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Markov (or normal) algoithms 

In the early 1950's the Russian mathematician A. A. Markov proposed what he termed “normal 
algorithms” to attack the problem of transforming strings of symbols from one string to another in a 
mechanical way. We call them Markov algorithms. This transformation is an abstraction from many of 
our common problems. For example adding two numbers x and y can be considered the problem of 
transforming the string “x + y” into the string “z” where “z” represents the sum of x and y. As another 
example the problem of information storage and retrieval can be thought of as the problem of 
transforming strings representing queries for documents into strings representing the documents 
satisfying the query. 

A couple of basic guidelines to keep in mind when working with Markov algorithms are: 
1. When transforming a string, we shall generally not want to operate on the entire string 

(which may be arbitrarily long) at once, but rather only a small contiguous part of it. 
2. Assume that the device which is to utilize these algorithms is capable of recognizing the 

occurrences of a given substring within a given string. The occurrences may be several in 
number and may overlap. 

3. A particular occurrence of a substring may be distinguished by marking it with an asterisk (*). 

Example: 

The word ratatattat contains three successive occurrences of the string tat, namely 

ra*tat*attat rata*tat*tat  ratatat*tat* 
The first two of these three occurrences overlap by one letter. 

We shall consider these occurrences as numbered, and shall refer to the left-most occurrence of a string A 
in a string B as the first occurrence of A in B. One special string, the empty string, contains no symbols. It 
plays a role analogous to the empty set. If a given string A contains n symbols, the empty string W is 
considered to have n+1 occurrences in A: before the first symbol (the first occurrence of W), after the last 
symbol, and between every two adjacent symbols. 

The transformations of which a Markov algorithm is composed are those that replace the first occurrence 
of a specified string A in the given string by another specified string B. Markov algorithms consist of a 
sequence of such transformations. 

Definition - Let us consider strings of symbols from a given finite symbol set, called the alphabet. We 
suppose that the alphabet does not contain the symbols “→” and “•”. 

  A simple (Markov) production is a string A →B, where A and B are strings in the alphabet. A 
conclusive (Markov) production is a string A →•B, where A and B are strings in the alphabet. 
In the production A →B   (A →•B) the antecedent is A and the consequence is B. 

Definition - Let A →B   (or A →•B) be a Markov production where A and B are strings in the alphabet. Let 
S be a string of symbols in the alphabet. The production is applicable to S when there is at 
least one occurrence of A in S. Otherwise the production is not applicable to S. 

Examples: 

Let the alphabet be the English alphabet a,b,...,z. Let the string S be “abactababrstc” 

- applying the production act →bbb to S, we obtain “abbbbababrstc” 
- applying the production ba →•one to S we obtain “aonectababrstc” 
- applying the production tab →W to S we obtain “abacabrstc” 
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The production abc →rst is not applicable to S. 

Definition - A Markov Algorithm is a finite sequence P1, P2,...,Pn of Markov productions to be applied to 
strings in a given alphabet according to the following rules. Let S be a given string. The 
sequence is searched to find the first production Pi whose antecedent occurs in S. If no such 
production exists, the operation of the algorithm halts without change in S. If there is a 
production in the algorithm whose antecedent occurs in S, the first such production is 
applied  to S. If this is a conclusive production, the operation of the algorithm halts 
without further change in S. If this is a simple production, a new search is conducted using 
the string S' into which S has been transformed. If the operation of the algorithm ultimately 
ceases with a string S*, we say that S* is the result of applying the algorithm to S. 

Example: 

Take the alphabet to be {a, b, c, d}. The algorithm is given below. 

Algorithm M1 
M11: [conclusive]  a d → •d c 
M12: [simple]   b a → W 
M13: [simple]  a  → b c 
M14: [simple]   b c → b b a 
M15: [simple]   W  → a 

  Taking S = “dcb” we apply the algorithm 
   by M15     dcb becomes adcb 
   by M11     adcb becomes dccb and halts. 

  Taking S = “dbc” we apply the algorithm 
   by M14     dbc becomes abba 
   by M12     abba becomes db 
   by M15     db becomes adb 
   by M11     adb becomes dcb and halts. 

  Taking S = “bdc” we apply the algorithm 
   by M15 - abdc,   by M13 - bcbdc, 
   by M14 - bbabdc,  by M12 - bbdc, 
   by M15 - abbdc,   by M13 - bcbbdc, 
   by M14 - bbabbdc,  by M12 - bbbdc, 
   by M15 - abbbdc, ... 

The operation of the algorithm has not ceased at this point, and it is rather evident that the algorithm 
when applied to bdc will operate without ceasing, producing longer and longer strings of the form b...bdc. 

The algorithm in the example above has no purpose. But if the concept of a Markov algorithm is to be 
useful, we must show that we can accomplish meaningful tasks with these algorithms. 

Example: 

Let the alphabet be unspecified, and let A be a fixed string in this alphabet. We wish to transform the 
arbitrary string S into the string AS. This is easily accomplished with the following. 

Algorithm M2 
M21: [conclusive]  W  → •A 

Not all tasks are as easy to accomplish. Suppose, for example, that we wished to transform S not into AS, 
but rather into SA. We cannot use algorithm M2, for successive applications of this will produce the 
strings AS, AAS, AAAS, ... Nor can we write the algorithm as S →•SA, for there would need to be infinitely 
many productions with no first production. In fact because the productions are always applied to the first 
occurrence of A in B, there is difficulty any time we wish to operate with the second, third, or last 
occurrence. We overcome this difficulty by introducing the use of special marker symbols which are not a 
part of the given alphabet. By use of these markers we can mark a particular point with a string and 
operate on them at that point. 



CSE 6390E Computational Linguistics  
  

3 

 
 
Example: 
Let β be a marker not in the alphabet. If S is a string in the alphabet, the result of applying algorithm M3 
to S is the string SA. 

Algorithm M3 
M31: [interchange]  βδ → δβ   δ, A ∈ member of alphabet 
M32: [conclusive]  β → •A 
M33:  W → β 

 Since S initially does not contain β, the third production is then used to move β past the 
symbols in S. If S contains n occurrences of symbols, then after n steps we obtain the string 
Sβ. At this point the first production no longer applies, and the second production produces 
SA. Since this production is conclusive, the string SA is then the result. 

In the preceding example, we have introduced a new notation. Namely, in the first production we have 
used the variable δ which ranges over the symbols in the alphabet. Thus the first line is not really a 
production, but rather a production schema, denoting all the productions which can be obtained by 
substituting symbols of the alphabet for δ. 

Because of the manner in which the Markov algorithms are used, the order in which the productions are 
written is vital. If the first two lines of algorithm M3 were interchanged, the result would be to transform 
S into AS, rather than into SA, and the productions represented by βδ → δβ would never be used. Within 
production schema the order is not critical. A little thought should convince you that the production 
schema represents sections of the algorithm in which the order of the individual productions applies and 
they will all do the same thing, in different contexts. 

We conclude this section with several examples of tasks which can be accomplished by Markov 
algorithms. The development of this subject goes far beyond this introduction. In particular, any task 
which can be accomplished by the use of algorithms in a liberal sense can be accomplished by a Markov 
algorithm.  

In the following examples the alphabet will be left unspecified except that it contains none of the markers 
or special symbols which are explicitly stated. 

Example:  

This algorithm transforms every string into the empty string. 

Algorithm M4 
M41: [production schema] δ  →  Wδ  δ ∈ member of the alphabet 

In operation this algorithm successively picks off the first letters of a string, as long as any 
letters remain. When the string becomes the empty string, the process halts since there is not 
transformation whose antecedent is the empty string. 

Example: 

This algorithm leaves the empty string unchanged but deletes the first letter of any non-empty string and 
halts. Marker: β. 

Algorithm M5 

M51: [prod. schema] βδ → •W     δ ∈ member of the alphabet 
M52:      β → •W 
M53:      W  → β 

Example: 

Often it is useful to know the number of symbols in a string. This is easily accomplished in tally notation 
by replacing every symbol by a tally marker. Special symbol: 1. 

Algorithm M6 
M61: [prod. schema]    δ → 1                                          δ ∈ member of the alphabet 
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Since “1” is not an element of the alphabet, the operation ceases when every symbol has been transformed. 

 

Example: 

At times one wishes to discard a portion of the symbol string, as one would discard data after computing 
the answer. The following algorithm discards everything to the left of the special symbol β. 

Algorithm M7 
M71: [prod. schema]  δβ →   β    δ ∈ member of the alphabet 
M72:     β →   •W 

Example: 

In almost every problem there is some point of which a decision must be made, dependent on the results 
of a calculation up to that point. We now present a Markov algorithm for making such a decision. An 
arbitrary string in the given alphabet is examined to determine whether it is a specified string A. If it is, 
the entire string is replaced by the string B; otherwise the entire string is replaced by the string C. Marker: 
ß. 

Algorithm M8 

M81:  δβ → βδ     δ ∈ member of the alphabet 
M82:  βδ → β 
M83: β → •C 
M84: Aδ  → β 
M85: A  → β 
M86:    A  → •B 
M87:    W  → β 

If the given string, P, does not contain an occurrence of the string A, the last production introduces a β, 
and then the second and third production schema erase P and replace it with C. If P contains an 
occurrence of A, but is not A, either the fourth or fifth production schema is used to introduce the β; the 
first schema moves the βto the left end of P and then the second and third operate as before. Finally, if the 
string P is actually A, the sixth production applies and P is transformed into B. Notice that the 
productions in M8 refer directly to the string A, which might be quite long. Since A is known a priori, this 
is permissible: we could always replace such a reference by a letter for letter search for A. 

Example: 

Another procedure which is quite common is that of doubling or duplicating a string. Often we wish to 
perform transformations which destroy a string, but which are only tentative in nature: at some point we 
may decide that the transformations are wrong and we wish to begin anew. Thus we must be able to save a 
copy of the original string to which we can return. Given a string P, the following algorithm produces the 
string PP and halts. Markers: §, β, σ 

Algorithm M9 

M91: [prod. schema]   ƒδβ → δβƒ  δ, ƒ ∈members of the alphabet 
M92: [prod. schema]   §ƒ → ƒβƒ§ 
M93:       β → σ 
M94:       σ → W 
M95:       § → •W 
M96:       W  → § 

Example: 

Another procedure which is quite common is that of reversing a string of characters. We do this by 
moving the first character to the end as before, then moving the next character down to the position just 
preceding the first character, and so on. Markers: §, β 

Algorithm M10 
M101:    §β  → •W     δ, ƒ ∈ members of the alphabet 
M102:   §δβ → βδ 
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M103:  §δƒ → ƒ§δ 
M104:   §δ   → βδ 
M105:     W  → § 

Illustrating this algorithm on the string “ABCD” we have 

  by M105  =>   § A B C D 
  by M103  =>   B § A C D 
  by M103  =>   B C § A D 
  by M103  =>   B C D § A 
  by M104  =>   B C D ß A 
  by M105  =>   § B C D ß A 
  by M103  =>   C § B D ß A 
  by M103  =>   C D § B ß A 
  by M102  =>   C D ß B A 
  by M105  =>   § C D ß B A 
  by M103  =>   D § C ß B A   
  by M102  =>   D ß C B A 
  by M105  =>   § D ß C B A 
  by M102  =>   ß D C B A 
  by M105  =>   §ßD C B A 
  by M101  =>   D C B A 
 


