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Introduction to Logic and Resolution Principle Theorem Proving 

Andrew, Bernard, Claude, Donald, and Eugene have summer houses along the Atlantic coast. Each 
wanted to name his house after the daughter of one of his friends - that is, Anne, Belle, Cecilia, Donna, 
and Eve (but not necessarily in that order). To be sure that their houses would have different names the 
friends met to make their choices together. Claude and Bernard both wanted to name their house Donna. 
They drew lots and Bernard won. Claude named his house Anne. Andrew named his house Belle. Eve’s 
father hadn’t come, and Eugene phoned to tell him to name his house Cecilia. Belle’s father named his 
house Eve. 

What is the name of each friend’s daughter? What is the name of his house? 

Well, we know that: 

• Andrew’s house is Belle. 
• Bernard’s house is Donna. 
• Claude’s house is Anne. 

Their daughters are not so named. Claude cannot be Donna’s father and Eugene cannot be Eve’s father. 
Belle’s father, who named his villa Eve, can only be Donald or Eugene. Similarly, Eve’s father is Donald 
or Eugene. Since he phoned to the last one, he is Donald. His house is Cecilia. Eugene is Belle’s father, 
Andrew is Donna’s father, Bernard is Anne’s father, and Claude is Cecilia’s father. Thus we have: 

Father Daughter House 
Andrew Donna Belle 
Bernard Anne Donna 
Claude Cecilia Anne 
Donald Eve Cecilia 
Eugene Belle Eve 

Isn’t deduction wonderful! Imagine the reasoning strategies you must develop when the situation 
described above becomes many times more complicated. Think of an analogous situation of sorting 
numbers: bubble sort is intuitive, easy to program and computationally expensive, quick sort is less 
intuitive but very efficient. When reasoning of the sort described above becomes more complex, our 
ability to reason clearly becomes clouded by detail. What is called for are procedures which we know will 
work more efficiently but are perhaps seemingly more abstract initially.  

1.0 Logic Systems 

Propositional Calculus 

The simpler of the two systems which have served as a framework for most mechanical theorem proving 
is called the propositional calculus. Extensively developed by Whitehead and Russell in their early 20th 
century classic Principia Mathematica, this system is also known as propositional logic, sentential 
calculus, and (informally) as “symbolic logic”. 

The basic entities, or primitives, in the propositional calculus are propositions (sentences) which are 
symbolized p, q, r, s, ... A proposition symbol stands for an assertion (“The sky is blue”, “It is raining”, 
“x=y”) which may be true (T) or false (F). Propositions may be combined into more complex assertions by 
the use of operators, analogous to the familiar arithmetic operators of addition, multiplication, and so on. 
These logical connectives, however, combine propositions into logical expressions whose truth or falsity 
is a function of the truth value (T or F) of each component proposition. In general, logical connectives 
map combinations of n propositions onto the set {T, F}. When n=1, the only mapping of interest reverses 
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the truth variable of a proposition. We symbolize this negation operator with a minus sign and read -p (or 
~p) as “not p”. 

When n=2 (which is as high as we need to go) there are 16 possible binary logical connectives 
(comprising all the distinct ways truth values can be assigned to the four possible pairs of proposition 
values). Table 1 shows the mappings for the conjunction (p&q, “P and q”), disjunction (pvq, “p or q”), and 
implication (p→q, “p implies q”) operators. 

 
p q p&q pvq p→q 
T T T T T 
T F F T F 
F T F T T 
F F F F T 

 

Table 1: Three Binary Logical Connectives 

It is not difficult to show that the set of connectives in Table 1 (together with negation) is complete in the 
sense that all other binary mappings can be expressed in terms of conjunction, disjunction, implication, 
and negation. In fact we can dispense with implication since 

p→q = -pvq        {1} 
and with either conjunction or disjunction since 

p&q = -(-pv-q), pvq = -(-p&-q)      {2} 
There are even some other binary connectives which are complete in themselves. For ease of 
understanding, however, we usually work with all of the connectives in Table 1. 

Although the simple expressions in equations {1} and {2} clearly “make sense” we require a formal means 
of determining whether more complex expressions are constructed properly. We thus introduce the 
following recursive definition of well-formed-formulas (“wffs”): 

1. A proposition is a wff. 
2. If A and B are wffs, then so are (-A), (A&B), (AvB), and (A→B). 
3. There are no other wffs. 

To avoid introducing parentheses around all sub expressions, as required by this definition, we can adopt 
a convention which specifies a precedence hierarchy for logical operators. Thus, unless parentheses 
dictate otherwise [as in the right hand sides of both equations in {2}], all negations will be evaluated first, 
followed by all conjunctions, then by all disjunctions, and finally by all implications. The various instances 
of a given operator can be processed in a left-to-right order. 

A propositional calculus formula is not especially meaningful until a truth value has been assigned to each 
of its component propositions. Such an assignment is called an interpretation of the formula. For any 
given interpretation, we can use the formula evaluation rules to determine if the formula as a whole has 
the value true or false under that interpretation. A formula that is true under all possible interpretations is 
a valid formula or a tautology. A formula which is true under no interpretation is an inconsistent formula or 
a contradiction. A consistent (satisfiable) formula is true under at least one interpretation. 

Two formulas (A, B) are equivalent (A=B) if they have identical truth values under all possible 
interpretations. Thus equations {1} and {2} show examples of equivalent formulas. It is often useful to 
convert a propositional formula into an equivalent but standardized form. One common such form is 
called the conjunctive normal form [CNF]. A CNF formula consists of conjunctions of subformulas, where 
each subformula is a disjunction of single propositions or their negations. Any formula can be converted 
to an equivalent CNF expression by application of relations like those in equations {1} and {2}, together 
with the commutative, associative, and distributive relations that hold for logical operators. 

To illustrate conversion of a formula to conjunctive normal form we begin with 
(p&(q→r))→s. 

Replacing both implications by their equivalents [equation {1}] gives 

-(p&(-qvr))vs, 
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and then 

(-pv(q&-r))vs, 

having also used the fact that -(-q)=q. Distributing the disjunction with -p through the conjunction gives 

(-pvqvs)→(-pv-rvs), 

where associativity of disjunction allows removal of internal parentheses. The last expression is in 
conjunctive normal form, consisting of a conjunction of two disjunctions of propositions and their 
negations. 

To prove a theorem in the propositional calculus, we typically try to show that one formula follows logically 
from a set of other formulas. Such demonstrations are carried out within a formal deductive apparatus 
containing axioms and rules of inference. Axioms are usually rather “obvious” formulas which are 
assumed valid without proof and used as a basis for proving other results. In any deductive system with 
given rules of inference, a good set of axioms should be complete (sufficient to prove all valid formulas in 
the system), consistent (not leading to proofs of contradictory results), and minimal (not containing any 
“extra” axioms which could be proved using the others). It should be noted that for systems more complex 
than the propositional calculus these properties are not always obtainable. 

((-pvq)→(-pv-r))v s. 

In Principia Mathematica, Whitehead and Russell were able to prove a vast number of theorems using 
the following five axioms (not actually a minimal set, since the fourth was later shown to be redundant). 

1. (pvp)→p 
2. p→(qvp)  
3. (pvq)→(qvp) 
4. (pv(qvr))→qv(pvr)) 
5. (p→q)→((rvp)→(rvq)) 

The other component of a deductive system is the rule of inference. One or more such procedures are 
needed to generate new valid formulas from existing ones. Three rules of inferences were used in 
Principia Mathematica: (1) substitution, which allows replacement of all occurrences of a proposition in a 
formula by any given wff; (2) replacement, which allows any logical connective to be replaced by its 
definition in terms of other connectives [definitional equivalence, as in equation {1}, can be established by 
testing all interpretations]; and (3) modus ponens or detachment, which allows inference of B from both A 
and A→B. 

We may now define a theorem more formally. A given (well-formed) formula A is a theorem if and only if 
there exists a finite sequence of (well-formed) formulas A1, A2, A3, ... such the last member of the 
sequence is A and each other member is an axiom, a previously proved theorem, or a derivation from the 
previous members by some rule of inference. The sequence of formulas is called a proof of A. We 
conclude this introduction to the propositional calculus with a short proof of a simple theorem, (p→-p)→-p. 

1. (pvp)→p, by axiom 1 (above) 

2. (-pv-p)→-p, by substitution of -p for p 

3. (p→-p)→-p, by replacement of (-AvB) with (A→B) 

Predicate Calculus 

We now develop the basic ideas of the (first order) predicate calculus, the logic system in which most 
current theorem proving research is carried out. We have already done quite a bit of the groundwork, 
since the predicate calculus is an extension of the propositional calculus which allows us to deal with 
individuals, relations between individuals, and properties of individuals and sets of individuals. We 
continue to denote propositions by p, q, r, ... and to use the same set of unary and binary logical 
connectives. 

To those structures we add individual constants, denoted a, b, c, ..., which symbolically identify particular 
items of the domain of discourse, D (e.g., people, numbers, days of the week). We use the last letters of 
the alphabet (z, y, x, ...) to denote individual variables which may range over all the individuals in D. 
Functions of one or more variables and/or constants will be denoted f, g, h, ... and will map objects or 
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groups of objects in D into other objects in D. Thus in the domain of numbers we might represent 
negation by g(x), addition by f(x,y), and three way multiplication by h(x,y,z), so that h(g(2), 6, f(3,1)) would 
denote -48. Any expression of this sort, which evaluates to an object or set of objects in D, is known as a 
term. Defined recursively, a term is (1) a constant, (2) a variable, or (3) a function of terms. 

The predicate calculus gets its name from the entities used to describe or relate terms. These predicates 
are denoted P, Q, R, ... and map terms onto the truth values T and F. Thus, if D is people, P(a) might 
assert that individual a has red hair, while R(c,b) might claim that b is a sibling of c. Any predicate of 
terms (or simple proposition) in the predicate calculus is known as an atomic formula. 

The last group of predicate calculus entities consists of the quantifiers, of which there are just two. The 
universal quantifier, denoted (x) and read “for all x”, when applied to a formula asserts that the formula is 
true for all possible substitution instances of the variable x (the entire domain D). The existential 
quantifier, denoted (∃x) and read “there exists an x”, asserts that the formula is true for at least one of 
the possible values of x. In general a quantifier does not apply to all occurrences of its variable in a 
formula but only to those which fall within its range or scope (delimited if necessary by appropriate 
parentheses). Such variables are said to be bound by the quantifier while other occurrences of the same 
variable may be free of quantification. 

We can now define recursively the well-formed-formulas (wffs) of the predicate calculus, as follows: 

1. Any atomic formula is a wff. 

2. If A and B are wffs then so are (-A), (A&B), (AvB), and (A→B). 

3. If A is a wff and x is a (free) variable in A, then ((x)A) and ((∃x)A) are wffs. 

4. There are no other wffs. 

As for the propositional calculus, a precedence hierarchy allows omission of many parentheses. To the 
rules given previously we need add only that quantifiers are to be evaluated first, along with negations. 
Thus the scope of (x) in (x)-P(x)vQ(x) is just -P(x); the x in Q(x) is a free variable. 

Interpretation of predicate calculus formulas requires specification of the domain, D, an assignment of 
elements of D to individual constants, and assignments of “meanings” (mappings) with respect to D to all 
functions and predicates. For example, if D is the positive integers, F denotes equality, f is the addition 
function, and the constants a and b are 3 and 5 respectively, then the formula (∃x)F(f(x,a),b) asserts that 
there is an x such that x+3=5. The formula happens to be true under the given interpretation. But just as 
for the propositional calculus, predicate calculus formulas are classed as valid (true for all interpretations), 
satisfiable (true for at least one interpretation) and inconsistent (true for no interpretations). Also as 
before, two predicate formulas are equivalent if and only if they have identical truth values under all 
interpretations. 

A useful type of formula equivalent to any predicate calculus formula is its prenex normal form. In this 
form all quantifiers have been “swept” to the front of the formula, so that each of them has all the rest of 
the formula (called the matrix) as its scope. The most awkward aspect of converting formulas to prenex 
normal form can be “moving negation through quantifiers” where the following (sensible) equivalences 
apply: 

-(x)A=(∃x)-A, -(∃x)A=(x)-A      {3} 
Since conversion to prenex normal form is an implicit step in preparing formulas for resolution theorem 
proving, we will illustrate the method next. 

The notions of axiom, rule of inference, proof, and theorem carry over directly from the propositional 
calculus to the predicate calculus. 

2.0 Clause Form 

In 1965 the logician J. A. Robinson reported the development of a new inference rule for the predicate 
calculus. He also proved that his resolution principle was “sound” (producing only valid wffs) and 
“complete” (producing all valid wffs). While not especially convenient or intuitive for people, the resolution 
principle is ideally suited to computer implementation and forms the basis for almost all current research 
in mechanical theorem proving. 
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Without going into the complex logical basis for resolution based inference [the resolution principle is 
based on the proof procedure of Herbrand (1930)], we can understand the central idea underlying the 
method in the following terms. A proof that some formula W logically follows from a set of formulas S is 
equivalent to the claim that every interpretation satisfying S also satisfies W. If such is the case then no 
interpretation can satisfy the union of S and -W. Resolution theorem proving tries to show that union is 
unsatisfiable by deriving a special formula called the “null” clause or resolvent from it. The method is thus 
a special form of “proof by contradiction”. 

Before resolution theorem proving techniques can be applied to a theorem, certain preliminary steps must 
be executed. First, if the premises and conclusion to be proved are stated in English, they must be 
expressed in predicate calculus notation. We will illustrate this process later. Second, the conclusion to be 
proved must be negated. Third, all the formulas including the negated conclusion must be converted to 
what is known as clause form. A clause is a formula in prenex normal form with no quantifiers shown 
because existential quantifiers have been eliminated and all variables are assumed to be universally 
quantified. The matrix of a clause consists solely of disjunctions of atomic formulas and their negations, 
known collectively as literals. While conversion to clause form (from more general formulas or even 
directly from English statements) is usually quite easy, the general algorithm has eight steps. 

We now consider these steps, illustrating the operations with the unusually complex formula 

(x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]].     {4} 

The Eight-Step Algorithm 

Step 1: Eliminate Implication Signs - Using equation {1}, {4} becomes 

(x)[-P(x)v[(y)Q(x,y)&-(y)(-P(y)vR(f(x,y)))]] 

Step 2: Reduce Scopes of Negation Signs - We then use equations {2} and {3} to reduce the scopes of 
negation signs to single predicates: 

(x)[-P(x)v[(y)Q(x,y)&(∃y)(P(y)&-R(f(x,y)))]] 

Step 3: Standardize Variables - Now we rename quantified variables, if necessary, so that each quantifier 
has a unique variable: 

(x)[-P(x)v[(y)Q(x,y)&(∃z)(P(z)&-R(f(x,z)))]] 

Step 4: Eliminate Existential Quantifiers - For all such quantifiers which do not fall within the scope of 
universal quantifiers we may simply replace (∃w)P(w) with P(a) where 'a' is a constant whose “existence” 
the quantifier asserts. In a case like (v)(∃w)Q(w), however, there is some (possibly distinct) w for every v, 
so we must write (v)Q(h(v)) where h is a function that selects the w which exists for each v. Constants 
and functions introduced in this step must be new to the formula. [The functions introduced here are 
called Skolem functions]. Our example becomes: 

(x)[-P(x)v[(y)Q(x,y)&(P(g(x))&-R(f(x,g(x))))]] 

Step 5: Convert to Prenex Form - This conversion is accomplished by moving all (universal) quantifiers to 
the front of the formula: 

(x)(y)[-P(x)v[Q(x,y)&P(g(x))&-R(f(x,g(x))))]] 

Step 6: Put Matrix in Conjunctive Normal Form - Converting from prenex form to conjunctive normal form 
yields 

(x)(y)[(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))] 

Step 7: Eliminate Universal Quantifiers - Dropping the universal quantifiers (we assume that all variables 
at this point are universally quantified) leaves us  

[(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))] 

Step 8 :Eliminate & Signs - Eliminate the conjunctions by separating the formula into distinct clauses, 
each of which will be a disjunction of literals: 

-P(x)vQ(x,y)          -P(x)vP(g(x))          -P(x)v-R(f(x,g(x))) 
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3.0  Unification Algorithm & Resolution Principle 

Given a set of clauses derived from the premises and negated conclusion of a theorem, the resolution 
principle generates new clauses by resolving pairs of clauses in the set. These new clauses are added to 
the set and may be used in the generation of further resolvents. It can be shown, although we will not do 
so, that if the original set of clauses is unsatisfiable (the theorem is provable) resolution will eventually 
produce a clause containing no literals, the so-called null resolvent. 

To produce a resolvent of two available clauses we require that at least one atomic formula appear with 
opposite signs in the two “parent” clauses. The resolvent then consists of a disjunction of all other literals 
in both parent clauses, after removal of the literal(s) differing only in sign. Thus from the clauses -
P(x)vR(x) and -R(x)v Q(x) we may infer the resolvent -P(x)vQ(x) by combining the literals left after remov-
ing R(x) and -R(x). This simple example actually provides a rare demonstration of the intuitive plausibility 
of the resolution principle. For if we write the clauses in implication form, we are inferring P(x)?Q(x) from 
P(x)→R(x) and R(x)→Q(x). With more literals in each clause (and the possibility of more than one pair 
dropping out), it is usually much less apparent why resolvents are reasonable inferences. 

Another artificially simple feature of the above example was the “nice” coincidental appearance of R(x) 
and -R(x) in just those forms in the parent clauses. Usually it is necessary to perform one or more 
substitutions in the parent clauses as a first stage in the resolution process. The process of finding 
suitable substitutions is properly termed unification. If a set of clauses can be unified (i.e., can produce 
resolvents), a procedure called the unification algorithm can be used to find the simplest substitution (or 
“most general unifier”) that does the job. The details of unification are given now. 

The terms of a literal can be variable letters, constant letters, or expressions consisting of function letters 
and terms. A substitution instance of a literal is obtained by substituting terms for variables in the literal. 
Thus four instances of P(x,f(y),b) are 

P(z,f(w),b) 
P(x,f(a),b) 

P(g(z),f(a),b) 
P(c,f(a),b) 

The first instance is called an alphabetic variant of the original literal because we have merely substituted 
different variables for the variables appearing in P(x,f(y),b). The last of the four instances mentioned 
above is called a ground instance or atom since none of the terms in the literal contains variables. 

In general, we can represent any substitution by a set of ordered pairs θ = {(t1,v1), (t2,v2),..., (tn,vn)}. The 
pair (ti,vi) means that the term ti is substituted for variable vi throughout. We insist that a substitution be 
such that each occurrence of a variable have the same term substituted for it; that is i≠j implies vi≠vj, 
i,j=1,...,n. The substitutions used above in obtaining the four instances of P(x,f(y),b) are  

α = {(z,x), (w,y)}  
β = {(a,y)}  
γ = {(g(z),x), (a,y)}  
δ = {(c,x), (a,y)} 

To denote a substitution instance of a literal P using a substitution θ, we write P:θ. Thus P(z,f(w),b) = 
P(x,f(y),b):α. The composition of two substitutions α and β is denoted by α|β and is the substitution 
obtained by applying β to the terms of α and then adding any pairs of β having variables not occurring 
among the variables of α. Thus 

{(g(x,y),z)}{(a,x),(b,y),(c,w),(d,z)}={(g(a,b),z),(a,x),(b,y),(c,w)} 

It can be shown that applying α and β successively to a literal P is the same as applying α|β to P, that is, 
(P:α):β = P:α:β. It can also be shown that the composition of substitutions is associative: 

(α|β)|γ = α|(β|γ) 

If a substitution θ is applied to every member of a set {Li} of literals, we denote the set of substitution 
instances by {Li}:θ. We say that a set {Li} of literals is unifiable if there exists a substitution q such that L1:θ 
= L2:θ = L3:θ = etc. In such a case θ is said to be a unifier of {Li} since its use collapses the set to a 
singleton. For example, θ = {(a,x), (b,y)} unifies {P(x,f(y),b), P(x,f(b),b)} to yield {P(a,f(b),b)}. 
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Although θ = {(a,x), (b,y)} is a unifier of the set {P(x,f(y),b), P(x,f(b),b)}, in some sense it is not the simplest 
unifier. We note that we really did not have to substitute “a” for “x” to achieve unification. The most-
general (or simplest) unifier [mgu] λ of {Li} has the property that if θ is any unifier of {Li} yielding {Li}:θ, then 
there exists a substitution δ such that {Li}:λ|δ = {Li}:θ. Furthermore, the common instance produced by a 
most-general unifier is unique except for alphabetic variants. 

There is an algorithm called the unification algorithm that produces a most-general unifier λ for any 
unifiable set {li} of literals and reports failure when the set is not unifiable. The general idea of how the 
algorithm works can be described as follows: The algorithm starts with the empty substitution and 
constructs, in a step-by-step process, a most general unifier if one exists. Suppose at the kth step, the 
substitution so far produced is λk. If all the literals in the set {Li} become identical after employing the 
substitution λk on each of them then λ = λk is a most-general unifier of {Li}. Otherwise we regard each of 
the literals in {Li}: λkk as a string of symbols and detect the first symbol position in which not all of the 
literals have the same symbol. We then construct a disagreement set containing the well-formed 
expressions from each literal that begins with this symbol position. (A well-formed expression is either a 
term or a literal). Thus, the disagreement set of 

{P(a,f(a,g(z)),h(x)),P(a,f(a,u),g(w))} is {g(z),u} 

Now the algorithm attempts to modify the substitution λk in such a way as to make two elements of the 
disagreement set equal. This can be done only if the disagreement set contains a variable that can be set 
equal to one of its terms. (If the disagreement set contains no variables at all, {Li} cannot be unified. For 
example, we note that at the first step of the algorithm the disagreement set may be {Li} itself, and then 
certainly then no element is a variable). 

Let sk be any variable in the disagreement set and let tk be a term (possibly another variable) in the 
disagreement set such that tk does not contain sk. (If no such tk exists, then again {Li} is not unifiable). 
Next we create the modified substitution λk+1 = λk{(tk,sk)} and perform another step of the algorithm. 

It can be proven (Robinson, 1965) that the unification algorithm finds a most-general unifier of a set of 
unifiable literals and reports failure when the literals are not unifiable. 

As examples, we list the most common substitution instances (those obtained by the mgu) for a few sets 
of literals. 

Set Of Literals Most-general Common  
Substitution Instances 

{P(x), P(a)} P(a) 
{P(f(x),y,g(y)), P(f(x),z,g(x))} P(f(x),x,g(x)) 
{P(f(x,g(a,y)),g(a,y)),P(f(x,z),z)} P(f(x,g(a,y)),g(a,y)) 

 
It is customary to regard clauses as sets of literals. Thus a clause containing the set {Li} of literals can be 
denoted by {Li}. 

If a subset of the literals in a clause {Li} is unifiable by a mgu λ, then we call the clause {Li}:λ a factor of 
{Li}. Some example factors of the clause P(f(x)) v P(x) v Q(a,f(u)) v Q(x,f(b)) v Q(z,w) are 

P(f(z)) v P(z) v Q(a,f(u)) v Q(z,f(b)) 
and 

P(f(a)) v P(a) v Q(a,f(b)) 

In the first factor we unified only the last two occurrences of Q, and in the second we unified all three. 
Note that the two occurrences of P cannot be unified within the clause. In general, a clause may have 
more than one factor, but certainly it can have only finitely many. 

We now consider the legal substitutions that may be made in a pair of clauses without altering their truth 
values. In order to avoid confusion (and possible error) from coincidentally identical variable names, 
substitution should be applied to clauses which have no variable names in common. If this is not already 
the case we simply rename some or all of the variables in one of the clauses. Now since all variables are 
understood to be universally quantified, each specifies any object in the domain. We can therefore 
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substitute any new or existing variable name for all of the occurrences of any given name in order to bring 
literals in the clauses into closer correspondence. 

We can also substitute any constant or function for all the instances of any variable in the two clauses, 
since such substitutions simply limit the range to one or more of the objects for which the variable stood. 
We cannot however make any substitutions which would change or increase the identified set of objects, 
since such substitutions could alter the truth value of the clause. Thus we may not substitute variables for 
functions or constants, nor may we replace any constant or function with any other constant or function. 

To illustrate how substitution can be used in producing resolvents, we consider the two clauses 

(1) -P(a) v Q(f(x),y,c) v R(y) 
(2) S(x,y) v P(x) v -Q(y,b,c). 

Renaming variables, by application of “primes” to variables in (2) which also happen to appear in (1), 
gives us 

(2a) S(x',y') v P(x') v -Q(y',b,c). 

Now we can substitute a for x' in (2a) producing 

(2b) S(a,y') v P(a) v -Q(y',b,c). 

which can be resolved with (1) to give 

(3) Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c) 

Alternatively we might substitute “b” for “y” in (1) and “f(x)” for “y'” in (2a), giving the different resolvent 

(4) -P(a) v R(b) v S(x',f(x)) v P(x') 

Thus different substitutions can give different resolvents. It should also be noted that (3) and (4) can be 
further resolved against the original formulas, with appropriate further substitutions. 

The number of possible resolvents arising from even a small set of original clauses can obviously grow 
very rapidly. It would therefore be quite inefficient to try to prove a theorem by generating resolvents at 
random and waiting for the null clause to appear. For this reason, researchers have proposed and 
experimented with a large number of heuristic strategies for resolution theorem proving, in order to 
reduce the number of resolvents generated and direct the theorem proving program along promising 
lines. We mention just a couple of the simpler schemes. The unit preference strategy attempts to resolve 
clauses with as few literal as possible (ideally one of the parent clauses should be a single literal or unit 
clause). The set-of-support strategy tries to identify a set of “relevant” clauses and always include at least 
one member of this set as a parent in every resolution. For the purposes of this introductory discussion, 
the examples we work with are sufficiently elementary that no further consideration of strategies is 
required. 

In addition to the potential explosion of resolvents, another difficulty with resolution theorem proving 
arises when the putative theorem is in fact invalid. In such a case, the resolution method may never 
terminate. We can thus never be sure whether a program has not terminated because the proof is difficult 
to find or because no proof exists. One partial solution to this problem is to interrupt the theorem proving 
attempt after a fixed amount of time and spend some time attempting to prove the negation of the 
theorem. If this fails, the original proof attempt can be taken up where it was left off, and the alternation 
continued. This alternation will lead to a proof or disproof if the putative theorem is valid or unsatisfiable 
but not if it is invalid and satisfiable. (Incidentally, this problem of not always being able to disprove invalid 
formulas is not limited to the resolution methods. The predicate calculus itself is termed undecidable 
because there does not exist an effective procedure for showing that any particular formula does not 
logically follow from a given set of formulas). 

To conclude our discussion of resolution theorem proving we work through two examples, starting with an 
initial English statement of the theorem and ending with the null clause. First consider the following 
theorem: “If there are no compassionate professors, and if all competent professors are compassionate, 
then no competent professor exists”. If we let S(x) indicate that x is compassionate, and P(x) that x is 
competent, then the predicate calculus formulas for the premise are 

(1) -(∃x)S(x)  
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(2) (y)(P(y)?S(y)), 

while the denial of the conclusion is - -(∃z) (P(z)) or just 
(3) (∃z)(P(z)). 

(Note that we have avoided duplication of variable names to reduce the necessity for renaming prior to 
substitution.) In clause form, 

(1') -S(x)  
(2') -P(y) v S(y)  
(3') P(a) 

We can also substitute any constant or function for all the instances of any variable in the two clauses, 
since such substitutions simply limit the range to one or more of the objects for which the variable stood. 
We cannot however make any substitutions which would change or increase the identified set of objects, 
since such substitutions could alter the truth value of the clause. Thus we may not substitute variables for 
functions or constants, nor may we replace any constant or function with any other constant or function. 

To illustrate how substitution can be used in producing resolvents, we consider the two clauses 

(1) -P(a) v Q(f(x),y,c) v R(y) 
(2) S(x,y) v P(x) v -Q(y,b,c). 

Renaming variables, by application of “primes” to variables in (2), which also happen to appear in (1), 
gives us 

(2a) S(x',y') v P(x') v -Q(y',b,c). 
Now we can substitute a for x' in (2a) producing 

(2b) S(a,y') v P(a) v -Q(y',b,c). 

which can be resolved with (1) to give  

(3) Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c) 

Alternatively, we might substitute “b” for “y” in (1) and “f(x)” for “y'” in (2a), giving the different resolvent 

(4) -P(a) v R(b) v S(x',f(x)) v P(x') 

Thus different substitutions can give different resolvents. It should also be noted that (3) and (4) can be 
further resolved against the original formulas with appropriate further substitutions. 

With substitution of x for y in (2'), resolution of (1') and (2') yields just -P(x). Substituting a for x in this 
resolvent and using (3') as the other parent yields the null resolvent, proving the theorem. 

As a second example, we will prove the somewhat more complicated theorem: “A police officer 
questioned everyone who knew the victim and did not have an alibi. Some of the criminals knew the 
victim and were questioned only by criminals. No criminal had an alibi. Therefore, some of the police 
officers were criminals.” Let P(x) mean that x is a police officer, Q(x,y) that x questioned y, K(x) that x 
knew the victim, A(x) that x had an alibi, and C(x) that x is a criminal. The first premise yields the following 
formula 

(x)((K(x) & -A(x)) ? (∃y)(P(y) & Q(y,x))), 

which can be readily shown to produce the two clauses: 
(1) -K(x) v A(x) v P(f(x))  

(2) -K(x) v A(x) v Q(f(x),x). 

The second premise produces 

(∃z)(C(z) & K(z) & (w)(Q(w,z) ? C(w))), 
which yields the clauses 

(3) C(a)  (4) K(a)  (5) -Q(w,a) v C(w). 
The last premise is (v)(C(v) ? -A(v)) producing clause 
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(6) -C(v) v -A(v). 
Finally the denial of the conclusion is -(∃x)(P(x) & C(x)) or, in clause form, 

(7) -P(x) v -C(x). 
The proof requires eight resolution steps, in which the substitutions should be apparent from the resulting 
resolvents. 

(8) -A(a)    from (3) and (6) 
(9) A(a) v P(f(a))   from (1) and (4) 
(10)  P(f(a))    from (8) and (9) 
(11)  A(a) v Q(f(a),a)   from (2) and (4) 
(12)  Q(f(a),a)   from (8) and (11) 
(13)  C(f(a))    from (5) and (12) 
(14)  -P(f(a))    from (7) and (13) 

Finally we resolve (10) and (14) to obtain the null clause. 

3.1 Answer Extraction Process and Other Refinements 
Consider the following trivially simple problem: “If Marcia goes wherever John goes, and John is at 
school, where is Marcia?” Quite clearly the problem specifies two “facts” and then asks a question whose 
answer can presumably be deduced from these facts. The facts might simply be translated into the set S 
of wffs 

1. (x){AT(John,x) → AT(Marcia,x)} and   2. AT(John,school) 

where the predicate letter AT is given the obvious interpretation. The question “where is Marcia?” could 
be answered if we could first prove that the wff 

(∃x)AT(Marcia,x) 

followed from S and could then find an instance of the x “that exists.” The key idea here is to convert the 
question into a wff containing an existential quantifier such that the existentially quantified variable stands 
for an answer to the question. If the question can be answered from the facts given, the wff created in this 
manner will logically follow from S. After obtaining a proof, we then try to extract an instance of the exis-
tentially quantified variable to serve as an answer. In our example we will easily be able to prove that 
(∃x)AT(Marcia,x) follows from S. We can also show that a relatively simple process extracts the 
appropriate answer. 

The proof is obtained in the usual manner by first negating the wff to be proved, adding this negation to 
the set S, converting all of the members of this enlarged set to clause form, and then, by resolution, 
showing that this set of clauses is unsatisfiable. A refutation tree for our example is shown in Figure 3-1. 
The wff to be proved is called the conjecture and the clauses resulting from the wffs in S are called axi-
oms. Note that the negation of (∃x)AT(Marcia,x) produces (x)[-AT(Marcia,x)] whose clause form is simply 
-AT(Marcia,x). 

 

 

 

 

 

 

 

 

Next, we must extract an answer to the question “Where is Marcia?” from this refutation tree. The process 
for doing so in this case is as follows: 

1. Append to each clause arising from the negation of the conjecture its own negation. Thus -
AT(Marcia,x) becomes the tautology -AT(Marcia,x)vAT(Marcia,x). 

-AT(Marcia, x)                              -AT(John, x) v AT(Marcia, x)
negation of conjecture)                                    (axiom 1)

                      -AT(John, x)                                    AT(John, school)
                                                                                   (axiom 2)

                                                        nil

Figure 3-1. Refutation Tree for example problem.
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-G(u, v)                                 -P(x, y) v -P(y, z) v G(x, z) 
(negation of conjecture)                                  (axiom 1) 

-P(u, y) v -P(y, v)                    P(f(w), w) (axiom 2)          

-P(u, f(v))                              P(f(w), w) (axiom 2) 

nil
Figure 3-3. A refutation tree for example problem.

 

2. Following the structure of the refutation tree, perform the same resolution as before until some 
clause is obtained at the root. In our example this process produces the proof tree shown in 
Figure 3-2 with the clause AT(Marcia,school) at the root. 

3. Convert the clause at the root back to the conventional predicate calculus form and use it as an 
answer statement. This wff can then be translated back into English, say, as an answer to the 
question. In our example it is obvious that AT(Marcia,school) is the appropriate answer to the 
problem 

 

 

 

 

 

 

We note that the answer statement has a form similar to that of the conjecture. In this case, the only 
difference is that in place of the existentially quantified variable in the conjecture, we have a constant (the 
answer) in the answer statement. 

Before discussing the applications of theorem proving further, we must deal more thoroughly with the 
answer extraction process, particularly when the conjecture contains universal as well as existential 
quantifiers 

Answer extraction involves converting a refutation graph (with nil at the root) to a proof graph having 
some statement at the root that can be used as an answer. Since the conversion involves converting 
every clause arising from the negation of the conjecture into a tautology, the converted proof graph is a 
proof that the statement at the root logically follows from the axioms plus tautologies. Hence it also fol-
lows from the axioms alone. Thus the converted proof graph itself justifies the extraction process 

Although the method is simple, there are some fine points that can be clarified by considering some 
additional examples. 

Consider the following set of wffs: 

1. (x)(y){P(x,y) & P(y,z) → G(x,z)} 

and 
2. (y)(∃x){P(x,y)} 

We might interpret these as follows: 

“For all x and y if x is the parent of y and y is the parent of z, then x is the grandparent of z.” 

and 

“Everyone has a parent”. 

Given these wffs as hypotheses, suppose we wanted to ask the question “Do there exist individuals x and 
y such that G(x,y)?” (That is, are there x and y such that x is the grandparent of y?) 

We pose the question as a conjecture to be proved: 

(∃x)(∃y)G(x,y) 

The conjecture is easily proved by a resolution refutation showing the unsatisfiablility of the set of clauses 
obtained from the axioms and the negation of the conjecture. The refutation tree is shown in Figure 3-3. 
We shall call the subset of literals in a clause that 
is unified during resolution the unification set. 

 
 

-AT(Marcia, x) v AT(Marcia, x)           -AT(John, x) v AT(Marcia, x)

                 -AT(John, x) v AT(Marcia, x)               AT(John, school)

                                           AT(Marcia, school)
    Figure 3-2. Modified Proof Tree for example problem.



CSE 4403 & CSE 6002E Soft Computing  
  

12 

 

 
 

 
Note that the clause P(f(w),w) contains a Skolem function f introduced to eliminate the existential 
quantifier in Axiom 2: (y)(∃x){P(x,y)}. This function is defined so that (y)P(f(y),y). (The function f can be 
interpreted as a function that is defined to name the parent of any individual). 

The modified proof tree is shown in Figure 3-4. The negation of the conjecture is transformed into a 
tautology, and the resolutions follow those performed on the tree of Figure 3-3. Each resolution in the 
modified tree uses unification sets that correspond precisely to the unification sets of the refutation tree. 

The proof tree of Figure 3-4 has G(f(f(v)),v) at the root. This clause corresponds to the wff (v){G(f(f(v)),v)}, 
which is the answer statement. The answer provides a complete answer to the question “Are there x and 
y such that x is the grandparent of y?” The answer in this case involves a definitional function f: Any v and 
the parent of the parent of v are examples of individuals satisfying the conditions of the question. Again 
the answer statement has a form similar to that of the conjecture. 

A problem arises when the conjecture to be proven contains universally quantified variables. The 
universally quantified variables become existentially quantified variables in the negation of the conjecture, 
causing Skolem functions to be introduced. What is to be the interpretation of these Skolem functions if 
they should eventually appear as terms in the answer statement? 

 

 

 

 

 

 

 

We shall illustrate this problem with another example. Let the clause form of the axioms be 

* C(x,p(x)) meaning “For all x, x is the child of p(x)”. (That is, p is a function mapping a child of an individ-
ual into the individual). 

and 

* -C(x,y) v P(y,x), meaning “for all x and y, if x is the child of y, then y is the parent of x”. 

Now suppose we wish to ask the question “For all x, who is the parent of x?” The conjecture 
corresponding to the question is 

(x)(∃y)P(y,x) 

Converting the negation of this conjecture to clause form, we obtain  

(∃x)(y)-P(y,x) 

and then 

-P(y,a) 

where 'a' is a Skolem function of no arguments (i.e. a constant) introduced to eliminate the existential 
quantifier occurring in the negation of the conjecture. (The negation of the conjecture alleges that some 
individual named a has no parent). A modified proof tree with answer statement at the root is shown in 
Figure 3-5. 
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Figure 3-5. A modified proof tree for an answer statement 

Here we obtain the somewhat difficult-to-interpret answer statement P(p(a),a), containing the Skolem 
function a. The interpretation should be that regardless of the Skolem function a, hypothesized to “spoil” 
the validity of the conjecture, we have been able to prove P(p(a),a). that is, any individual a, thought to 
spoil the conjecture, actually satisfies the conjecture. The constant a could have been a variable without 
invalidating the proof shown in Figure 3-5.  

It can be shown [Nilsson, 1971] that in the answer extracting process, it is correct to replace any Skolem 
functions in the clauses coming from the negation of the conjecture by new variables. These new 
variables will never be substituted for in the modified proof and will merely trickle down to occur in the 
final answer statement. Resolutions in the modified proof will still be limited to those defined by those 
unification sets corresponding to the unification sets occurring in the original refutation. Variables might 
be renamed during some resolutions so that, possibly, a variable used in place of a Skolem function may 
get renamed and thus might be the “ancestor” of several new variables in the final answer statement. 

One final example will be shown for illustrative purposes. Suppose S consists of the single axiom (in 
clause form) 

P(b,w,w) v P(a,u,u) 

and we wish to prove the conjecture 

(∃x)(z)(∃y)P(x,z,y) 

A refutation tree is shown in Figure 3-6. Here, the clause coming from the negation of the conjecture 
contains the Skolem function g(x). In Figure3-7, we show the modified proof tree in which the variable 't' is 
used in place of the Skolem function g(x). Here we obtain a proof of the answer statement P(a,t,t) v 
P(b,z,z) that is identical (except for variable names) to the single axiom. This example illustrates how new 
variables introduced by renaming the variables in one clause during a resolution can finally appear in the 
answer statement. 

 
 
 

 
Figure 3-6. A refutation proof tree. 

 
 
 
 

 

Figure 3-7. Modified proof graph. 

3.2 Refinements, Strategies, and Heuristics 
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Strategies and Refinements 

The unrestricted application of the resolution principle will generate far too many clauses for practical 
computation. Consider Figure 3-8 below. 

In Figure 3-8, only one deduction is shown. We could have other deductions spreading out in other 
directions from the original clauses. Some of the deductions will terminate with “nil” and hence lead to 
valid proofs of unsatisfiablility; others will not and, in fact, may never terminate. If resolution is to be made 
practical we need a guide to tell us which resolutions to make and which deductions to pursue. 

An algorithm that selectively chooses resolutions is known as a refinement strategy. A rule for changing 
the order in which resolutions are attempted but not restricting their number will be called an 'ordering 
strategy'. Refinement strategies generally fall into three categories: syntactic, semantic, and ancestry 
strategies. 

 
 
 
 
 

 

Figure 3-8. Tree of deductions. 

Refinement strategies are guides for writing theorem-proving programs that compute only a restricted set 
of the set of all possible resolutions. To show that the resulting program is a valid theorem proving system 
it is necessary to show that the completeness theorem for resolution holds for the limited set of 
resolutions permitted by the refinement. Some refinement strategies are quite sophisticated and will be 
treated in separate sections. Virtually all of the ordering strategies are simple, however, and will be 
described here. 

Unit Preference Strategy 

If clauses C1 & C2, containing m and n literals, respectively, are resolved against each other, then the 
resolvent will contain at most (m-1)+(n-1) literals. If one of the clauses, say C1, contains only one literal, 
then that literal must be resolved upon and the resolvent will contain (n-1) literals. Since the goal of the 
program is to resolve a clause with no literals, this is a step on the right direction. The unit preference 
strategy requires that each step all resolutions involving clauses with only one literal (unit clauses or 
singletons) be computed prior to computing any other resolutions. This technique is generalized to 
computing resolutions involving shorter clauses rather than longer clauses. 

Unit preference is an example of a syntactic ordering strategy. 

Tautology and Unique Literal Elimination 

Tautology and unique literal elimination are refinement strategies; their goal is the removal of irrelevant 
clauses from S before resolution is begun. Let S*, a subset of S be an unsatisfiable set of clauses such 
that every proper subset of S* is satisfiable, i.e., in order to obtain a contradiction in S*, it is necessary to 
use every clause in S* at least once in the proof. In general, it is more efficient to work with S* instead of 
S. Therefore it would be desirable to locate and remove the clauses, if any, in S-S* before beginning 
resolution. 

A clause C is a tautology if it contains two complementary literals, for example A and -A. Since any clause 
contains a disjunction of literals, clauses containing tautologies may be eliminated since they cannot 
possibly be false for any interpretation (e.g., Av-A). Thus the unsatisfiability of S containing tautology C 
must be determined by the unsatisfiability of the set of clauses S - {C}. 

A clause C can be dropped from S, even though it is not a tautology, if it is the only clause containing a 
'unique literal', L, whose predicate, P, does not appear negated in any literal of another clause C* 
member of S. The reason is that no resolution involving C or any clause descended from C can ever 
result in the null clause. To see this suppose S is the set 

C1: P(x) v -P(b) v Q(y) 
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C2: -P(c) v P(y) 
C3: -P(b) v -P(x) 

Any sequence of resolutions containing C1 must produce a clause, which contains the literal Q(y) or 
some instantiation of it. Because no clause in S contains an instance of the clause -Q(x), there is no way 
or removing Q(y) or any of its instantiations. Therefore, one might as well never begin such a sequence. 
The general principle is that if C contains a unique literal, then if S is unsatisfiable, the null clause can be 
deduced from S-{C}. 

Factoring 

Factoring, as discussed earlier, may reduce the length of clauses by application of an instantiation, which 
reduces several literals within a clause to the same literal. To illustrate, the clause 

C: A(x,f(k)) v A(b,y) v A(a,f(x)) v A(x,z) 

can be factored by the substitution 

θ = {(b,x), (f(k),y), (f(b),z)} 

to produce 

C:θ A(b,f(k)) v A(a,f(b)) v A(b,f(b)) 

 

C:θ is a factor of C. Furthermore, factors of a clause are not necessarily unique, for example, the 
substitution 

π = {(a,x), (f(k),y), (f(a),z)} 

yields the factor 

 

C:π A(a,f(k)) v A(b,f(k)) v A(a,f(a)) 

Since a clause implies its factors, S may be augmented by its factors of C. Although this increases the 
number of clauses of S, the added clauses will be shorter than the clauses that produced them, and may 
lead to shorter deductions of the null clause. 

Subsumption 

For any pair of clauses C, D members of S, C is said to subsume D if there is an instantiation of C, C:π, 
such that C:π is a subset of D. For example, if 

C: A(x) 

D: A(b) v P(x) 

then the substitution π = {(b,x)} produces C:π A(b). 

The validity of subsumption may be illustrated by an argument using the propositional calculus, in which 
the truth-value of a set of clauses is defined as the conjunction of the truth-value of the clauses it 
contains. Let C:π be (L) and D be (L,X), where X is a sequence of zero or more literals, L1, L2, ... Since 
the truth value of D is the disjunction of its literals, 

D: L v X 

It is elementary that 

L subsumes L v X 

regardless of the truth-value of X, so that C:π subsumes D. Define S*= S-{D}. Under the propositional 
calculus interpretation of a set, S* & C:π subsumes S. 

If S is false under all assignments, then S subsumes the null clause. This means that S*&C:π subsumes 
the null clause, i.e., if S is truth functionally unsatisfiable, then the set S*?{C:π} is similarly unsatisfiable. It 
should be simpler to derive the null clause from S*→{C:π} than from S because both sets contain the 
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same number of clauses, but C:π contains fewer literals than D. 

Hyperresolution 

Resolutions can be made involving several clauses at once, which is called hyperresolution. Suppose 
there exists a finite set of clauses, {C1, C2, ..., Cn}, and a single clause B which satisfy the following 
conditions: 

2. B contains the n literals L1 ... Ln.  

3. 2.For every i, 1≤ i ≤ n clause Ci contains the literal -Li but does not contain the complement of 
any other literal which occurs in B, nor the complement of any literal which occurs in any 
clause Cj, j ≠ i. The set of clauses Sa= {Ci}»{B} is called a clash. The clause Ra=(C1 - {-Li}, C2- 
{-L2},...Cn - {-Ln}, B - {Li}) is called the hyperresolvent of Sa, and may be deduced from Sa.  

In most cases we will obtain a clash only after appropriate substitutions. That is, we will be given a set Sa 
of clauses, which do not meet the definition of a clash, but there exists a substitution p such that Sa:π is a 
clash. In this case, Sa is called a latent clash. Since standard resolution involving only two clauses at a 
time is a special case of hyperresolution, it follows that if the null clause can be deduced from S by reso-
lution, it can also be deduced from S, and perhaps more quickly, by hyperresolution. 

As an example of hyperresolution, consider the set Sa defined by 

Sa = { C1: -A(x)vP(a), C2: P(y), C3: -P(k)vQ(a,b), B: A(a)v-P(y)v-Q(x,y)vA(c) } 

The substitutions π = {(a,x), (b,y)} produces 

Sa:π = { C1:π -A(a)vP(a), C2:π P(b), C3:π -P(k)vQ(a,b), B:π A(a)v-P(b)v-Q(a,b)vA(c) } 

Sa:π is a clash with resolvent Ra: P(a) v -P(k) v A(c) and thus a is a latent clash, 

Hyperresolution is an example of a semantic strategy. The reason is that the clash at Sa can only be 
satisfied by a model that contains some of the literals, and at least one from each clause of the clash, 
which are contained in the clash resolvent. Thus the clash resolvent points the way toward elimination of 
all models. 

Ancestry Strategies 

We can now consider some sophisticated strategies that permit savings in both the number of resolutions 
to be considered and the amount of computer storage required for recording clauses that have been 
inferred. 

Set of Support 

S can normally be divided into two subsets: the axioms of the system, {Ci}, and the negation of the 
conjecture, -T = {Ti}. It is usually reasonable to assume that the axioms are consistent, i.e., that the set 
{Ci} is satisfiable. If this is the case, and if S is unsatisfiable, then the null clause can be deduced by a 
sequence of resolutions in which each step involves a resolution in which at least one of the clauses is in 
the set of support, where the set of support is defined as 

1.All clauses in {Ti} are in the set of support. 

2.A resolvent clause is in the set of support if at least one of its parents is in the set of support. 

The practical effect of the set of support strategy is that we need never to consider any resolution 
involving only clauses in {Ci}. This is useful since {Ci} is often large in relation to {Ti}. 

Linear Deductions 

The linear deduction strategy is a quite restrictive method, which has the additional advantage of 
providing proofs that are quite easy to follow. Let C'0 be a clause in a minimally satisfiable set S*, and let 
C'i, i>0, be the ith clause derived in a sequence of resolutions beginning with C'0 and some other clause in 
S*. If the ith clause (i>0) of the deduction always has as one of its parents (called the left parent) the i-1st 
clause in the deduction, then the deduction is a linear deduction. In a linear strategy only resolutions 
permissible in a linear deduction are considered. The technique is illustrated by the deduction of the null 
clause from the set of ground clauses 
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S = { Q PvR -PvS -RvS -Pv-Qv-S -Qv-Rv-S } 

One linear deduction of the null clause from S is 

-Pv-Qv-S  resolves Q  to -Pv-S 

-Pv-S   resolves PvR  to Rv-S 

Rv-S  resolves –PvS  to -PvR 

-PvR  resolves PvR  to R 

R  resolves –RvS  to S 

S  resolves -Q v -Rv-S to -Qv-R 

-Qv-R  resolves Q  to -R 

-R  resolves R  to nil. 

Lemma Proofs                         [need to fix from here on] 

Lemma proofs are deductions, which do not satisfy the conditions of a linear deduction. They bring 
together two or more separate lines of a deduction as shown in Figure 3-9. [The proof is derived from the 
set S as given in the last section on linear deductions]. 

-P v Q v -S resolves P v R                   -P v S resolves P v R  

 

-Q v R v -S resolves -Q v -R v -S          R v S resolves -R v S  

 

-Q v -S resolves Q  

       -S                                                           S  

                                        nil  

Figure 3-9. Structure of a lemma deduction. 

Subsumption and Merge Conditions 

Two further refinements, called the subsumption and merge conditions, may be applied jointly with 
linearity to further restrict both the number of resolutions to be considered and the number of clauses that 
must be retained in memory. The combination of all three strategies is called the merge, subsumption, 
linear (m.s.l.) refinement strategy. 

The subsumption condition restricts the number of resolutions that will be attempted at each round of 
inference. Let C'i be the clause just deduced, and let R be the set of previously resolved clauses that 
have been retained for use as possible right parents in a linear deduction. Thus R includes {C'j} for j<i. 
The left parent of C'i+1 will, of course, be C'i. The right parent, B'i, must be chosen from the set {S?R}. 
The subsumption condition states that if S is unsatisfiable, there exists a linear deduction of the null 
clause in which C'i+1 subsumes C'iin all cases in which B'i is chosen from R rather than S. Therefore, the 
search for candidate right parent clauses can be confined to S and some of the clauses of R. Specifically, 
if the subsumption condition is to be satisfied, B'i must contain only literals that are unifiable with literals in 
C'i, with the exception of exactly one literal, which will be the literal resolved upon, and must be unifiable 
with a complementary literal in C'i. Those clauses in R, which do not fulfill this condition, need not be 
considered as candidates for resolution. 

The subsumption condition then restricts attention to a subset of R, given C'i. The merge condition 
provides a way of limiting the number of derived clauses to be placed in R in the first place. A clause C'i is 
a 'merge' of clauses C'i-1 and B'i-1 if there is a literal L, other than the literal resolved upon, which  occurs 
in C'i and is an instantiation of the two literals, L1 and L2, which appear in C'i-1 and B'i-1, respectively. 
The literal L is called a merge literal. A merge clause is either the clause C'i or a factor of C'i. An example 
of a merge resolvent is 

C'i-1: Q(k,b) v -Q(a,c) v Q(k,c) B'i-1: Q(k,b) v Q(a,c) v Q(b,c)  
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C'i: Q(k,b) v Q(k,c) v Q(b,c) 

in which Q(k,b) is a merge literal. Although the notation used to present merging refers to linear 
deduction, the idea of merging may equally apply to lemma structure deductions. 

A-ordering and C-ordering 

Two major syntactic refinement strategies are  

 

More here 

 

(General) Semantic Strategy 

For a set of clauses S to be satisfiable means that there is some assignment of truth values to the atoms 
of S such that all clauses are satisfied. A particular assignment of truth-values to atoms is called a model. 
Semantic strategies seek to show that S is unsatisfiable by showing that there is no model which satisfies 
S. A relationship can be developed between model elimination and linear ancestry strategies. Neverthe-
less the idea of a semantic proof requires an expansion on the idea of a model first. 

 

Much more here 

 

Heuristics 

There are a number of pragmatically useful heuristics that deliberately sacrifice completeness in the hope 
of obtaining a rapid solution most of the time. Most of them are simple and need only be mentioned. One, 
the use of analogies, requires more detail. 

 

Much more here 
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