
ROSETTA Technical Reference Manual∗

Aleksander Øhrn†

Contents

1 Introduction 3

2 GUI Preliminaries 4

3 Projects 4
3.1 IODBC... 5
3.2 IReport . 6

3.2.1 IReportIXML format... 6
3.2.2 IReportIHTML format... 6

3.3 IAnnotations... 6

4 Decision Tables 7
4.1 Dictionaries . 7
4.2 IView... 8
4.3 IDictionary . 9

4.3.1 IDictionaryIExport... 9
4.3.2 IDictionaryIImport... 9

4.4 IExport . 9
4.4.1 IExportIXML format... 9
4.4.2 IExportIProlog format... 10
4.4.3 IExportIMatlab format... 10
4.4.4 IExportIPlain format... 11
4.4.5 IExportIIndiscernibility graph... 11
4.4.6 IExportIDiscernibility functions... 13

4.5 IComplete . 14
4.5.1 ICompleteIRemove incompletes . 14
4.5.2 ICompleteIMean/mode fill . 14
4.5.3 ICompleteIConditioned mean/mode fill . 15
4.5.4 ICompleteICombinatorial completion . 15
4.5.5 ICompleteIConditioned combinatorial completion 15

4.6 IDiscretize . 16
4.6.1 IDiscretizeIBoolean reasoning algorithm... 16
4.6.2 IDiscretizeIManual discretization... 17
4.6.3 IDiscretizeIEntropy/MDL algorithm... 18
4.6.4 IDiscretizeIEqual frequency binning... 18
4.6.5 IDiscretizeINaive algorithm... 19
4.6.6 IDiscretizeISemi-naive algorithm... 20
4.6.7 IDiscretizeIFrom file with cuts... 20
4.6.8 IDiscretizeIBoolean reasoning algorithm (RSES)... 21
4.6.9 IDiscretizeIFrom file with cuts (RSES)... 21

4.7 IReduce . 21
4.7.1 IReduceIGenetic algorithm... 22

∗This document is under perpetual development. Last updated May 25, 2001.
†Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. E-mail:

aleks@idi.ntnu.no.

1

aleks@idi.ntnu.no

4.7.2 IReduceIJohnson’s algorithm... 24
4.7.3 IReduceIHolte’s 1R . 26
4.7.4 IReduceIManual reducer... 26
4.7.5 IReduceIDynamic reducts (RSES)... 27
4.7.6 IReduceIExhaustive calculation (RSES)... 27
4.7.7 IReduceIJohnson’s algorithm (RSES)... 28
4.7.8 IReduceIGenetic algorithm (RSES)... 28

4.8 IClassify... 29
4.9 IOther . 30

4.9.1 IOtherIImport reducts... 30
4.9.2 IOtherISplit in two... 31
4.9.3 IOtherIPartition... 31
4.9.4 IOtherIApproximate decision class... 32

4.10 IExecute . 32
4.10.1 IExecuteIPipeline script... 32
4.10.2 IExecuteIPipeline script with CV... 33
4.10.3 IExecuteIBatch script... 34

4.11 IStatistics... 35

5 Decision Tables 36
5.1 IView... 36

6 Reducts 36
6.1 IView... 36
6.2 IExport . 37

6.2.1 IExportIXML format... 37
6.2.2 IExportIProlog format... 37
6.2.3 IExportIPlain format... 38

6.3 IFilter . 38
6.3.1 IFilterIBasic filtering... 38
6.3.2 IFilterICost filtering... 38
6.3.3 IFilterIPerformance filtering... 39
6.3.4 IFilterIRemove reducts with no rules (RSES) . 41
6.3.5 IFilterIBasic shortening... 41

6.4 IGenerate rules... 41
6.5 IStatistics... 42

7 Rules 42
7.1 IView... 43
7.2 IExport . 43

7.2.1 IExportIXML format... 43
7.2.2 IExportIProlog format... 43
7.2.3 IExportIC++ format... 44
7.2.4 IExportIPlain format... 45

7.3 IFilter . 45
7.3.1 IFilterIBasic filtering... 45
7.3.2 IFilterIQuality filtering... 47
7.3.3 IFilterIQuality filtering loop... 47

7.4 IStatistics... 48

8 Patterns 49
8.1 IView... 49

9 Batch Classifications 49
9.1 IView... 49

10 Text Files 50
10.1 IView... 50

2

11 Partitions 50
11.1 IView... 50

12 Approximations 50
12.1 IView... 50
12.2 IStatistics... 50

13 Algorithms 51
13.1 IApply... 51

14 Classifier Algorithms 51
14.1 Standard voting . 52
14.2 Voting with object tracking . 54
14.3 Naive Bayes . 54
14.4 Standard/tuned voting (RSES) . 55

15 Script Algorithms 56
15.1 Loader . 56
15.2 Saver . 57
15.3 StructureCreator . 57
15.4 Kidnapper . 57

A Import File Formats 57
A.1 Dictionaries . 57
A.2 Decision Tables . 58

A.2.1 Plain format . 59
A.2.2 POS format . 60
A.2.3 RSES format (RSES) . 60

A.3 Reducts . 61
A.4 Command Scripts . 61
A.5 IDG Information . 62
A.6 Attribute Cost Information . 64
A.7 RSES Distance Matrices . 64
A.8 Pairs Files . 64

B Command-Line Versions 65
B.1 CLROSETTA . 65
B.2 CLHYPOCLASS . 66

Preface

This document is the technical reference manual for ROSETTA [26, 27, 28, 29], a software system I designed
and implemented as part of my doctoral dissertation [26]. As with all manuals, it almost certainly contains
errors and has plenty of room for improvements. Please report any errors, typos, inconsistencies, omissions
and suggestions for improvements to aleks@idi.ntnu.no.

The RSES library [38], developed at the Group of Logic at the University of Warsaw [17], is embedded as
an optional component of the ROSETTA computational kernel. The names of these algorithms are in this
document all prefixed with the string “RSES”.

1 Introduction

This document constitutes the technical reference manual for the ROSETTA software system. The main al-
gorithms and their options are briefly described, and appropriate references are given to the literature where
relevant.

3

aleks@idi.ntnu.no

This document should not be read in isolation. The reader is referred to Øhrn [26, chapters 4–7] and references
therein for an overview of the background theory, as the same terminology and notation is employed in this
manual. Furthermore, it is assumed that the reader has a basic familiarity with the knowledge discovery
and data mining process, and how a typical empirical modelling project is carried out. A small example
ROSETTA case study can be found in [26, chapter 9], outlining how ROSETTA can be used to, e.g., induce
and validate classification rules from a database.

Miscellaneous tips and take-home points are throughout this document indented and marked with a special
symbol. An example is the following:

TIP News, tips, software updates and other relevant information can be found at the ROSETTA website [35].
To obtain source code of portions of the ROSETTA computational kernel, consult the ROSETTA C++
Library website [36].

Information under the Name, Keywords and Signature labels in this document are mostly relevant in the
context of command scripts. Command scripts are described in Section 4.10 and Appendix A.4.

In the ROSETTA GUI, many of the same menu entries appear for different types of objects. For example, all
objects have an Annotations... entry in their pop-up menus. Such multiply occurring entries are only listed
once in this document. Also, not all menu entries are documented here, only the less self-explanatory ones.

2 GUI Preliminaries

An overview of the ROSETTA GUI is given by Øhrn [26, chapter 8]. The following ROSETTA GUI details are
worth noting:

• A decision system can be read into a new ROSETTA project by selecting Open... from the main File
menu, and will be placed immediately below the root of the Structures node in the project tree.

• Branches in the project tree can be expanded or collapsed by left-clicking on the “�” or “�” symbols
next to the icons.

• Right-clicking on an icon in the project tree brings up a pop-up menu for that object. In the following,
the symbol “I” will be used to denote menu navigation.

• Left-clicking twice on an icon in the project tree can be used as a shortcut for viewing that object in
detail.

• Grayed columns in views of decision systems indicate that the corresponding attributes are “masked
away” and subsequently ignored by the ROSETTA kernel in any analysis steps. Missing values are
indicated by the string Undefined.

• Rules can be sorted directly in their views by right-clicking the column to sort by.

• To rename an object, first left-click once on its icon to select it. Then left-click once more on the icon’s
label. The icon’s label is edited directly in place.

• To view progress messages and warnings, select Messages from the main View menu. A document has
to be present before the View menu appears.

3 Projects

Name: Project

Description: A project object is the top-level structural object in a project tree. A root project cannot be
deleted from the GUI. It is possible for a project to have subprojects.

4

Figure 1: Dialog box for ODBC import of decision tables.

Figure 2: Dialog box for specifying attribute types.

3.1 IODBC...

Name: ODBCDecisionTableImporter

Description: Allows tabular data to be imported from a wide variety of data sources such as spreadsheets
or relational databases, by means of ODBC.1 Which data sources that are available depends
on which ODBC drivers that are installed on your system.

TIP ODBC drivers for most popular database management systems are freely available on
the Internet.

Dialogs: Figure 1, Figure 2.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

1Open Database Connectivity. ODBC is an open, vendor-neutral interface for database connectivity that provides access to a wide
variety of computer systems. The ODBC programming interface enables applications to access data in database management systems
(DBMSs) that use SQL as a data access standard. This enables developers to not have to target a specific DBMS. Instead, users can add
modules called database drivers that link the application to their choice of DBMS.

5

Figure 3: Dialog box for specifying filenames.

3.2 IReport

Name: Reporter

Description: Algorithms in this family export information and meta-information about the project as a
whole. The algorithms function as simple identity pass-through routines, where the export-
ing is a side-effect of applying the algorithm.

3.2.1 IReportIXML format...

Name: XMLReporter

Description: Creates a report in XML format that contains the annotations associated with the project, and
basic information about all structures that are members of the project.

TIP XML greatly increases interoperability with other programs, and you can transform the
XML into other formats using the XSLT language. Many current browsers also support
viewing of XML documents.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Structure→ Structure

3.2.2 IReportIHTML format...

Name: HTMLReporter

Description: Creates a report in HTML format that contains the annotations associated with the project,
and all structures that are members of this. A tree displaying the derivation interrelationships
is also included in the report. The resulting report contains hyperlinks.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Structure→ Structure

3.3 IAnnotations...

Description: An annotation includes a general comment field and a history list. Objects that are manipu-
lated and created in the GUI automatically get their history list updated with a timestamp, a
user name and an action description. This aids in generating automatic documentation of a
ROSETTA session.

An annotation also holds a filename. The object is saved to this location if the Save... menu
option is invoked.

6

Figure 4: Dialog box for annotations.

TIP In the history list, the set of employed parameters are displayed as a collection of key-
word/value pairs. It is the same keywords that are used in command scripts. Hence,
to regenerate a computation, it is possible to copy the parameter list into a command
script.

Dialogs: Figure 4.

4 Decision Tables

Name: DecisionTable

Description: Information systems and decision systems are both represented by the same structure. It is
up to the algorithms that operate on such objects to define how the table is to be interpreted.

Internally, all value sets for all attributes are represented as integers. Thus, an information
system can essentially be perceived as a matrix with integer entries. The mapping between
the internal integer representations and their meanings in the modelling domain is handled
by a data dictionary, associated with each information system. Dictionaries are described in
Section 4.1.

In addition to the attribute values, a decision table object also holds information per attribute
of its type (condition or decision) and masking status (enabled or disabled). Attributes that
are disabled are “invisible” to the algorithms that operate on the table.

4.1 Dictionaries

Name: Dictionary

7

Description: Each decision table has a dictionary associated with it, responsible for mapping between the
integer values used internally and their meanings in the modelling domain.

A data dictionary is composed of several dictionary attributes, one per attribute in the table
the dictionary is associated with. A dictionary attribute is responsible for mapping elements
in Va to a string that makes sense to the user and the modelling domain, and vice versa. How
this mapping is performed depends on the type of attribute:

• Integer: Performs the mapping v 7→ “v”, i.e., the integer v is mapped to its natural string
representation.

• Float: Performs the mapping v 7→ “ f ” where f = v/10n, i.e., the integer v is mapped
to the string representation of the float f which corresponds to v with the decimal point
moved n places to the left. The integer number n is called the scaling exponent of the
attribute.

• String: Performs the mapping v 7→ lookup(v), i.e., the integer v is mapped to a string
that is looked up in an associative map.

Inverse mappings are also done by dictionary attributes. An attribute in a dictionary also
holds the name and unit of the attribute.

Example: Let v ∈ Va and let v = 125. If a is an integer attribute, v is mapped to the string “125” and
vice versa. If a is a float attribute with n = 2, v is mapped to the string “1.25” and vice versa.
If a is a string attribute, v might be mapped to, e.g., “One hundred and twenty five” and vice
versa.

4.2 IView...

Description: Brings up a view of the decision table, enabling the data to be inspected in detail. Gray
columns indicate that the attributes are “masked”, i.e., made invisible to the algorithms that
operate on the table. The decision attribute is indicated in bold face. Currently, the decision
attribute is required to be the rightmost attribute in the table. Integer and float attributes are
right-justified, string attributes are centered.

By right-clicking the grid origin or headers of columns or rows, context-sensitive pop-up
menus appear.

The masking state of attributes can be altered by selecting the columns in question and in-
voking the Masking... menu option from one of the columns’ pop-up menu.2

TIP Data can be viewed through the dictionary or not. Invoke the Use dictionary menu
option from the grid origin’s pop-up menu to change viewing mode.

TIP To swap the positions of two columns, select the columns in question and select the
Swap menu option from one of the columns’ pop-up menu.

TIP To join two or more attributes together to form a compound attribute, select the columns
in question and invoke the Join menu option from one of the columns’ pop-up menu.

TIP Internally, some data structures such as, e.g., reducts, are simply indices into a parent
decision table. Thus, altering the table would invalidate such structures, unless addi-
tional housekeeping is performed. Such housekeeping is not currently implemented.
Therefore, some of the table manipulation methods such as adding, deleting or moving
columns or rows, get automatically disabled from the pop-up menus when the table has
children structures derived from it. As a way around this restriction, you can duplicate
the table and work on the duplicate instead.

2For multiple row or column selections, hold the CTRL key down when you left-click the rows or columns in question. Use the SHIFT
key to select ranges.

8

4.3 IDictionary

4.3.1 IDictionaryIExport...

Name: DictionaryExporter

Description: Exports a data dictionary associated with a decision table to an ASCII file. Exported data
dictionaries can be manually edited and then imported back into the system.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: {Dictionary, DecisionTable}→ {Dictionary, DecisionTable}

4.3.2 IDictionaryIImport...

Name: DictionaryImporter

Description: Allows hand-crafted data dictionaries to be imported into the system from ASCII files. The
format of the dictionary file is documented in Section A.1.

TIP Importing a new dictionary for a decision table does not alter the internal integer repre-
sentation of the decision table, but only replaces its data dictionary.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: {Dictionary, DecisionTable}→ {Dictionary, DecisionTable}

4.4 IExport

Name: DecisionTableExporter

Description: Algorithms in this family export some aspect of a decision table to a file in some format.
The algorithms function as simple identity pass-through routines, where the exporting is a
side-effect of applying the algorithm.

4.4.1 IExportIXML format...

Name: XMLDecisionTableExporter

Description: Exports a decision table to XML format. The exported XML contains both dictionary infor-
mation and table entries.

TIP If an entry in the table is missing, then that descriptor is omitted in the output. Hence,
the number of descriptors may vary across objects.

TIP XML greatly increases interoperability with other programs, and you can transform the
XML into other formats using the XSLT language. Many current browsers also support
viewing of XML documents.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

Example: The XML fragment below is an example of the dictionary meta-data contained in the XML
output.

9

<attributes>

<attribute id="0" name="Radius" type="Float" exponent="2" unit="cm"/>

<attribute id="1" name="Color" type="String"/>

<attribute id="2" name="Year" type="Integer" masked="true"/>

<attribute id="3" name="Grade" type="Float" exponent="1"/>

<attribute id="4" name="Sold" type="String" status="Decision"/>

</attributes>

The last two objects in the decision table shown in Appendix A.2.1 would be exported as the
following XML fragment:

<object id="5">

<descriptor attribute="Color" value="Yellow"/>

<descriptor attribute="Year" value="1865"/>

<descriptor attribute="Grade" value="2.5"/>

<descriptor attribute="Sold" value="No"/>

</object>

<object id="6">

<descriptor attribute="Radius" value="4925.60"/>

<descriptor attribute="Year" value="1968"/>

<descriptor attribute="Grade" value="6.0"/>

<descriptor attribute="Sold" value="Yes"/>

</object>

4.4.2 IExportIProlog format...

Name: PrologDecisionTableExporter

Description: Exports a decision table as a set of Prolog facts. One fact is exported per observed entry per
object in the table. The objects are named “on”, where n is the index of the object in the table.
Index counts start at 1.

TIP Missing entries in a table are not exported as facts.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

Example: The last two objects in the decision table shown in Appendix A.2.1 would be exported as the
following set of facts:

color(o6, yellow).

year(o6, 1865).

grade(o6, 2.5).

sold(o6, no).

radius(o7, 4925.60).

year(o7, 1968).

grade(o7, 6.0).

sold(o7, yes).

4.4.3 IExportIMatlab format...

Name: MatlabDecisionTableExporter

Description: Exports a decision table to an ASCII file as a matrix that the MATLAB software system [22]
can import. Useful if we want to visualize or mathematically manipulate the contents of the
table in ways not supported by ROSETTA.

10

TIP Integer and float attributes are exported as integer and float values. For string attributes,
the integer codes used internally are exported.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

Example: The following MATLAB command sequence will load an exported table into MATLAB and
generate a 2D plot of attribute number 1 against attribute number 5.

>> load table.txt

>> plot(table(:, 1), table(:, 5), ’*’)

Each data point in the plot will be marked with an asterisk. For a piecewise linear graph,
omit the last argument to the plot command.

4.4.4 IExportIPlain format...

Name: MyDecisionTableExporter

Description: Exports an information system to an ASCII file in a plain and simple, tabular format. The
inverse of the algorithm described in Appendix A.2.1.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

4.4.5 IExportIIndiscernibility graph...

Name: IndiscernibilityGraphExporter

Description: Exports the system’s indiscernibility graph to a format recognized by the GraphViz suite of
graph visualization programs [16]. The graph can be used for clustering and unsupervised
learning.3

Support for IDGs4 is provided. The syntax for specifying IDGs is described in Appendix A.5.

If there is a masked attribute in the information system that assigns unique names to objects,
the name of this attribute can be specified to name the vertices in the exported graph.

If specified, the output file can also contain vertex degree data as well as all-pairs shortest
path (APSP) data. Floyd’s algorithm5 is used to compute the APSP data. The APSP data can
be used to define a distance metric for clustering [37].

TIP ROSETTA currently requires that the IDGs are reflexive and symmetric. It is the user’s
responsibility to see to this when defining the IDGs.

Dialogs: Figure 5.

Keywords: IDG (Boolean), IDG.FILENAME (String), NAMES (Boolean), NAMES.ATTRIBUTE (String), MODULO.DECISION

(Boolean), FILENAME (String), DATA.REFLEXIVE (Boolean), DATA.DEGREE (Boolean), DATA.APSP (Boolean), CAR-

DINALITY (Boolean), CARDINALITY.THRESHOLD (Integer).

Signature: DecisionTable→ DecisionTable

3Algorithms for generating visually pleasing graph layouts exist that operate by constructing a virtual physical model and running
an iterative solver to find a low-energy configuration [14, 21, 15]. For clustering, the spatial layout of each vertex is really irrelevant, it is
the distribution of edges between the vertices that is of interest. Visualization greatly aids understanding, though.

4Indiscernibility definition graphs. See Øhrn [26, page 43] for details.
5Note that this algorithm has a time complexity of O(|U|3).

11

Figure 5: Dialog box for exporting indiscernibility graphs.

12

Figure 6: Dialog box for exporting discernibility functions.

4.4.6 IExportIDiscernibility functions...

Name: DiscernibilityFunctionExporter

Description: Enables Boolean POS functions to be exported that express how objects can be discerned. The
function that expresses how all objects can be discerned from each other can also be exported.

Support for IDGs is provided. The syntax for specifying IDGs is described in Appendix A.5.

If there is a masked attribute in the information system that assigns unique names to objects,
the name of this attribute can be specified to name the exported functions.

The discernibility functions can be exported in both unsimplified and simplified versions.
Since unsimplified functions can be very large and unwieldy, simplification is recommended.

TIP ROSETTA currently requires that the IDGs are reflexive and symmetric. It is the user’s
responsibility to see to this when defining the IDGs.

Dialogs: Figure 6, Figure 7.

Keywords: DISCERNIBILITY ({All, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), SIMPLIFY (Boolean),
IDG (Boolean), IDG.FILENAME (String), NAMES (Boolean), NAMES.ATTRIBUTE (String), MODULO.DECISION

(Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

13

Figure 7: Dialog box for selecting subsets of U.

4.5 IComplete

Name: Completer

Description: Algorithms in this family take as input a decision table and return a new, “completed” deci-
sion table. The input table may have missing values, whereas the output table is a completed
version of the input, i.e., it has no missing values.

TIP Completion is only necessary if the algorithms that are subsequently to be applied to the
decision table require this. Also, the use of IDGs may make completion unnecessary. In
some cases a missing entry might indicate “not applicable” instead of “not recorded”.
Completion of such attributes may not be desirable.

It is often desirable to condition the completion to the decision classes. Such conditioning is
carried out by the following procedure:

1. Split the table into several subtables, each with their own decision class.

2. Apply an unconditioned Completer algorithm to each subtable.

3. Merge the completed subtables.

Saving of completion information to file is not yet implemented.

4.5.1 ICompleteIRemove incompletes

Name: RemovalCompleter

Description: Removes all objects that have one or more missing values. If U and Û denote the universes
before and after removing incomplete objects, we have:

Û = {x ∈ U | ∀a ∈ A, a(x) 6= >} (1)

Signature: DecisionTable→ DecisionTable

4.5.2 ICompleteIMean/mode fill

Name: MeanCompleter

Description: Substitutes missing values for numerical attributes with the mean value of all observed en-
tries for that attribute. For string attributes, missing values are substituted by the “mode”

14

value, i.e., the most frequently occurring value among the observed entries for that attribute.
If a and â denote an attribute before and after completion, we have:

Oa = {x ∈ U | a(x) 6= >} (2)

Ov
a = {x ∈ Oa | a(x) = v} (3)

â(x) =

a(x) if x ∈ Oa

1
|Oa| ∑Oa

a(x) if x /∈ Oa and a is numerical

arg max
v
|Ov

a | if x /∈ Oa and a is not numerical

(4)

Ties for mode values are resolved arbitrarily.

Signature: DecisionTable→ DecisionTable

4.5.3 ICompleteIConditioned mean/mode fill

Name: ConditionedMeanCompleter

Description: Similar to the algorithm described in Section 4.5.2, but the computations of the mean and
mode values are conditioned to the decision classes. No special provisions are made for
objects with decision value Undefined, if any.

Signature: DecisionTable→ DecisionTable

4.5.4 ICompleteICombinatorial completion

Name: CombinatorialCompleter

Description: Expands each missing value for each object into the set of possible values. That is, an object
is expanded into several objects covering all possible combinations of the object’s missing
values.

TIP This algorithm should be used with care, since the number of possible combinations for
objects with multiple missing values grows very rapidly.

Signature: DecisionTable→ DecisionTable

Example: Assume an object has missing values for condition attributes a and b, and let |Va| = 3 and
|Vb| = 4. The single incomplete object is then expanded into 12 complete objects, covering
all possible combinations of values for a and b.

4.5.5 ICompleteIConditioned combinatorial completion

Name: ConditionedCombinatorialCompleter

Description: Similar to the algorithm described in Section 4.5.4, but sets of expansion values are condi-
tioned to the decision classes. No special provisions are made for objects with decision value
Undefined, if any.

Signature: DecisionTable→ DecisionTable

15

4.6 IDiscretize

Name: Scaler

Description: Algorithms that belong to this family discretize attributes in information systems.

Input to a discretization algorithm is a decision table, and a decision table is returned. Unless
otherwise stated, the returned table is a discretized duplicate of the input table.

Discretization amounts to searching for “cuts” that determine intervals. All values that lie
within each interval are then mapped to the same value, in effect converting numerical at-
tributes to attributes that can be treated as being categorical. The search for cuts is performed
on the internal integer representation of the input decision table. Automatic “grouping” as
a symbolic counterpart to intervals is not currently implemented in ROSETTA, but can be
done manually.

Only the unmasked attributes of the input table are visible to the discretization algorithms.
If specified, condition string attributes can be temporarily masked away before the table is
subsequently passed on to the actual discretization process. When done, the original masking
states are reinstated. Masking can also be done manually in the GUI.

TIP By using the masking feature appropriately, it is possible to discretize a table using dif-
ferent discretization methods for different attributes, or to only discretize a selected sub-
set of attributes.

TIP Discretized attributes are converted to string type.

In ROSETTA, algorithms for automatic discretization generally fall into one of three cate-
gories:

• Each attribute is considered in isolation, and no knowledge of any outcome or decision
attribute is employed in the process. These algorithms are said to be univariate and
unsupervised.

• Only one condition attribute is considered at a time, but is done so in conjunction with
the decision attribute. These algorithms are said to be univariate and supervised.

• All condition attributes are considered simultaneously, and are done so in conjunction
with the decision attribute. These algorithms are said to be multivariate and supervised.

Unsupervised, multivariate clustering algorithms would form a fourth discretization cate-
gory, but none such are currently implemented in ROSETTA.

4.6.1 IDiscretizeIBoolean reasoning algorithm...

Name: BROrthogonalScaler

Description: A straightforward implementation of the algorithm outlined by Nguyen and Skowron [24],
based on combining the cuts found by the algorithm from Section 4.6.5 with a Boolean rea-
soning procedure for discarding all but a small subset of these. The remaining subset is a
minimal set of cuts that preserves the discernibility inherent in the decision system.

The algorithm operates by first creating a Boolean function f from the set of candidate cuts,
and then computing a prime implicant of this function. (The set Ca below is defined by Equa-
tion 9.) The current implementation uses the greedy algorithm of Johnson [20] to compute
the prime implicant, described in Section 4.7.2.

f = ∏
(x,y)

∑
a

{
∑ c∗ | c ∈ Ca and a(x) < c < a(y) and ∂A(x) 6= ∂A(y)

}
(5)

Sometimes, the Boolean reasoning approach to discretization may result in no cuts being
deemed necessary for some attributes. This means that these attributes are not really needed

16

Figure 8: Dialog box for discretization via “cuts”.

Figure 9: Dialog box for Johnson’s greedy algorithm.

to preserve the discernibility, if the minimal set of cuts is employed. Rather than simply
setting all values for these attributes to, e.g., 0, this algorithm leaves them untouched. The
decision on how to deal with these attributes are left to the user. A common fallback is to
revert to another discretization scheme for these undiscretized attributes. See Øhrn [26, page
108] for an example of this.

Note that the Boolean reasoning algorithm computes a reduct of the decision system.

TIP This straightforward implementation has a worst-case complexity of order O(|A||U|3),
which may be prohibitively high for large tables. The algorithm described in Section 4.6.8
basically implements the same procedure, but uses an efficient counting technique that
results in an implementation with a O(|A||U| log |U|) complexity.

TIP An approximate solution to the discretization problem can be obtained by computing
an approximate prime implicant of the function f above. See Figure 9. This amounts to
using fewer cuts, however on the cost of introducing inconsistencies into the discretized
table.

Dialogs: Figure 8, Figure 9.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String), APPROXIMATE (Boolean), FRACTION (Float).

Signature: DecisionTable→ DecisionTable

4.6.2 IDiscretizeIManual discretization...

Name: ManualScaler

Description: Enables the user to manually specify cuts to be used for discretizing a given attribute.

TIP The input table is modified directly, i.e., a duplicate table is not returned.

Dialogs: Figure 10.

17

Figure 10: Dialog box for manual discretization.

Keywords: ATTRIBUTE (Integer), INTERVALS (IntervalList), DICTIONARY (Boolean).

Signature: DecisionTable→ DecisionTable

4.6.3 IDiscretizeIEntropy/MDL algorithm...

Name: EntropyScaler

Description: Implements the algorithm described by Dougherty et al. [13], based on recursively parti-
tioning the value set of each attribute so that a local measure of entropy is optimized. The
minimum description length principle defines a stopping criterion for the partitioning pro-
cess.

Missing values are ignored in the search for cuts. If no cuts are found for an attribute, the
attribute is left unprocessed.

TIP You can discretize the attributes left unprocessed by means of some other “backup”
discretization algorithm, e.g., equal frequency binning as described in Section 4.6.4.

Dialogs: Figure 8.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

4.6.4 IDiscretizeIEqual frequency binning...

Name: EqualFrequencyScaler

Description: Implements equal frequency binning, a simple unsupervised and univariate discretization
algorithm. Fixing a number of intervals n and examining the histogram of each attribute,
n − 1 cuts are determined so that approximately the same number of objects fall into each
of the n intervals. This corresponds to assigning n− 1 cuts such that the area between two
neighboring cuts in the normalized histogram is as close to 1/n as possible.

18

Figure 11: Dialog box for equal frequency binning.

TIP If n = 1 is specified, this effectively amounts to masking away the attributes in a subse-
quent reduction process.

Dialogs: Figure 8, Figure 11.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String), INTERVALS (Integer).

Signature: DecisionTable→ DecisionTable

4.6.5 IDiscretizeINaive algorithm...

Name: NaiveScaler

Description: Implements a very straightforward and simple heuristic that may result in very many cuts,
probably far more than are desired. In the worst case, each observed value is assigned its
own interval. In some cases, however, a simplistic and naive scheme may suffice.
For the sake of simplifying the exposition, we will assume that all condition attributes A are
numerical. For each condition attribute a we can sort its value set Va to obtain the following
ordering:

v1
a < . . . < vi

a < . . . < v|Va |
a (6)

Let Ca denote the set of all naively generated cuts for attribute a, defined as shown below.
The set Ca simply consists of all cuts midway between two observed attribute values, except
for the cuts that are clearly not needed if we do not bother to discern between objects with
the same decision values.

Xi
a = {x ∈ U | a(x) = vi

a} (7)

∆i
a = {v ∈ Vd | ∃x ∈ Xi

a such that d(x) = v} (8)

Ca =
{

vi
a + vi+1

a
2

| |∆i
a| > 1 or |∆i+1

a | > 1 or ∆i
a 6= ∆i+1

a

}
(9)

In essence, we place cuts midway between all vi
a and vi+1

a , except for in the situation when
all objects that have these values also have equal generalized decision values wrt. a that are
singletons.
If no cuts are found for an attribute, the attribute is left unprocessed. Missing values are
ignored in the search for cuts.

Dialogs: Figure 8.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

19

Figure 12: Dialog box for discretization from a file with cuts.

4.6.6 IDiscretizeISemi-naive algorithm...

Name: SemiNaiveScaler

Description: Functionally similar to the naive algorithm from Section 4.6.5, but has more logic to handle
the case where value-neighboring objects belong to different decision classes. Typically re-
sults in fewer cuts than the simpler naive algorithm, but may still produce far more cuts than
are desired.

The set of cuts found by the semi-naive algorithm is a subset of the cuts found by the naive
algorithm from Section 4.6.5, computed as follows:

Di
a = {v ∈ Vd | v = arg max

v′
|{x ∈ Xi

a | d(x) = v′}|} (10)

Ca =
{

vi
a + vi+1

a
2

| Di
a * Di+1

a and Di+1
a * Di

a

}
(11)

The set Di
a simply collects the dominating decision values for the objects in Xi

a. If there are no
ties, Di

a is a singleton. The rationale for not adding a cut if the sets of dominating decisions
define an inclusion is that we then hope, although the current implementation does not check,
that a cut will be added for another attribute different from a such that the objects in Xi

a and
Xi+1

a can be discerned.

Dialogs: Figure 8.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

4.6.7 IDiscretizeIFrom file with cuts...

Name: OrthogonalFileScaler

Description: Given a file with cuts, discretizes a table according to the file’s contents. The format of the file
is a set of tab-delimited (a, c) pairs, one per line. The attribute index a is an integer relative to
a masked table, while the cut c is a value relative to the internal integer table representation.
Attributes with no cuts are left unprocessed.

TIP If the cut file was generated with the auto-masking feature for string attributes set, this
has to be specified since the attribute indices in the file are interpreted relative to a
masked table.

Dialogs: Figure 12.

Keywords: MODE ({Load}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

20

4.6.8 IDiscretizeIBoolean reasoning algorithm (RSES)...

Name: RSESOrthogonalScaler

Description: An efficient implementation of the Boolean reasoning algorithm of Nguyen and Skowron [24],
as described by Nguyen and Nguyen [23]. Functionally similar to the algorithm described in
Section 4.6.1, but much faster. Approximate solutions are not supported.

If a(x) is missing, object x is not excluded from consideration when processing attribute a, but
is instead treated as an “infinitely large” positive value. If no cuts are found for an attribute,
all entries for that attribute are set to 0.

TIP Since no support for missing values is provided, this algorithm is best applied to com-
plete tables.

Dialogs: Figure 8.

Keywords: MODE ({Save, Discard}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

4.6.9 IDiscretizeIFrom file with cuts (RSES)...

Name: RSESOrthogonalFileScaler

Description: Functionally similar to the algorithm described in Section 4.6.7, but handles attributes with
no cuts in a different manner. All entries for such attributes are set to 0, instead of being left
unprocessed.

Dialogs: Figure 12.

Keywords: MODE ({Load}), MASK (Boolean), FILENAME (String).

Signature: DecisionTable→ DecisionTable

4.7 IReduce

Name: Reducer

Description: Algorithms for computing reducts or reduct approximations belong to this family. Note that
any attribute subset is in this context considered to be an approximation to a reduct.

Input to a Reducer algorithm is a decision table, and a set of reducts is returned. The returned
reduct set may possibly have a set of rules attached to it as a child. A reduct is a collection of
attribute indices into the table the reduct belongs to.

Two main types of discernibility are currently supported by ROSETTA. In addition, reducts
of both these types can be computed modulo the decision attribute or not. (More on this
below.)

• Full: Computes reducts relative to the system as a whole, i.e., minimal attribute subsets
that preserve our ability to discern all relevant objects from each other.
• Object: Computes reducts relative to a fixed object, i.e., minimal attribute subsets that

preserve our ability to discern that object from the other relevant objects. Generally,
instead of fixing a single object x, we select a subset X of U, and process each x ∈ X
sequentially. That is, we first compute the minimal attribute subsets that discern the
first object in X from all other relevant objects in U, before proceeding to compute the
minimal attribute subsets that discern the second object in X from all other relevant
objects in U, etc.

TIP If the reducts are relative to an object, rules or patterns are computed on the fly as well
for reasons of efficiency.

21

Option Subset

All X = U
Index X = {x}
Value X = {x ∈ U | a(x) = v}
File X = {x ∈ U | x is listed in a file}

Table 1: Options for selecting subsets of U. An object is specified by a 0-based index into U. For files, one 0-based object
index should appear on each line in the file. Alternatively, a line can consist of a 0-based index set contained in curly
braces. Lines in other formats than the ones described are ignored.

For reducts relative to an object, the set X can be selected in different ways, as shown in
Table 1.

TIP The option to specify X by attribute values can be used if we want to only generate rules
for a specified decision class.

A table can either be interpreted as a decision system or as a general Pawlak information
system [31]. If the option to compute reducts modulo the decision attribute is checked, the
table is interpreted as a decision system. If the decision system contains inconsistencies,
boundary region thinning [44, 43] should be considered.

TIP For consistent systems, there are no boundary regions to thin, and boundary region
thinning does hence not have any effect.

If the algorithm supports it, a set of IDGs can be supplied that enables the notion of discerni-
bility to be overloaded on a per attribute basis. See Øhrn [26, pages 42–45] for details. The
IDG file format is described in Appendix A.5. If no IDG file is specified, strict inequality is
used.

TIP If IDGs are used, ROSETTA currently requires that the IDGs are reflexive and symmet-
ric. It is the user’s responsibility to see to this when defining the IDGs.

TIP Since a reduct is a prime implicant of a discernibility function, algorithms for comput-
ing reducts can be used for more general Boolean reasoning, too. See Øhrn [25] or
Section A.2.2.

Dialogs: Figure 13, Figure 7.

4.7.1 IReduceIGenetic algorithm...

Name: SAVGeneticReducer

Description: Implements a genetic algorithm for computing minimal hitting sets, as described by Vinterbo
and Øhrn [40, 41]. The algorithm has support for both cost information and approximate
solutions.

The algorithm’s fitness function f is defined below, where S is the set of sets corresponding
to the discernibility function.6 The parameter α defines a weighting between subset cost and
hitting fraction, while ε is relevant in the case of approximate solutions. (More on this below.)

f (B) = (1−α)× cost(A)− cost(B)
cost(A)

+α ×min
{

ε,
|[S in S | S ∩ B 6= ∅]|

|S|

}
(12)

The subsets B of A that are found through the evolutionary search driven by the fitness
function and that are “good enough” hitting sets, i.e., have a hitting fraction of at least ε, are
collected in a “keep list”. The size of the keep list can be specified.

6See Vinterbo and Øhrn [40, 41] or Øhrn [26, pages 52–55] for details. The expression for the hitting fraction in the definition of f is
here somewhat simplified. In reality, we associate a weight w(S) with each S is S .

22

Figure 13: Dialog box for computing reducts and rules.

23

The function cost specifies the cost of an attribute subset. The file format for specifying cost
information is defined in Appendix A.6. If no cost information is used, then a default unit
cost is assumed, effectively defining cost(B) = |B|.
Approximate solutions are controlled through two parameters, ε and k. The parameter ε

signifies a minimal value for the hitting fraction, while k denotes the number of extra keep
lists in use by the algorithm. If k = 0, then only minimal hitting sets with a hitting fraction of
approximately ε are returned. If k > 0, then k + 1 groups of minimal hitting sets are returned,
each group having an approximate (but not smaller) hitting fraction evenly spaced between
ε and 1. Note that ε = 1 implies proper minimal hitting sets.

Each reduct in the returned reduct set has a support count associated with it. The support
count is a measure of the “strength” of the reduct, and may interpreted differently according
to which algorithm that produced the reduct. For reducts computed with this algorithm, the
support count equals the reduct’s hitting fraction, multiplied by 100.

Dialogs: Figure 13, Figure 14, Figure 7.

Keywords: DISCERNIBILITY ({Full, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), MODULO.DECISION

(Boolean), BRT (Boolean), BRT.PRECISION (Float), IDG (Boolean), IDG.FILENAME (String), PRECOMPUTE (Boolean),
ALGORITHM ({Simple, Modified, Variable}), LIFETIME.LOWER (Integer), LIFETIME.UPPER (Integer), SCAL-

ING (Boolean), SCALING.TYPE ({Boltzmann}), TEMPERATURE.UPPER (Float), TEMPERATURE.LOWER (Float),
TEMPERATURE.DELTA (Float), REPORT (Boolean), REPLACE (Boolean), ELITISM (Boolean), SEED (Integer), SIZE.KEEP

(Integer), SIZE.POPULATION (Integer), GAP.GENERATION (Integer), STOP.FITNESS (Boolean), STOP.KEEP (Boolean),
PROBABILITY.CROSSOVER (Float), PROBABILITY.MUTATION (Float), PROBABILITY.INVERSION (Float), NUM-

BER.CROSSOVER (Integer), NUMBER.MUTATION (Integer), NUMBER.INVERSION (Integer), BIAS (Float), COST

(Boolean), COST.FILENAME (String), APPROXIMATE (Boolean), FRACTION (Float), KEEP.LEVELS (Integer).

Signature: DecisionTable→ Reducts

Example: Having specified that we want approximate solutions, consider the case where ε = 0.7 and
k = 3. In all, 4 groups of minimal hitting sets will be computed and returned, with hitting
fractions approximately equal to (but not below) 0.7, 0.8, 0.9 and 1.0.

4.7.2 IReduceIJohnson’s algorithm...

Name: JohnsonReducer

Description: Invokes a variation of a simple greedy algorithm to compute a single reduct only, as described
by Johnson [20]. The algorithm has a natural bias towards finding a single prime implicant
of minimal length.

The reduct B is found by executing the algorithm outlined below, where S denotes the set
of sets corresponding to the discernibility function, and w(S) denotes a weight for set S in S
that automagically gets computed from the data.7

1. Let B = ∅.
2. Let a denote the attribute that maximizes ∑ w(S), where the sum is taken over all sets S

in S that contain a. Currently, ties are resolved arbitrarily.

3. Add a to B.

4. Remove all sets S from S that contain a.

5. If S = ∅ return B. Otherwise, goto step 2.

Support for computing approximate solutions is provided by aborting the loop when “enough”
sets have been removed from S , instead of requiring that S has to be fully emptied.

The support count associated with the computed reduct equals the reduct’s hitting fraction
multiplied by 100, i.e., the percentage of sets in S that B has a non-empty intersection with.

7See Øhrn [26, pages 54–55] or Vinterbo and Øhrn [40, 41] for details.

24

Figure 14: Dialog box for providing parameters to the genetic algorithm.

25

Figure 15: Dialog box for selecting subsets of A.

Dialogs: Figure 13, Figure 9, Figure 7.

Keywords: DISCERNIBILITY ({Full, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), MODULO.DECISION

(Boolean), BRT (Boolean), BRT.PRECISION (Float), IDG (Boolean), IDG.FILENAME (String), PRECOMPUTE (Boolean),
APPROXIMATE (Boolean), FRACTION (Float).

Signature: DecisionTable→ Reducts

Example: Let S = {{cat, dog, fish}, {cat, man}, {dog, man}, {cat, fish}} and let for simplicity w be the
constant function that assigns 1 to all sets S in S . Step 2 in the algorithm then amounts to
selecting the attribute that occurs in the most sets in S .

Initially, B = ∅. Since cat is the most frequently occurring attribute in S , we update B to
include cat. We then remove all sets from S that contain cat, and obtain S = {{dog, man}}.
Repeating the process, we arrive at a tie in the occurrence counts of dog and man, and arbi-
trarily select dog. We add dog to B, and remove all sets from S that contain dog. Now, S = ∅,
so we’re done. Our computed answer is thus B = {cat, dog}.

4.7.3 IReduceIHolte’s 1R

Name: Holte1RReducer

Description: Returns all singleton attribute sets, inspired by the paper of Holte [19]. The set of all 1R rules,
i.e., univariate decision rules, are indirectly returned as a child of the returned set of singleton
reducts.

Signature: DecisionTable→ Reducts

4.7.4 IReduceIManual reducer...

Name: ManualReducer

Description: Enables the user to manually specify an attribute subset that can be used as a reduct in sub-
sequent computations.

Dialogs: Figure 15.

Keywords: ATTRIBUTES (AttributeList)

Signature: DecisionTable→ Reducts

26

Figure 16: Dialog box for computing dynamic reducts.

4.7.5 IReduceIDynamic reducts (RSES)...

Name: RSESDynamicReducer

Description: Implements dynamic reducts as defined by Bazan et al. [7, 6]. A number of subtables are
randomly sampled from the input table, and proper reducts are computed from each of these
using some algorithm. The reducts that occur the most often across subtables are in some
sense the most “stable”.

TIP Computing dynamic reducts can be extremely computationally intensive, even for mod-
erately sized tables. Be wary about initiating very lengthy reduction processes.

TIP Only other RSES reducers can be used as “workhorses” to compute proper reducts from
the sampled subtables.

Dialogs: Figure 16, Figure 13, Figure 7.

Keywords: SEED (Integer), LEVELS (Integer), SAMPLES (Integer), PERCENTAGE.LOWER (Integer), PERCENTAGE.UPPER

(Integer), INCLUDEWHOLE (Boolean), REDUCER (Id).

Signature: RSESDecisionTable→ RSESReducts

Example: Consider 5 sampling levels, with 10 subtables per level. Let the subtable sizes vary between
50% and 90% of the input table, which has |U| objects. These sampling parameters would
generate subtables of the sizes given below, 50 subtables in total.

10 different subtables with 50%× |U| objects.
10 different subtables with 60%× |U| objects.
10 different subtables with 70%× |U| objects.
10 different subtables with 80%× |U| objects.
10 different subtables with 90%× |U| objects.

In addition, we can choose to include the input table itself as a sample.

4.7.6 IReduceIExhaustive calculation (RSES)...

Name: RSESExhaustiveReducer

27

Figure 17: Dialog box for providing parameters to the RSES genetic algorithm.

Description: Computes all reducts by brute force. No support is provided for IDGs, boundary region
thinning or approximate solutions.

TIP This algorithm does not scale up well, and is only suitable for tables of moderate size.
Computing all reducts is NP-hard.

Dialogs: Figure 13, Figure 7.

Keywords: DISCERNIBILITY ({Full, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), MODULO.DECISION

(Boolean).

Signature: RSESDecisionTable→ RSESReducts

4.7.7 IReduceIJohnson’s algorithm (RSES)...

Name: RSESJohnsonReducer

Description: Invokes the RSES implementation of the greedy algorithm of Johnson [20]. See also Sec-
tion 4.7.2.

No support is provided for IDGs, boundary region thinning or approximate solutions.

Dialogs: Figure 13, Figure 7.

Keywords: DISCERNIBILITY ({Full, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), MODULO.DECISION

(Boolean).

Signature: RSESDecisionTable→ RSESReducts

4.7.8 IReduceIGenetic algorithm (RSES)...

Name: RSESGeneticReducer

Description: Implements a variation of the algorithm described by Wróblewski [42]. Uses a genetic algo-
rithm to search for reducts, either until the search space is exhausted or until a given maxi-
mum number of reducts have been found.

Three predefined parameter settings can be chosen among that control the thoroughness and
speed of the genetic search procedure. No support is provided for IDGs, boundary region
thinning or approximate solutions.

Dialogs: Figure 17, Figure 13, Figure 7.

Keywords: DISCERNIBILITY ({Full, Object}), SELECTION ({All, Value, File, Index}), SELECTION.ATTRIBUTE (String), SE-

LECTION.VALUE (String), SELECTION.FILENAME (String), SELECTION.INDEX (Integer), MODULO.DECISION

(Boolean), NUMBER (Integer), SEED (Integer), SPEED ({Fast, Normal, Slow}).

Signature: RSESDecisionTable→ RSESReducts

28

4.8 IClassify...

Name: BatchClassifier

Description: Classifies all objects in a decision table using one of the classifiers described in Section 14.
A confusion matrix is constructed, and, optionally, ROC information is returned. Several
ASCII files may be produced as side-effects along the way, each giving a detailed breakdown
of some aspect of the classification process.

If the selected classifier cannot come up with a decision, a fallback or default decision may
be specified. A typical fallback choice is the most frequently occurring decision class. A
certainty coefficient can be associated with the chosen fallback, and should typically be set to
the a priori probability of the selected fallback decision. This only has practical relevance if a
ROC curve is to be generated.

In some cases the selected classifier may flag that several alternative decision values are possi-
ble for an object, each one with a different certainty coefficient associated with it. The options
in this category determine how such situations should be dealt with:

• Best: Classifies the object as belonging to the decision class that has the highest degree
of certainty associated with it, as determined by the selected classifier.

• Prioritize: Classifies the object according to the motto “if the classifier says that the object
could belong to a specific decision class (even though it is not very likely), then classify
it as such”. This option might be desirable to use if we deal with very rare events. In
such cases, one might want to prioritize a specified decision class (the rare event or
events that are more important to detect than others). This can be further generalized
by requiring that the associated certainty coefficient must be above some threshold in
order for prioritization to take effect.

• Refrain: Refrains from classifying objects for which the selected classifier indicates mul-
tiple possible decisions.

TIP Currently, all classifiers except the one described in Section 14.4 have support for multi-
ple decisions and certainty coefficients.

Classification details for each object may be logged to a file. This file contains a detailed
breakdown of the performance and output of the selected classifier.

If the selected classifier has support for certainty coefficients, data points for ROC curves
may be generated for a selected “focus” class. (For an introduction to ROC analysis, see
Øhrn [26, chapter 7] and references therein.) If we have more than two decision classes, a
virtual binarization implicitly takes place. All objects from decision classes different from
the focus class are treated as the same class 0, while objects from the focus class are treated
as class 1. Note that for ROC purposes then, we do not distinguish between misclassifica-
tions between objects that belong to different decision classes than the focus class. Such a
misclassification is in this context in fact treated as a correct classification.

If the selected classifier has support for certainty coefficients, data points for calibration plots
may be generated for a selected “focus” class. (For an introduction to calibration plots, see
Øhrn [26, chapter 7] and references therein.) If there are more than two decision classes, a
virtual binarization implicitly takes place, as discussed above. A calibration plot file also
contains information about the Brier score [9,8,33] and its covariance decomposition [5], and
the linear regression equation of the plot’s data points.

TIP With a group size of 1, the calibration plot file will contain a list of the individual cer-
tainty coefficients. If the number of groups specified exceeds the number of objects in
the table, a group size of 1 is used. See also Appendix A.8.

Dialogs: Figure 18, Figure 19.

Keywords: CLASSIFIER (Id), FALLBACK (Boolean), FALLBACK.CLASS (String), FALLBACK.CERTAINTY (Float), MULTI-

PLE ({Best, Prioritize, Refrain}), MULTIPLE.CLASS (String), MULTIPLE.THRESHOLD (Float), LOG (Boolean),

29

Figure 18: Dialog box for providing batch classification parameters.

LOG.FILENAME (String), LOG.VERBOSE (Boolean), CALIBRATION (Boolean), CALIBRATION.CLASS (String), CAL-

IBRATION.FILENAME (String), CALIBRATION.GROUPS (Integer), ROC (Boolean), ROC.CLASS (String), ROC.FILENAME

(String).

Signature: DecisionTable→ BatchClassification

Example: If we want to apply a classifier to a set of objects for which no outcome is known, a dummy
decision attribute has to be appended to the input decision table. Make sure the option to
log the classification details to file is selected. The suggested decisions for each object will be
logged to the specified file. The resulting confusion matrix will not make much sense in such
a situation, and only serves to summarize the contents of the log file.

4.9 IOther

4.9.1 IOtherIImport reducts...

Name: MyReductImporter

Description: A collection of user-defined attribute subsets can be imported into ROSETTA from an ASCII
file. The file format is documented in Appendix A.3.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ Reducts

30

Figure 19: Dialog box for providing ROC and calibration plot parameters.

Figure 20: Dialog box for randomly splitting a decision table in two.

4.9.2 IOtherISplit in two...

Name: BinarySplitter

Description: Splits a decision table with a universe U of objects in two disjoint and randomly sampled
subtables, with universes U1 and U2 respectively.

U = U1 ∪U2 U1 ∩U2 = ∅ (13)

The proportion |U1|/|U| can be specified, as well as the seed to the random number genera-
tor. The sampled subtables are normally appended to the input table’s child list as separate
entities.

Dialogs: Figure 20.

Keywords: SEED (Integer), FACTOR (Float), APPEND (Boolean).

Signature: DecisionTable→ {DecisionTable, DecisionTables}

4.9.3 IOtherIPartition...

Name: Partitioner

Description: Takes as input a decision table and computes its equivalence classes of objects wrt. a given
set of attributes.

Dialogs: Figure 15.

Keywords: ATTRIBUTES (AttributeList).

Signature: DecisionTable→ EquivalenceClasses

31

Figure 21: Dialog box for computing rough set approximations.

4.9.4 IOtherIApproximate decision class...

Name: Approximator

Description: Computes a rough set approximation of a specified decision class, using the variable preci-
sion model [44, 43].

TIP In command scripts, the decision class is specified via the integer coding used internally.
Integer codes can be looked up in, e.g., the data dictionary associated with the decision
table.

Dialogs: Figure 21, Figure 15.

Keywords: DECISION (Integer), PRECISION (Float), ATTRIBUTES (AttributeList).

Signature: DecisionTable→ Approximation

4.10 IExecute

Name: Executor

Description: This family of algorithms enables us to execute simple command scripts, thus offering the
possibility to automate lengthy and repetitive command sequences.

The commands to execute are assumed supplied in a script file, described in Appendix A.4.
A command is a pair consisting of an algorithm name (or its description) and a parameter
set, each residing on separate subsequent lines. How these commands are executed depends
on the selected member of the Executor family.

The result of successfully executing a command script is a log file, and whatever files the
commands may have produced as side-effects. Optionally, the command script may return
the last produced structure of a specified type.

TIP If no structure return type is specified or is set to Undefined, then the script’s input
structure itself is returned. Otherwise, the last produced structure that matches the
specified type is returned. Approximate type matches are supported.

Dialogs: Figure 22.

4.10.1 IExecuteIPipeline script...

Name: SerialExecutor

Description: Implements pipeline execution, i.e., the command script is interpreted as defining a “flow”
of algorithm applications. Thus, if our script describes a sequence of algorithms A1, . . . , An
and we apply it to the input structure S, we compute:

An(An−1(· · ·(A2(A1(S)))· · ·)) (14)

32

Figure 22: Dialog box for executing command scripts.

The format for command scripts is described in Appendix A.4.

TIP Make sure the algorithms’ type signatures match up, i.e., that algorithm Ai+1 is appli-
cable to the output of algorithm Ai, and that A1 is applicable to S.

Dialogs: Figure 22.

Keywords: FILENAME.COMMANDS (String), FILENAME.LOG (String), OUTPUT (Id).

Signature: Structure→ Structure

Example: The command script file below, assumed applied to a decision table, defines a small pipeline.
First, the table is discretized, before all reducts are computed. Rules are subsequently gener-
ated and exported to Prolog format.

RSESOrthogonalScaler

{MODE = Save; FILENAME = c:/temp/cuts.txt}

RSESExhaustiveReducer

{DISCERNIBILITY = Object}

RuleGenerator

{}

PrologRuleExporter

{FILTERING = c:/temp/rules.txt}

Note that an algorithm may take more parameters than we supply, as discussed in Ap-
pendix A.4.

4.10.2 IExecuteIPipeline script with CV...

Name: CVSerialExecutor

Description: Implements k-fold cross-validation (CV), where the training and test pipelines are defined
via command scripts. Input to the algorithm is a decision table. The format for command
scripts is described in Appendix A.4.

The command script is read and split into two pipelines, one for training and one for testing.
The user currently has to specify the length of the training pipeline, so that the split can be
done at the correct location.

The following process is performed:

1. Sample two disjoint tables from the input decision table: A training table and a test
table.

2. Feed the training table into the training pipeline, as described in Section 4.10.1. The
training pipeline is assumed to produce a set of rules along the way.

33

3. Feed the test table into the test pipeline, as described in Section 4.10.1. The test pipeline
is assumed to produce a batch classification structure along the way, typically by an al-
gorithm from Section 4.8. The set of rules produced by the training pipeline is implicitly
passed to that algorithm in the test pipeline.

4. Collect statistics from the batch classification structure produced by the test pipeline,
and dump these to a log file.

5. Repeat the steps above k times in all, at each iteration systematically varying the sam-
pling in step 1.

6. Compute summary statistics, and dump these to a log file.

With standard CV sampling, each object in the input decision table is guaranteed to be in the
training table k − 1 times and in the test table once. With inverted sampling, what would
usually be the training table for an iteration becomes the test table, and vice versa. With
inverted sampling, each object is thus guaranteed to be in the training table once and in the
test table k− 1 times.

TIP All occurrences of the string ‘#ITERATION#’ in a parameter set are substituted by the
index of the current CV iteration.

TIP It is possible to use this algorithm for classifiers that don’t produce if-then rules, too. For
such classifiers, simply produce a dummy rule set in the training pipeline.

Dialogs: Figure 23, Figure 22.

Keywords: FILENAME.COMMANDS (String), FILENAME.LOG (String), OUTPUT (Id), NUMBER (Integer), INVERT (Boolean),
LENGTH (Integer), SEED (Integer).

Signature: DecisionTable→ Structure

Example: The CV command script below specifies the following procedure to the performed k times:
First, sample a training table and a testing table for the current iteration. (This is done implic-
itly.) A model is then built by discretizing the table before computing reducts and rules. To
test the model, we discretize the test table, using the same cuts that were used to discretize
the training table. The objects in the discretized test table are then classified, implicitly using
the rules generated during training.

RSESOrthogonalScaler

{MODE = Save; FILENAME = c:/temp/cuts.txt}

RSESExhaustiveReducer

{DISCERNIBILITY = Object}

RuleGenerator

{}

RSESOrthogonalFileScaler

{MODE = Load; FILENAME = c:/temp/cuts.txt}

BatchClassifier

{CLASSIFIER = StandardVoter}

The length of the training pipeline is 3, which has to be specified. After all k iterations are
done, the log file contains the summarized performance statistics.

If we in the script above want to, e.g., store the cuts for each iteration, then all occurrences of
‘cuts.txt’ in the script could be replaced with ‘cuts#ITERATION#.txt’. In the case of k = 3,
this would produce files named ‘cuts0.txt’, ‘cuts1.txt’ and ‘cuts2.txt’.

4.10.3 IExecuteIBatch script...

Name: ParallelExecutor

34

Figure 23: Dialog box for executing CV command scripts.

Description: Implements batch execution of commands. If our script describes a set of algorithms A1, . . . , An
and we apply it to the input structure S, we compute:

A1(S), A2(S), . . . , An−1(S), An(S) (15)

The format for command scripts is described in Appendix A.4.

TIP Make sure the algorithms’ type signatures match up, i.e., that S will be accepted as input
to every algorithm Ai.

TIP Each algorithm Ai could, e.g., be a SerialExecutor algorithm as described in Section 4.10.1.
Conceptually, this would have the effect of executing several “parallel” pipelines.

Dialogs: Figure 22.

Keywords: FILENAME.COMMANDS (String), FILENAME.LOG (String), OUTPUT (Id).

Signature: Structure→ Structure

Example: The command script below, assumed applied to a decision table, defines a small batch exe-
cution task. The script simply exports the table to three different formats.

PrologDecisionTableExporter

{FILENAME = c:/temp/table1.pl}

MatlabDecisionTableExporter

{FILENAME = c:/temp/table2.txt}

MyDecisionTableExporter

{FILENAME = c:/temp/table3.txt}

4.11 IStatistics...

Description: Pops up a dialog where miscellaneous table statistics can be examined. Mean and median
values, standard deviations and correlations are shown.

TIP For string attributes, the correlations are computed on the basis of the internal integer
coding of the value set. See Section 4.1.

The value distribution of each attribute can also be viewed.

TIP Left-clicking on a header in a list control sorts the data. Right-clicking in a list control
enables data to be copied to the Windows clipboard.

Dialogs: Figure 24.

35

Figure 24: Dialog box for viewing table statistics.

5 Decision Tables

Name: DecisionTables

Description: A compound structure holding a collection of decision tables.

5.1 IView...

Description: Brings up the views of all decision tables contained in the collection.

6 Reducts

Name: Reducts

Description: Contains a collection of reducts. A reduct can be perceived as a vector of column indices into
a decision table.

6.1 IView...

Description: Brings up a view of the reduct set, enabling the data to be inspected in detail.

TIP Right-click on a column header to sort the reducts.

36

6.2 IExport

Name: ReductExporter

Description: This family of algorithms comprises routines that export reduct sets to files in some format.
The algorithms function as simple identity pass-through routines, where the exporting is a
side-effect of applying the algorithm.

6.2.1 IExportIXML format...

Name: XMLReductExporter

Description: Exports a set of reducts to XML format.

TIP XML greatly increases interoperability with other programs, and you can transform the
XML into other formats using the XSLT language. Many current browsers also support
viewing of XML documents.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Reducts→ Reducts

Example: The reduct set {{boats, planes, trains}, {cars, trains}} might be represented as the following
XML fragment:

<reducts name="example">

<reduct support="1" type="Full" modulo="false">

<attribute name="boats"/>

<attribute name="planes"/>

<attribute name="trains"/>

</reduct>

<reduct support="1" type="Full" modulo="false">

<attribute name="cars"/>

<attribute name="trains"/>

</reduct>

</reducts>

6.2.2 IExportIProlog format...

Name: PrologReductExporter

Description: Exports a set of reducts as a set of Prolog facts. The reducts are named “rn”, where n is the
index of the reduct in the reduct set. Index counts start at 1.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Reducts→ Reducts

Example: The reduct set {{boats, planes, trains}, {cars, trains}} would be exported as the following set
of facts:

reduct(r1, boats).

reduct(r1, planes).

reduct(r1, trains).

reduct(r2, cars).

reduct(r2, trains).

37

Option Remove if

Length l ≤ |B| ≤ u
Support l ≤ support(B) ≤ u
Attribute a ∈ B

Table 2: Options for removal of a reduct B from a reduct set. Here, l and u denote specified range parameters, while a is
a fixed attribute identified by its index.

6.2.3 IExportIPlain format...

Name: MyReductExporter

Description: Exports a set of reducts to an ASCII file in a plain and simple format. The inverse of the
algorithm described in Appendix A.3.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Reducts→ Reducts

6.3 IFilter

Name: ReductFilter

Description: Spans procedures that remove elements from reduct sets, according to different evaluation
criteria. Unless explicitly stated, algorithms in this family modify their input directly.

6.3.1 IFilterIBasic filtering...

Name: MyReductFilter

Description: Removes individual reducts from a reduct set. Possible removal criteria are listed in Table 2.

More than one removal criterion may be combined to define a compound criterion. The
removal decision of the compound criterion may be negated, if specified.

Dialogs: Figure 25.

Keywords: FILTERING ({Integer, Length, Support, Attribute}), CONNECTIVE ({Or, And}), LENGTH.LOWER (Integer), LENGTH.UPPER

(Integer), SUPPORT.LOWER (Integer), SUPPORT.UPPER (Integer), ATTRIBUTE (Integer), INVERT (Boolean).

Signature: Reducts→ Reducts

6.3.2 IFilterICost filtering...

Name: ReductCostFilter

Description: Removes reducts from a reduct set according to their “cost”. The function cost specifies the
cost of attribute subset B. The file format for specifying cost information is defined in Ap-
pendix A.6.

cost(B) = ∑
a∈B

cost(a) (16)

If a reduct’s cost exceeds some specified threshold, the reduct is scheduled for removal. The
removal decision may be negated, if specified.

The log file contains a detailed breakdown and ranking of the reducts.

38

Figure 25: Dialog box for simple filtering of reducts.

Figure 26: Dialog box for cost filtering of reducts.

TIP Cost filtering may be of use if each attribute represents a test of some kind, and there is
some cost associated with acquiring the attribute. In a medical setting, e.g., an invasive
procedure might be more costly than a non-invasive one, and some tests may involve
expensive drugs while others do not.

TIP By specifying an unreachable filtering threshold, this algorithm can be used for cost
evaluation of reducts without filtering any of them away.

Dialogs: Figure 26.

Keywords: COST.FILENAME (String), DEFAULT (Float), THRESHOLD (Float), LOG.FILENAME (String), INVERT (Boolean).

Signature: Reducts→ Reducts

6.3.3 IFilterIPerformance filtering...

Name: ReductPerformanceFilter

39

Figure 27: Dialog box for performance filtering of reducts.

Description: Each reduct in the reduct set is evaluated according to the classificatory performance of the
rules generated from that reduct alone. The reduct is removed if the performance score does
not exceed a specified threshold.

The following process is performed for each reduct:

1. Generate a set of rules from the reduct, using a given rule generator algorithm and a
given decision table.

2. Classify all objects in another given decision table, using the generated set of rules and
a specified classifier.

3. Harvest a performance score from the resulting confusion matrix. A performance score
can be the classification accuracy, or the ratio between a diagonal element of the matrix
and the corresponding row or column sum.

The log file contains a detailed breakdown of the performance of each reduct.

For an example of the algorithm’s use, see Vinterbo et al. [39].

TIP By specifying an unreachable filtering threshold, this algorithm can be used for perfor-
mance evaluation of reducts without filtering any of them away.

Dialogs: Figure 27, Figure 18, Figure 19, Figure 29.

Keywords: RULEGENERATOR.DECISIONTABLE (String), BATCHCLASSIFIER.DECISIONTABLE (String), RULEGENERA-

TOR (Id), BATCHCLASSIFIER (Id), RATIO ({Diagonal, Row, Column}), INDEX (Integer), THRESHOLD (Float),
FILENAME (String), INVERT (Boolean).

Signature: Reducts→ Reducts

40

Figure 28: Dialog box for simple shortening of reducts.

6.3.4 IFilterIRemove reducts with no rules (RSES)

Name: RSESRulelessReductFilter

Description: Removes a reduct from the reduct set if there are no rules derived from that reduct.

Keywords: INVERT (Boolean).

Signature: RSESReducts→ RSESReducts

6.3.5 IFilterIBasic shortening...

Name: MyReductShortener

Description: Removes attributes from reducts according to a set of selected criteria. An attribute is re-
moved if one or more of the criteria apply. The removal decision may be negated, if specified.

TIP Elimination of duplicate reducts after shortening is not implemented.

Dialogs: Figure 28.

Keywords: SHORTENING ({Integer, Percentage, Occurrence, Combined}), PERCENTAGE.LOWER (Float), PERCENTAGE.UPPER

(Float), ATTRIBUTE (Integer), PRIMARY (Integer), SECONDARY (Integer), INVERT (Boolean).

Signature: Reducts→ Reducts

6.4 IGenerate rules...

Name: RSESRuleGenerator

Description: Generates rules from a set of reducts. Conceptually, this is done by overlaying each reduct in
the reduct set over the reduct set’s parent decision table, and reading off the values.

If the reduct set already has a rule set attached to it, this child rule set is returned. Otherwise,
and if the reducts are of type “full discernibility”, a new set of rules is generated.

TIP Since the RSES library does not provide support for IDGs, the rules’ support counts
are overly conservative if the reducts are generated using anything other than strict
inequality to define the discernibility predicate.8

8Contact aleks@idi.ntnu.no if you need a workaround.

41

aleks@idi.ntnu.no

Figure 29: Dialog box for generating rules.

Figure 30: Dialog box for viewing reduct statistics.

Dialogs: Figure 29.

Keywords: IDG (Boolean).

Signature: RSESReducts→ RSESRules

6.5 IStatistics...

Description: Pops up a dialog where miscellaneous reduct set statistics can be examined.

TIP Left-clicking on the column headers in a list control sorts the data. Right-clicking in a
list control enables data to be copied to the Windows clipboard.

Dialogs: Figure 30.

7 Rules

Name: Rules

Description: Contains a collection of rules. A rule can be perceived as two vectors of descriptors, where
each descriptor is an attribute index into a decision table and an element from that attribute’s
value set.

42

7.1 IView...

Description: Brings up a view of the rule set, enabling the data to be inspected in detail.

TIP Right-click on a column header to sort the rules.

7.2 IExport

Name: RuleExporter

Description: This family of algorithms comprises routines that export rule sets to files in some format.
The algorithms function as simple identity pass-through routines, where the exporting is a
side-effect of applying the algorithm.

7.2.1 IExportIXML format...

Name: XMLRuleExporter

Description: Exports a set of rules to XML format.

TIP XML greatly increases interoperability with other programs, and you can transform the
XML into other formats using the XSLT language. Many current browsers also support
viewing of XML documents.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Rules→ Rules

Example: The following XML fragment represents an example decision rule:

<rule>

<if support="5" coverage="0.208333">

<and>

<descriptor attribute="Icon" value="Y"/>

<descriptor attribute="Word" value="[1, 4)"/>

</and>

</if>

<then>

<or>

<decision support="1" accuracy="0.2" coverage="0.0909091">

<descriptor attribute="Type" value="C"/>

</decision>

<decision support="4" accuracy="0.8" coverage="0.307692">

<descriptor attribute="Type" value="U"/>

</decision>

</or>

</then>

</rule>

7.2.2 IExportIProlog format...

Name: PrologRuleExporter

Description: Exports a set of rules to an ASCII file as a set of Prolog clauses. The head of each exported
clause contains various numerical information associated with the rule. An inconsistent rule
is split into several individually consistent rules. Intervals are exported using a numerical
syntax.

43

TIP This enables one to, e.g., directly employ induced rules as part of a larger expert system.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Rules→ Rules

Example: An inconsistent rule indicating two possible decisions might be exported as the following
Prolog clauses:

disease(X, no, 112, 0.848485, 0.000001) :-

exang(X, no),

ca(X, V1),

V1 < 1.

disease(X, yes, 20, 0.151515, 0.0) :-

exang(X, no),

ca(X, V1),

V1 < 1.

See the exported file for a legend to the clause heads.

7.2.3 IExportIC++ format...

Name: CPPRuleExporter

Description: Exports a set of rules to C++ code that realizes a classifier. Conflict resolution among firing
rules is done via standard voting.

TIP This enables an induced classifier to be embedded into your own C++ code.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Rules→ Rules

Example: The generated code defines two classes, ROSETTAObject and ROSETTAClassifier. In a small
user-written “driver program”, these classes could be used together as follows:

ROSETTAObject object;

object.Age = 63;

object.Sex = object.LookupSex("Male");

object.Cp = object.LookupCp("Typical angina");

object.Trestbps = 145;

object.Chol = 233;

object.Fbs = object.LookupFbs("True");

object.Restecg = object.LookupRestecg("LV hypertrophy");

object.Thalach = 150;

object.Exang = object.LookupExang("No");

object.Oldpeak = 2.3;

object.Slope = object.LookupSlope("Downsloping");

object.Ca = 0;

object.Thal = object.LookupThal("Fixed defect");

ROSETTAClassifier classifier;

int votes[2];

int no_matches = classifier.Classify(object, votes);

44

Option Remove if

RHS Support l ≤ support(α · (d = v)) ≤ u
RHS Accuracy l ≤ accuracy(α → (d = v)) ≤ u
RHS Coverage l ≤ coverage(α → (d = v)) ≤ u
RHS Stability l ≤ stability(α → (d = v)) ≤ u
Decision v = v′

LHS Length l ≤ length(α) ≤ u
Condition (a = v′) occurs in α

Table 3: Options for removal of a rule α → (d = v) from a rule set. Here, l and u denote specified range parameters. See
Øhrn [26, chapter 6] for a legend.

cout << "no_matches = " << no_matches << endl;

cout << "votes[0] = " << votes[0] << endl;

cout << "votes[1] = " << votes[1] << endl;

For details, see the comments in the generated C++ code.

7.2.4 IExportIPlain format...

Name: MyRuleExporter

Description: Exports a set of rules to an ASCII file in a plain and simple format.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: Rules→ Rules

7.3 IFilter

Name: RuleFilter

Description: Spans procedures that remove rules from rule sets, according to different evaluation criteria.
Unless explicitly stated, algorithms in this family modify their input directly.

7.3.1 IFilterIBasic filtering...

Name: MyRuleFilter

Description: Removes individual rules or patterns from a rule set. Possible removal criteria are listed in
Table 3.

More than one removal criterion may be combined to define a compound criterion. The
removal decision of the compound criterion may be negated, if specified.

Dialogs: Figure 31.

Keywords: FILTERING ({Integer, RHS Support, RHS Accuracy, Decision, LHS Length, Condition, RHS Stability, RHS Cov-

erage}), CONNECTIVE ({And, Or}), SUPPORT.RHS.LOWER (Integer), SUPPORT.RHS.UPPER (Integer), ACCU-

RACY.RHS.LOWER (Float), ACCURACY.RHS.UPPER (Float), COVERAGE.RHS.LOWER (Float), COVERAGE.RHS.UPPER

(Float), STABILITY.RHS.LOWER (Float), STABILITY.RHS.UPPER (Float), DECISION (Integer), DOMINATE (Boolean),
LENGTH.LHS.LOWER (Integer), LENGTH.LHS.UPPER (Integer), ATTRIBUTE (Integer), VALUE (Integer), INVERT

(Boolean).

Signature: Rules→ Rules

45

Figure 31: Dialog box for simple filtering of rules.

46

Figure 32: Dialog box for quality filtering of rules.

7.3.2 IFilterIQuality filtering...

Name: QualityRuleFilter

Description: Filters away rules according to various measures of rule quality. For definitions of the imple-
mented quality measures, see Bruha [10] or Ågotnes [1].

Dialogs: Figure 32.

Keywords: FILTERING ({Michalski, Torgo, Brazdil, Pearson, G2, J, Cohen, Coleman, Kononenko}), FILTERING.BIAS (Float),
FILTERING.NORMALIZATION ({None, C1, C2}), UPPER.THRESHOLD (Float), LOWER.THRESHOLD (Float),
REMOVE.UNDEFINED (Boolean), INVERT (Boolean).

Signature: Rules→ Rules

7.3.3 IFilterIQuality filtering loop...

Name: QualityRuleFilterLoop

Description: Couples the filtering scheme from Section 7.3.2 together with ROC analysis. Enables the clas-
sificatory performance of a set of rules to be monitored as a function of the quality threshold.

The following process is performed:

1. Given a quality measure, compute the quality of each rule in the rule set. Dump the
qualities to a log file.

2. Let R = ∅ and t = ∞.

3. Lower t so that a certain minimum number of new rules have qualities above t. Add
these rules to R.

4. Use R to classify the objects in a given decision table, and note the resulting area under
the ROC curve.

5. Dump t, |R|, and various ROC performance information to a log file.

6. If R contains all rules, exit. Otherwise, goto step 3.

47

Figure 33: Dialog box for looped quality filtering of rules.

For an example of the algorithm’s use, see Øhrn et al. [30] or Ågotnes et al. [2].

TIP The algorithm returns the original, unfiltered input rule set.

Dialogs: Figure 33, Figure 32.

Keywords: FILTERING ({Michalski, Torgo, Brazdil, Pearson, G2, J, Cohen, Coleman, Kononenko}), FILTERING.BIAS (Float),
FILTERING.NORMALIZATION ({None, C1, C2}), REMOVE.UNDEFINED (Boolean), RESOLUTION ({Fixed, Dy-

namic}), RESOLUTION.THRESHOLD (Integer), RESOLUTION.GAP (Integer), RESOLUTION.FRACTION (Float),
FILENAME (String), DECISIONTABLE (String), CLASSIFIER (Id), ROC.CLASS (String), FALLBACK.CERTAINTY

(Float).

Signature: Rules→ Rules

7.4 IStatistics...

Description: Pops up a dialog where miscellaneous rule set statistics can be examined.

TIP Left-clicking on a column header in a list control sorts the data. Right-clicking in a list
control enables data to be copied to the Windows clipboard.

Dialogs: Figure 34.

48

Figure 34: Dialog box for viewing rule statistics.

8 Patterns

Name: Rules

Description: A set of patterns is the same as a set of rules that have no consequents. Such structures may
result from computing reducts and not taking the decision attribute into account.

8.1 IView...

Description: Brings up a view of the pattern set, enabling the data to be inspected in detail.

TIP Right-click on a column header to sort the patterns.

9 Batch Classifications

Name: BatchClassification

Description: Summarizes the results of a batch classification procedure. Holds a confusion matrix and
some ROC-derived quantities, if relevant.

9.1 IView...

Description: Brings up a view of the batch classification structure, enabling the data to be inspected in
detail.

49

10 Text Files

Name: TextFile

Description: A wrapper around an ASCII file residing somewhere on the file system. Enables the file to be
represented in the GUI.

TIP Objects of this type are simple wrappers and do not hold any actual data. Thus, if a text
file icon is deleted from the project tree, the underlying file does not get deleted.

10.1 IView...

Description: Bring up a view of the underlying ASCII file. The file is read on demand.

11 Partitions

Name: EquivalenceClasses

Description: Represents a set of equivalence classes. An equivalence class is a set of object indices into a
parent decision table.

11.1 IView...

Description: Brings up a view of the partition, enabling the data to be inspected in detail.

TIP Object indices can be 0-based or 1-based. Select the Use offset menu option from the
grid origin’s pop-up menu to switch between viewing modes.

TIP Right-click on a column header to sort the data.

12 Approximations

Name: Approximation

Description: Represents a rough set approximation. An approximation consists of several approximation
regions, each region being a collection of equivalence classes. An equivalence class is a set of
object indices into a parent decision table.

12.1 IView...

Description: Brings up a view of the approximation, enabling the data to be inspected in detail.

TIP Object indices can be 0-based or 1-based. Select the Use offset menu option from the
grid origin’s pop-up menu to switch between viewing modes.

12.2 IStatistics...

Description: Brings up a dialog enabling various statistics and numerical quantities of the rough set ap-
proximation to be viewed.

Dialogs: Figure 35.

50

Figure 35: Dialog box for viewing approximation statistics.

13 Algorithms

Name: Algorithm

Description: Represents an installed algorithm. This branch of the project tree is seldom in practical use.

TIP The algorithm names and descriptions that appear in the project tree are the same ones
that can be used in command scripts.

13.1 IApply...

Description: Brings up a dialog box where an applicable structure in the current project can be selected.
The selected structure is then used as input to the algorithm. If there is only one structure
which the algorithm is applicable to, the dialog box is bypassed.

TIP Note that the following three actions are equivalent:

– From the pop-up menu of structure S, select an algorithm A to apply.
– From the pop-up menu of algorithm A, select Apply... and indicate S.
– Drag the icon of A and drop it onto the icon of S, or vice versa.

Dialogs: Figure 36.

14 Classifier Algorithms

Name: Classifier

51

Figure 36: Dialog box for selecting an input structure.

Name Option Description

Voting Support Cast a number of votes equal to the
number of objects in the training set
that match both α and (d = v).

Simple Cast one vote.
Normalization Firing Divide the number of votes by the sum

of all casted votes.
All Divide the number of votes by the sum

of all votes for all rules.

Table 4: Options for specifying how many votes a firing rule α → (d = v) gets to cast in favour of decision value v, and
how the tallied votes are to be normalized.

Description: Algorithms in this family classify a single object in a decision table according to some clas-
sification strategy, and are typically used as components of batch classifiers as described in
Section 4.8.

Classifier algorithms take as input an object’s information vector, and return (unless other-
wise stated) a list of possible decision classes ranked according to some measure of certainty.

14.1 Standard voting

Name: StandardVoter

Description: Implements voting as described by Øhrn [26, pages 66-68], using a specified rule set.

In the firing step, a rule fires if its antecedent is not in conflict with the presented object, and
if the percentage of verifiable terms in the antecedent is above a certain threshold t. IDGs can
be used in the matching stage to allow for approximate matching of descriptors.

In some cases, and especially if the rules are generated as a result of dynamic reduct com-
putation across subtables of varying sizes, it may happen that some rules are generalizations
of other rules. If two or more of the rules in the rule set form a generalization hierarchy, the
algorithm has an option to only let the most specific rule fire, i.e., exclude the generalizations
from the set of firing rules.

TIP If a firing rule indicates more than one possible decision value, we may imagine this
rule to be logically expanded to several rules, each with the same antecedent but with a
single descriptor only as a consequent.

In the election process among the firing rules, each rule gets to cast a certain number of votes
in favour of the decision value it indicates, according to a selected voting strategy. The cer-
tainty coefficient for each possible decision value is computed by dividing the total number
of casted votes for each decision value by a normalization factor. The voting strategies and
normalization options currently implemented are shown in Table 4.

52

Figure 37: Dialog box for setting voting parameters.

TIP If we normalize by the set of firing rules, the certainty coefficients over all possible deci-
sion values will sum to unity, and is equivalent to reporting the percentage of votes that
each decision class has received, relative to the number of votes that have been cast.

Dialogs: Figure 37, Figure 38.

Keywords: RULES (String), FRACTION (Float), IDG (Boolean), IDG.FILENAME (String), SPECIFIC (Boolean), VOTING ({Support,
Simple}), NORMALIZATION ({Firing, All}).

Signature: InformationVector→ RuleBasedClassification

Example: The parameter t controls how unverifiable descriptors should be handled. A choice of t = 1
signifies intolerance to missing values, while t = 0 signifies complete tolerance. By varying
the tolerance parameter t between these two extremes, one can control how conservatively
the firing stage should behave.

Example: Let the specified rule set consist of the rules below, and assume that the tolerance level t has
been set so that only rules 1, 2, 2’, 3 and 3’ fire when presented with an object x such that
a(x) = 0 and b(x) = 1.

Rule Antecedent Consequent Support

1 (a = 0) · (b = 1) → (d = 0) 3
2 (b = 1) · (c = 2) → (d = 0) 5
2’ (b = 1) · (c = 2) → (d = 1) 1
3 (a = 0) · (c = 2) → (d = 0) 7
3’ (a = 0) · (c = 2) → (d = 1) 2
4 (c = 3) → (d = 0) 2
4’ (c = 3) → (d = 1) 1
5 (b = 2) · (c = 2) → (d = 1) 8

There are eight rules in the total rule set, whereof the set of firing rules consists of the five
rules mentioned above. The sum of the support counts in the total rule set is 29, while the
sum of the support counts in the set of firing rules is 18. The returned certainty coefficients
for each decision class would be computed as follows:

53

Figure 38: Dialog box for setting more voting parameters.

Options Certainty factors

Support Firing certainty(x, (d = 0)) 15/18 0.83333
certainty(x, (d = 1)) 3/18 0.16667

Support All certainty(x, (d = 0)) 15/29 0.51724
certainty(x, (d = 1)) 3/29 0.10354

Simple Firing certainty(x, (d = 0)) 3/5 0.6
certainty(x, (d = 1)) 2/5 0.4

Simple All certainty(x, (d = 0)) 3/8 0.375
certainty(x, (d = 1)) 2/8 0.25

Given the set of rules, the algorithm would thus suggest 0 to be the most likely decision value
for object x. Whether this suggestion is followed is up to the calling batch classifier algorithm
or the user to decide.

14.2 Voting with object tracking

Name: ObjectTrackingVoter

Description: Implements voting via object tracking as described by Øhrn [26, pages 68-69], using a speci-
fied rule set.

Dialogs: Figure 37.

Keywords: RULES (String), FRACTION (Float), IDG (Boolean), IDG.FILENAME (String).

Signature: InformationVector→ RuleBasedClassification

14.3 Naive Bayes

Name: NaiveBayesClassifier

Description: Implements the naive Bayes classifier, see, e.g., Ripley [34] or Øhrn [26, pages 84–85]. For
each decision class, computes the conditional probability that that decision class is the correct

54

Figure 39: Dialog box for the naive Bayes classifier.

one, given an object’s information vector. Assumes that the object’s attributes are indepen-
dent. The probabilities involved in producing the final estimate are computed as frequency
counts from a “master” decision table.

The naive Bayes classifier often works very well in practice, and excellent classification results
may be obtained even when the probability estimates contain large errors [12].

TIP Even though this is not a rule-based classifier, it can be used in command scripts. See
Section 4.10.2.

Dialogs: Figure 39.

Keywords: DECISIONTABLE (String).

Signature: InformationVector→ Classification

14.4 Standard/tuned voting (RSES)

Name: RSESClassifier

Description: Offers rule-based classification based on voting, similar in spirit to the algorithm described
in Section 14.1. Two main options are implemented:

• Majority: Similar to the algorithm from Section 14.1 with support-based voting, but with
no tolerance for missing values. If any rules fire, the decision class that achieves the
highest certainty factor is returned.

• Tuned: Allows the voting to incorporate user-defined “distance” values between deci-
sion classes. If x denotes the object to classify and there are different groups of decision
rules Ri that recognize x and indicate decision value i, x will be assigned decision value
k, where k satisfies the following condition:

w j = ∑
i
(|Ri| × f (i, j)) (17)

k = arg min
j

w j (18)

The term f (i, j) denotes the distance between decisions i and j, and is defined via an
ASCII file described in Appendix A.7.

For both schemes, there is an option to exclude rules that fulfill certain filtering criteria to
participate in the voting procedure.

TIP The RSES classifier does not have support for certainty coefficients, nor for returning
multiple classifications. Some of the effects of this are discussed in Section 4.8.

Dialogs: Figure 40.

55

Figure 40: Dialog box for setting RSES voting parameters.

Keywords: RULES (String), VOTING ({Tuned, Majority}), FILENAME (String), FILTERING ({Support, Stability}), THRESH-

OLD.SUPPORT (Float), THRESHOLD.STABILITY (Float).

Signature: InformationVector→ Classification

Example: To exemplify tuned voting as offered by the RSES classifier, consider the situation where
Vd = {1, 2, 3} and we have the following distances between the decision values:

f (1, 2) = 1
f (2, 3) = 2
f (1, 3) = 3

Assume that there for a given object x are three groups of rules R1, R2 and R3 that recognize
it. Let the cardinalities of these be given by |R1| = 10, |R2| = 5 and |R3| = 2. We then
calculate the following quantities:

w1 = (10× 0) + (5× 1) + (2× 3) = 11
w2 = (10× 1) + (5× 0) + (2× 2) = 14
w3 = (10× 3) + (5× 2) + (2× 0) = 40

Hence, the would assign decision value 1 to object x.

15 Script Algorithms

Name: ScriptAlgorithm

Description: Algorithms in this family are only intended used as part of command scripts, as described in
Section 4.10 and Appendix A.4.

15.1 Loader

Name: Loader

Description: Fills the input structure with data, before returning it. Enables files in internal ROSETTA
format to be used in command scripts.

Keywords: FILENAME (String).

Signature: Structure→ Structure

56

15.2 Saver

Name: Saver

Description: Saves the input structure, before returning it. Enables files in internal ROSETTA format to be
used in command scripts.

Keywords: FILENAME (String).

Signature: Structure→ Structure

15.3 StructureCreator

Name: StructureCreator

Description: Creates and returns a new structure of the specified type. The input structure is ignored.

Keywords: OUTPUT (Id).

Signature: Structure→ Structure

15.4 Kidnapper

Name: Kidnapper

Description: Returns the input structure’s child structure number i.

Keywords: INDEX (Integer).

Signature: Structure→ Structure

A Import File Formats

A.1 Dictionaries

Name: DictionaryImporter

Description: Hand-crafted dictionaries can be imported into ROSETTA from ASCII files. The format of
the dictionary file is documented by the example below. See also Section 4.1 for an overview
of attribute types, and the data associated with each type.

TIP Importing a new dictionary for a decision table does not alter the internal integer repre-
sentation of the decision table, but only replaces its data dictionary.

TIP Blank lines and lines that start with the character ‘%’ are ignored.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: {Dictionary, DecisionTable}→ {Dictionary, DecisionTable}

Example: The dictionary below states that the name of attribute 0 is “Radius”, and that it is a float
variable with a precision of 2 decimals, measured in “cm” units. The name of string attribute
1 is “Color”, and the attribute maps the integer value 0 to “Red”, 1 to “Green”, 2 to “Blue”
and 3 to “Yellow”.

57

0.name = Radius

0.unit = cm

0.type = Float

0.decimals = 2

1.name = Color

1.unit = Undefined

1.type = String

1.map.2 = Blue

1.map.1 = Green

1.map.0 = Red

1.map.3 = Yellow

2.name = Year

2.unit = Undefined

2.type = Integer

3.name = Grade

3.unit = Undefined

3.type = Float

3.decimals = 1

4.name = Sold

4.unit = Undefined

4.type = String

4.map.0 = No

4.map.1 = Yes

If we edit our dictionary entry for attribute 1 as shown below, we do not alter the colors of
the objects, i.e., their internal coding remain the same even after the dictionary is imported.
Rather, the fragment below simply redefines the names of the colors, and not the assignment
of colors to objects.

1.name = Color

1.unit = Undefined

1.type = String

1.map.2 = Green

1.map.1 = Blue

1.map.0 = Yellow

1.map.3 = Red

If we want to enforce a particular coding scheme, this can be achieved by importing the
coded table with integer entries, and specifying that the attribute is of string type.9 When the
explicitly coded decision table is imported, the constructed data dictionary can be exported,
edited to define “ordinary” color names, and then imported back into the system.

A.2 Decision Tables

Name: DecisionTableImporter

Description: Algorithms in this family fill a decision table with the contents specified in a file in alien
format.

Dialogs: Figure 41, Figure 3.

9When dictionaries are automatically constructed during import of tables, string attributes try to assign strings their “natural” en-
coding, if possible. For example, the string “3” would be mapped to the number 3, if possible. Otherwise, strings are assigned integers
on a first-come first-serve basis.

58

Figure 41: Dialog box for selecting a decision table import format.

A.2.1 Plain format

Name: MyDecisionTableImporter

Description: Tabular data can be imported into ROSETTA from ASCII files. The file should adhere to the
following formatting rules:

• The first line contains attribute names.

• The second line contains attribute types, as described in Section 4.1. For floating point
fields, the number of decimal points to use has to be specified, too.

• Missing values are indicated by the string Undefined.

• Table entries are separated by spaces, tabs or commas. Entries that contains any of these
characters must be contained in double quotes.

TIP Blank lines and lines that start with the character ‘%’ are ignored. The rightmost attribute
is assigned decision status, all other attributes are assigned condition status.

TIP For numerical attributes, any string entry will be treated as a missing value.

TIP A data dictionary associated with the table is constructed automatically. (See Section 4.1.)
For string attributes, integer values are generally assigned on a first-come first-serve
basis. An example of how to enforce a user-defined coding scheme is given in Ap-
pendix A.1.

TIP If the first line consists of two integers, then these are interpreted by ROSETTA as table
dimensions and are used as a hint to preallocate memory for the table, thus making the
import routine slightly more efficient. Giving such a hint is optional. If the RSES library
is present, the hint will have no effect.

Dialogs: Figure 41, Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

Example: The following decision table can be imported into ROSETTA:

Radius Color Year Grade Sold

Float(2) String Integer Float(1) String

3.14 Red 1970 1.0 No

2.71 Green 1492 1.5 Yes

10.666 Red 1814 2.0 Yes

0.99 Red Undefined Undefined No

0.2 Blue 1776 3.5 No

Undefined Yellow 1865 2.5 No

4925.6 Undefined 1968 6.0 Yes

59

A.2.2 POS format

Name: MyPOSDecisionTableImporter

Description: Creates a decision table with 0/1 entries from a description of a Boolean POS function resid-
ing in an ASCII file, as described by Øhrn [26, page 50]. In addition, a decision attribute is
added that specifies the object indices.

An informal grammar for specifying a POS function is given below. The function definition
ends when the end of the file is reached, or when the string “end” is encountered on a separate
line.

function → name ‘=’ product
product → ‘(’ sum ‘)’
product → product ‘*’ product
sum → variable
sum → sum ‘+’ sum

TIP Blank lines and lines that start with the character ‘%’ are ignored.

TIP The current implementation does not handle extremely large function definitions very
well.

TIP The ability to import function definitions as tables enables ROSETTA to be used for more
general Boolean reasoning purposes. Note that the prime implicants of the imported
function corresponds to the reducts relative to the first object in the resulting table.

Dialogs: Figure 41, Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ DecisionTable

Example: The function definition below can be imported into ROSETTA. Note that the order the vari-
ables are listed in does not matter.

h =

(boats + cars + planes) *

(cars + boats) *

(trains) *

(planes + cars) *

(trains + cars)

end

A.2.3 RSES format (RSES)

Name: RSESDecisionTableImporter

Description: Decision tables residing in legacy RSES ASCII files can be imported into ROSETTA. See
Synak [38] for details on the file format.

TIP All attributes will be assigned string type.

Dialogs: Figure 41, Figure 3.

Keywords: FILENAME (String).

Signature: RSESDecisionTable→ RSESDecisionTable

60

A.3 Reducts

Name: MyReductImporter

Description: A collection of user-defined attribute subsets can be imported into ROSETTA from an ASCII
file. The following formatting rules apply:

• A reduct definition should span a single line, and must be enclosed in curly braces.

• Lines that do not define reducts are ignored, unless the line specifies a support count.

• The attribute names within each reduct are separated by commas.

• Tabs and spaces are ignored within each line.

By default, imported reducts are assigned a support count of 0. If another support count
should be assigned to a reduct, a support count must be explicitly stated on the line following
the reduct definition. Providing a support count is optional.

TIP The input decision table is required to convert attribute names to attribute indices. Make
sure the reduct file is compatible with the decision table.

Dialogs: Figure 3.

Keywords: FILENAME (String).

Signature: DecisionTable→ Reducts

Example: The reduct set specified below can be imported into ROSETTA. Note the format for explicitly
specifying support counts.

{boats, planes, trains}

Support = [1 subtable(s)]

{cars, trains}

Support = [1 subtable(s)]

A.4 Command Scripts

Description: Command scripts can be executed by algorithms in the Executor family, described in Sec-
tion 4.10. A command script is a sequence of commands. A command is a pair consisting
of an algorithm name (or an algorithm description) and a parameter set, each residing on
separate subsequent lines.

TIP Blank lines and lines that start with the character ‘%’ are ignored.

TIP A command pair should occupy exactly two lines of text in the file.

An algorithm name or description in a command identifies one of the installed algorithms in
the system. Algorithm naming is case-insensitive. Approximate matches on algorithm types
are supported, i.e., “abstract superclasses” can be specified.

TIP The name of an algorithm is the name that is used in this document to refer to it. The
description of an algorithm is the menu text that is displayed in the GUI when an al-
gorithm in invoked from a pop-up menu. The names and descriptions of all installed
algorithms can be read from the Algorithms branch in the GUI project tree.

A parameter set in a command is a list of zero or more keyword/value pairs, enclosed in curly
braces. Each keyword/value pair is separated by the ‘;’ character. A keyword is separated
from its value by the ‘=’ character. A keyword is case-insensitive, while a value is case-
sensitive.

61

TIP The keywords relevant for an algorithm are listed in this document under the Keywords
heading, together with the type its values may take on. To see which keyword/value
pairs that were used by a computation, you can also inspect the resulting structure’s
annotation in the GUI.

TIP More keywords than the ones we care to supply may be relevant for an algorithm. If a
relevant keyword is not supplied, then the last used value (or a default value) for that
keyword is employed.

TIP Members of the Executor family are themselves algorithms. This means that a script can
invoke other scripts.

Example: The lines below define two valid script file commands. Observe that algorithms that take no
parameters are passed the empty parameter set.

BROrthogonalScaler

{MODE = Save; FILENAME = c:\temp\cuts.txt; MASK = T}

Holte1RReducer

{}

The parameter sets are here indented to increase readability. Leading or trailing whitespace
is ignored.

A.5 IDG Information

Description: An IDG for an attribute a is a directed graph with the elements of Va as nodes or vertices,
and a set of edges Ea ⊆ V2

a . ROSETTA can read a set of IDGs from an ASCII file. A collection
of IDGs is simply several concatenated individual IDG definitions.

Each IDG is defined according to the format below. Attributes that are not listed in the IDG
file are assumed to adhere to strict inequality, i.e., Ea = {(v, v) | v ∈ Va}.

begin 〈attribute-name〉
nodes 〈vertex-set-specification〉
〈edge-specification1〉
...
〈edge-specificationn〉

end 〈attribute-name〉

TIP Blank lines and lines that start with the character ‘%’ are ignored.

The user-defined components of an IDG specification for an attribute are:

• 〈attribute-name〉
Identifies an attribute a by name. Attribute names are kept by ROSETTA in data dictio-
naries, associated with each information system.

• 〈vertex-set-specification〉
A list of domain values separated by whitespace, whose union should define Va.
TIP The wildcard symbol ‘*’ can be used as shorthand for all observed values for at-

tribute Va.
TIP The missing value symbol > does not count as an observed value, but has to be

specified explicitly.
TIP The specification ‘n..m’ can be used as shorthand for the range or set of integers
{n, . . . , m}.

• 〈edge-specificationi〉
A command specifying some transformation of Ea according to the rules specified in
Table 5.

62

〈edge-specificationi〉 Semantics

make-reflexive Ea ← Ea ∪ {(v, v) | v ∈ Va}
make-symmetric Ea ← Ea ∪ {(v2, v1) | v1, v2 ∈ Va and (v1, v2) ∈ Ea}
make-transitive Ea ← E∗a
make-distance ra Ea ← Ea ∪ {(v1, v2) | v1, v2 ∈ Va and |v1 − v2| ≤ ra}
make-complement Ea ← V2

a − Ea
v1 -> v2 Ea ← Ea ∪ {(v1, v2)}
v1 -- v2 Ea ← Ea ∪ {(v1, v2), (v2, v1)}

Table 5: A ROSETTA IDG specification for an attribute a consists of a sequence of edge specifications. This table gives
an overview of how various edge specification commands alter Ea. Before executing 〈edge-specification1〉, the graph has
no edges, i.e., Ea = ∅. Here, E∗a denotes the transitive closure of Ea, computed by Warshall’s algorithm [3, 11]. Note that
Warshall’s algorithm has a time complexity of O(|Va|3).

TIP When specifying individual edges, the wildcard symbol ‘*’ can be used in place of
any of {v1, v2} as a shorthand notation for specifying all v ∈ Va.

Example: The following definition describes an IDG for the attribute “Type”. The symbol “->” can be
read as “is a”. Note the use and placement of the various commands.

begin Type

nodes Vehicle Bike Car Ford

Bike -> Vehicle

Car -> Vehicle

Ford -> Car

make-reflexive

make-symmetric

make-transitive

end Type

Example: The IDG below states that the domain of the attribute “Ethnicity” is reflexive, and that a
missing value matches everything (and vice versa). Note that the edges are undirected, thus
making a call to make-symmetric superfluous.

begin Ethnicity

nodes * Undefined

make-reflexive

Undefined -- *

end Ethnicity

Example: The IDG below is for an attribute “ca” with the value set {0, 1, 2, 3}. Thus, this IDG effectively
amounts to the same as discretizing the attribute to the “new” value set {{0}, {1, 2, 3}}, in
addition to letting missing values match everything (and vice versa).

begin ca

nodes * Undefined

make-reflexive

Undefined -- *

1 -- 2

1 -- 3

2 -- 3

end ca

Example: The IDG below states that all values for the attribute “disease” are indiscernible. Thus, this
IDG amounts to the same as masking away or ignoring the attribute.

begin disease

nodes * Undefined

make-complement

end disease

63

A.6 Attribute Cost Information

Description: Several algorithms in ROSETTA can make use of attribute cost information. A cost file is a
list of individual attribute costs, with data on one attribute per line. Attribute names and
their costs are separated by the ‘=’ character. Costs are allowed to take on both positive and
negative values.

Currently, information about costs shared among attributes is not handled. Such information
is relevant if the cost of an attribute depends on the context it is evaluated in.

TIP Blank lines and lines that start with the character ‘%’ are ignored.

Example: The following file defines a valid cost file:

color = 100

height = 15.7

is_open = 5.1

A.7 RSES Distance Matrices

Description: The RSES classifier described in Section 14.4 makes use of a distance function f . This function
is supplied in an ASCII file, whose format is documented by the example below.

Example: The file containing the distance function f from the example in Section 14.4 is shown below.
The second line specifies the number of decision values, while the third line specifies the
decision values themselves. The distance function f is defined by the matrix in the last three
lines.

Information about decision values

3

1 2 3

;

0 1 3

1 0 2

3 2 0

Note that the first and fourth line are for all practical purposes ignored.

A.8 Pairs Files

Description: The HYPOCLASS utility and its command-line counterpart operate on “pairs files”. Each
line of data in the ASCII file describes a classifier’s output for a single case or object x. Each
line of data has the following format:10

〈d(x)〉 〈φ(x)〉 [key[. . .]]

The fields are interpreted as follows:

• 〈d(x)〉 (Integer ∈ {0, 1})
Denotes the actual outcome for object x.
• 〈φ(x)〉 (Float ∈ [0, 1])

Denotes the classifier’s output when applied to object x. The value indicates the classi-
fier’s degree of certainty that object x has outcome 1.
• [key] (Integer)

Typically denotes the index of object x. This field enables the data lines to be sorted so
that the data from two classifiers can be automatically “aligned”, if compared. If this
field is missing, no sorting takes place and it is the user’s responsibility that the data
lines are correctly ordered.

10Arguments in angled brackets are required. Arguments in squared brackets are optional.

64

TIP Blank lines and lines that start with the character ‘%’ are ignored.

TIP Note that a “pairs file” as described above can be produced by ROSETTA. Such a file is
simply a calibration curve plot file with a single object per group, i.e., with the number
of groups maximized. See Section 4.8.

B Command-Line Versions

Description: Both ROSETTA and the accompanying HYPOCLASS utility come in command-line versions,
too, called CLROSETTA and CLHYPOCLASS. These versions are supplied so that they can
be used as computational engines called from elsewhere, e.g., from some kind of script.

TIP An example of using Perl to programmatically prepare inputs and parse outputs can be
found on the ROSETTA website [35].

It is possible to port CLROSETTA and CLHYPOCLASS to other platforms than Windows.

B.1 CLROSETTA

Description: CLROSETTA offers all the same core functionality as its GUI counterpart, and is invoked as
shown below.

clrosetta 〈algorithm〉 〈parameters〉 [filename]

The arguments are interpreted as follows:

• 〈algorithm〉 (Id)

The algorithm that is to be executed. Most often, this will be either SerialExecutor, CVSe-
rialExecutor or ParallelExecutor.

• 〈parameters〉 (String)

The list of parameters that is to be passed to the above specified algorithm, given as a
single argument.
TIP Quote the parameter list to make the shell interpret it as a single argument.

• [filename] (String)

The location of the input structure, if any, to the above specified algorithm. If not given,
an empty Project structure is passed to the algorithm instead. The file is assumed to be
in internal ROSETTA format.
TIP If the input file is not in internal ROSETTA format, then don’t supply the last argu-

ment. Use a StructureCreator and an import routine in the command script instead.

Example: Assume that we want to apply 10-fold CV to a decision table residing in the file ‘iris.ros’.
Let the command script reside in the file ‘cmds.txt’, and assume that the training pipeline
contains five steps. If we want to save the log file as ‘log.txt’, we can enter the following at
the command prompt:

clrosetta CVSerialExecutor "NUMBER = 10; FILENAME.COMMANDS = cmds.txt;

LENGTH = 5; FILENAME.LOG = log.txt" iris.ros

Note that the parameter list is quoted. (The text above is here, for presentational purposes,
split across two lines. In reality, of course, it would have been entered at the command
prompt as one line.)

65

B.2 CLHYPOCLASS

Description: CLHYPOCLASS implements Hanley-McNeil’s test [18] and McNemar’s test [34, 4], and is
invoked as shown below.

clhypoclass 〈test〉 〈parameter1〉 〈parameter2〉 〈filename1〉 〈filename2〉 [〈swapped1〉 〈swapped2〉]

The arguments are interpreted as follows:

• 〈test〉 ({HanleyMcNeil, McNemar})

Identifies the statistical test to perform.

• For Hanley-McNeil’s test:

1. 〈parameter1〉 ({Pearson, Kendall})
Specifies how correlations should be computed.

2. 〈parameter2〉 ({CIndex, Trapezoidal})
Specifies how the area under the ROC curve should be computed.

• For McNemar’s test:

1. 〈parameteri〉 (Float)
Specifies the threshold τ to impose on outputs from classifier i.

• 〈filenamei〉 (String)

Gives the location of a “pairs file”, i.e., the output of classifier i. The format of a “pairs
file” is described in Appendix A.8.
TIP Make sure the two files hail from classifiers applied to the same set of objects.

• [〈swappedi〉] (Boolean)

Boolean flag set to true if pairs file i contains (φ(x), d(x)) pairs instead of (d(x),φ(x))
pairs. Assumed false if not given.

Example: Let ‘pairs1.txt’ and ‘pairs1.txt’ denote two pairs files, as specified in Appendix A.8. The
two files stem from classifiers applied to the same set of cases. To perform Hanley-McNeil’s
test using “ordinary” Pearson correlation and trapezoidal integration, we can enter the fol-
lowing at the command prompt:

clhypoclass HanleyMcNeil Pearson Trapezoidal pairs1.txt pairs2.txt

References

[1] T. Ågotnes. Filtering large propositional rule sets while retaining classifier performance. MSc thesis,
Norwegian University of Science and Technology, Department of Computer and Information Science,
Feb. 1999.

[2] T. Ågotnes, J. Komorowski, and A. Øhrn. Finding high performance subsets of induced rule sets: Ex-
tended summary. In H.-J. Zimmermann and K. Lieven, editors, Proc. Seventh European Congress on Intel-
ligent Techniques and Soft Computing (EUFIT’99), Aachen, Germany, Sept. 1999.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.

[4] D. G. Altman. Practical Statistics for Medical Research. Chapman & Hall, London, UK, 1991.

[5] H. R. Arkes, N. W. Dawson, T. Speroff, F. E. Harrel, Jr., C. Alzola, R. Phillips, N. Desbiens, R. K. Oye,
W. Knaus, and A. F. Connors, Jr. The covariance decomposition of the probability score and its use in
evaluating prognostic estimates. Medical Decision Making, 15:120–131, 1995.

[6] J. G. Bazan. A comparison of dynamic and non-dynamic rough set methods for extracting laws from
decision tables. In Polkowski and Skowron [32], chapter 17, pages 321–365.

66

[7] J. G. Bazan, A. Skowron, and P. Synak. Dynamic reducts as a tool for extracting laws from decision
tables. In Proc. International Symposium on Methodologies for Intelligent Systems, volume 869 of Lecture
Notes in Artificial Intelligence, pages 346–355. Springer-Verlag, 1994.

[8] D. A. Bloch. Evaluating predictions of events with binary outcomes: An appraisal of the Brier score and
some of its close relatives. Technical Report 135, Stanford University, Division of Biostatistics, Stanford
University, CA, May 1990.

[9] G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78:1–3,
1950.

[10] I. Bruha. Quality of decision rules: Definitions and classification schemes for multiple rules. In
G. Nakhaeizadeh and C. C. Taylor, editors, Machine Learning and Statistics: The Interface, chapter 5, pages
107–131. John Wiley & Sons, 1997.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA,
1990.

[12] P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple
Bayesian classifier. In Proc. Thirteenth International Conference on Machine Learning, pages 105–112, Bari,
Italy, 1996. Morgan Kaufmann.

[13] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. In A. Prieditis and S. Russell, editors, Proc. Twelfth International Conference on Machine Learning,
pages 194–202. Morgan Kaufmann, 1995.

[14] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

[15] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed replacement. Software –
Practice and Experience, 21(11):1129–1164, Nov. 1991.

[16] The GraphViz homepage. [http://www.research.att.com/sw/tools/graphviz/]. AT&T Research.

[17] The Group of Logic homepage. [http://alfa.mimuw.edu.pl/logic/]. University of Warsaw, Poland.

[18] J. A. Hanley and B. J. McNeil. A method of comparing the areas under receiver operating characteristic
curves derived from the same cases. Radiology, 148:839–843, Sept. 1983.

[19] R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine
Learning, 11(1):63–91, Apr. 1993.

[20] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System
Sciences, 9:256–278, 1974.

[21] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing
Letters, 31(1):7–15, Apr. 1989.

[22] The MATLAB homepage. [http://www.mathworks.com/products/matlab/]. The MathWorks, Inc.

[23] H. S. Nguyen and S. H. Nguyen. Some efficient algorithms for rough set methods. In Proc. Fifth Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), pages
1451–1456, Granada, Spain, July 1996.

[24] H. S. Nguyen and A. Skowron. Quantization of real-valued attributes. In Proc. Second International Joint
Conference on Information Sciences, pages 34–37, Wrightsville Beach, NC, Sept. 1995.

[25] A. Øhrn. Cracking a logical puzzle with ROSETTA. Technical report, Knowledge Systems Group, De-
partment of Computer and Information Science, NTNU, Trondheim, Norway, Dec. 1999.

[26] A. Øhrn. Discernibility and Rough Sets in Medicine: Tools and Applications. PhD thesis, Norwegian Univer-
sity of Science and Technology, Department of Computer and Information Science, Dec. 1999. NTNU
report 1999:133. [http://www.idi.ntnu.no/~aleks/thesis/].

67

http://www.research.att.com/sw/tools/graphviz/
http://alfa.mimuw.edu.pl/logic/
http://www.mathworks.com/products/matlab/
http://www.idi.ntnu.no/~aleks/thesis/

[27] A. Øhrn and J. Komorowski. ROSETTA: A rough set toolkit for analysis of data. In P. P. Wang, editor,
Proc. Third International Joint Conference on Information Sciences, volume 3, pages 403–407, Durham, NC,
Mar. 1997.

[28] A. Øhrn, J. Komorowski, A. Skowron, and P. Synak. The design and implementation of a knowledge dis-
covery toolkit based on rough sets: The ROSETTA system. In Polkowski and Skowron [32], chapter 19,
pages 376–399.

[29] A. Øhrn, J. Komorowski, A. Skowron, and P. Synak. The ROSETTA software system. In L. Polkowski
and A. Skowron, editors, Rough Sets in Knowledge Discovery 1: Methodology and Applications, volume 19 of
Studies in Fuzziness and Soft Computing, pages 572–576. Physica-Verlag, Heidelberg, Germany, 1998.

[30] A. Øhrn, L. Ohno-Machado, and T. Rowland. Building manageable rough set classifiers. In C. G. Chute,
editor, Proceedings AMIA 1998 Annual Symposium, pages 543–547, Orlando, FL, Nov. 1998. Supplement
to Journal of the American Medical Informatics Association, Hanley & Belfus, Inc.

[31] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data, volume 9 of Series D: System Theory,
Knowledge Engineering and Problem Solving. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1991.

[32] L. Polkowski and A. Skowron, editors. Rough Sets in Knowledge Discovery 1: Methodology and Applications,
volume 18 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg, Germany, 1998.

[33] D. A. Redelmeier, D. A. Bloch, and D. H. Hickam. Assessing predictive accuracy: How to compare Brier
scores. Journal of Clinical Epidemiology, 44(11):1141–1146, 1991.

[34] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

[35] The ROSETTA homepage. [http://www.idi.ntnu.no/~aleks/rosetta/]. Norwegian University of
Science and Technology, Department of Computer and Information Science.

[36] The ROSETTA C++ library homepage. [http://www.idi.ntnu.no/~aleks/thesis/source/]. Norwe-
gian University of Science and Technology, Department of Computer and Information Science.

[37] A. Skowron. Synthesis of adaptive decision systems from experimental data. In A. Aamodt and J. Ko-
morowski, editors, Proc. Fifth Scandinavian Conference on Artificial Intelligence, number 28 in Frontiers in
Artificial Intelligence and Applications, pages 220–238. IOS Press, May 1995.

[38] P. Synak. Rough Set Expert System User’s Guide. Institute of Mathematics, Warsaw University, Poland,
1995. Version 1.0.

[39] S. Vinterbo, L. Ohno-Machado, and H. Fraser. A description of a strategy for building rough set classi-
fiers using performance filtering of reducts. In H.-J. Zimmermann and K. Lieven, editors, Proc. Sixth Eu-
ropean Congress on Intelligent Techniques and Soft Computing (EUFIT’98), volume 2, pages 975–979, Aachen,
Germany, Sept. 1998.

[40] S. Vinterbo and A. Øhrn. Minimal approximate hitting sets and rule templates. In Predictive Models
in Medicine: Some Methods for Construction and Adaptation. Department of Computer and Information
Science, Dec. 1999. NTNU report 1999:130. [http://www.idi.ntnu.no/~staalv/dev/thesis.ps.gz].

[41] S. Vinterbo and A. Øhrn. Minimal approximate hitting sets and rule templates. International Journal of
Approximate Reasoning, 25(2):123–143, 2000.

[42] J. Wróblewski. Finding minimal reducts using genetic algorithms. In Proc. Second International Joint
Conference on Information Sciences, pages 186–189, Sept. 1995.

[43] W. Ziarko. Analysis of uncertain information in the framework of variable precision rough sets. Foun-
dations of Computing and Decision Sciences, 18(3–4):381–396, 1993.

[44] W. Ziarko. Variable precision rough set model. Journal of Computer and System Sciences, 46:39–59, 1993.

68

http://www.idi.ntnu.no/~aleks/rosetta/
http://www.idi.ntnu.no/~aleks/thesis/source/
http://www.idi.ntnu.no/~staalv/dev/thesis.ps.gz

Index
Algorithm, 51
Algorithms, 61
Approximator, 32

BatchClassifier, 29
BinarySplitter, 31
BROrthogonalScaler, 16

Classifier, 51
CombinatorialCompleter, 15
Completer, 14
ConditionedCombinatorialCompleter, 15
ConditionedMeanCompleter, 15
CPPRuleExporter, 44
CVSerialExecutor, 33, 65

DecisionTableExporter, 9
DecisionTableImporter, 58
DictionaryExporter, 9
DictionaryImporter, 9, 57
DiscernibilityFunctionExporter, 13

EntropyScaler, 18
EqualFrequencyScaler, 18
Executor, 32, 61, 62

Holte1RReducer, 26
HTMLReporter, 6

IndiscernibilityGraphExporter, 11

JohnsonReducer, 24

Kidnapper, 57

Loader, 56

ManualReducer, 26
ManualScaler, 17
MatlabDecisionTableExporter, 10
MeanCompleter, 14
MyDecisionTableExporter, 11
MyDecisionTableImporter, 59
MyPOSDecisionTableImporter, 60
MyReductExporter, 38
MyReductFilter, 38
MyReductImporter, 30, 61
MyReductShortener, 41
MyRuleExporter, 45
MyRuleFilter, 45

NaiveBayesClassifier, 54
NaiveScaler, 19

ObjectTrackingVoter, 54
ODBCDecisionTableImporter, 5
OrthogonalFileScaler, 20

ParallelExecutor, 34, 65
Partitioner, 31
PrologDecisionTableExporter, 10
PrologReductExporter, 37
PrologRuleExporter, 43

QualityRuleFilter, 47
QualityRuleFilterLoop, 47

Reducer, 21
ReductCostFilter, 38
ReductExporter, 37
ReductFilter, 38
ReductPerformanceFilter, 39
RemovalCompleter, 14
Reporter, 6
ROSETTAClassifier, 44
RSESClassifier, 55
RSESDecisionTableImporter, 60
RSESDynamicReducer, 27
RSESExhaustiveReducer, 27
RSESGeneticReducer, 28
RSESJohnsonReducer, 28
RSESOrthogonalFileScaler, 21
RSESOrthogonalScaler, 21
RSESRuleGenerator, 41
RSESRulelessReductFilter, 41
RuleExporter, 43
RuleFilter, 45

Saver, 57
SAVGeneticReducer, 22
Scaler, 16
ScriptAlgorithm, 56
SemiNaiveScaler, 20
SerialExecutor, 32, 35, 65
StandardVoter, 52
StructureCreator, 57, 65

XMLDecisionTableExporter, 9
XMLReductExporter, 37
XMLReporter, 6
XMLRuleExporter, 43

69

