)).

It follows that the condition holds:
oag(x, y)INDagoag(x′, y′) iff xINDag1x

′ and yINDag2y
′.

Concerning the function UncPropag, we consider objects x, x′, y, y′; clearly,

DISag(oag(x, y), oag(x′, y′)) ⊆ DISag1(x, x′)×Aag2∪Aag1×DISag2(y, y′), (16)

and hence,

|DISag(oag(x, y), oag(x′, y′))| ≤ |DISag1(x, x′)| · |Aag2 |+ |Aag1 | · |DISag2(y, y′)|.
(17)

By (17),
μag(oag(x, y), oag(x′, y′), t)

= 1 − |DISag(oag(x,y),oag(x′,y′))|
|Aag1 |·|Aag2 |

≥ 1 − |DISag1 (x,x′)|·|Aag2 |+|Aag1 |·|DISag2(y,y′)|
|Aag1 |·|Aag2 |

= 1 − |DISag1 (x,x′)|
|Aag1 | + 1 − |DISag2(y,y′)|

|Aag2 | − 1.

(18)

It follows that,

if μag1(x, x′, r), μag2 (y, y′, s) thenμag(oag(x, y), oag(x′, y′), tL(r, s)). (19)

Hence, UncProp(r, s) = tL(r, s), the value of the �Lukasiewicz t–norm tL on
the pair (r, s).

In consequence, the granule synthesizer GSyntag can be defined in our exam-
ple as,

GSyntag(gag1(x, r), gag2 (y, s)) = (gag(oag(x, y), tL(r, s)). (20)
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The definition of logic synthesizer LSyntag follows directly from our assump-
tions,

LSyntag(φ1, φ2) = φ1 ∧ φ2. (21)

Finally, we consider extensions of our logical operators of intensional logic.
We have for the extension I(μag)∨GSyntag(g1,g2)

(LSyntag(φ1, φ2)):

I(μag)∨GSyntag(g1,g2)
(LSyntag(φ1, φ2)) = I(μag1)∨g1

(φ1) · I(μag2)∨g2
(φ2), (22)

which follows directly from (20), (21).
Thus, in our example, each agent works according to regular t–norms: the

�Lukasiewicz t–norm on the level of rough inclusions and uncertainty propagation
and the Menger (product) t–norm · on the level of extensions of logical intensions.

RESEARCH PROBLEM 5: explore other models of knowledge fusion intro-
ducing synergy effects.

6 Conclusion and Acknowledgements

We have presented basics of rough mereological approach along with some se-
lected applications to granular computing, perception calculus, as well as prob-
lems whose solutions would in our opinion advance rough set theory. We are
grateful to many colleagues for cooperation in many ways and particularly to
Professors Guoyin Wang and Qing Liu for their kind invitation to China. The ref-
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