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Rough set theory, introduced by Zdzislaw Pawlak in
the early 1980s [11, 12], is a new mathematical tool to
deal with vagueness and uncertainty. This approach
seems to be of fundamental importance to artificial
intelligence (AI) and cognitive sciences, especially in
the areas of machine learning, knowledge acquisi-
tion, decision analysis, knowledge discovery from
databases, expert systems, decision support systems,
inductive reasoning, and pattern recognition. 

The rough set concept overlaps—to some extent
—with many other mathematical tools developed to
deal with vagueness and uncertainty, in particular
with the Dempster-Shafer theory of evidence [15].
The main difference is that the Dempster-Shafer
theory uses belief functions as a main tool, while
rough set theory makes use of sets—lower and upper approximations.
Another relationship exists between fuzzy set theory and rough set theory
[13]. Rough set theory does not compete with fuzzy set theory, with which
it is frequently contrasted, but rather complements it [1]. In any case,
rough set theory and fuzzy set theory are independent approaches to
imperfect knowledge. Furthermore, some relationship exists between
rough set theory and discriminant analysis [7], Boolean reasoning methods
[16], and decision analysis [14]. 

One of the main advantages of rough set theory is that it does not need any
preliminary or additional information about data, such as probability distrib-
ution in statistics, basic probability assignment in the Dempster-Shafer theory,
or grade of membership or the value of possibility in fuzzy set theory [2].
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Basic Concepts
In this article we will assume that the information
about the real world is given in the form of an infor-
mation table (sometimes called a decision table).
Thus, the information table represents input data,
gathered from any domain, such as medicine,
finance, or the military. An example of such an infor-
mation table is given in Table 1.

Rows of a table, labeled e1, e2, e3, e4, e5, and e6
in Table 1, are called examples (objects, entities).
Properties of examples are perceived through  assign-
ing values to some variables. We will distinguish
between two kinds of variables: attributes (sometimes
called condition attributes) and decisions (sometimes
called decision attributes). Usually a single decision is

all that is required. For example, if the information
table describes a hospital, the examples may be
patients; the attributes, symptoms and tests; and the
decisions, diseases. Each patient is characterized by
the results of tests and symptoms and is classified by
the physicians (experts) as being on some level of dis-
ease severity. If the information table describes an
industrial process, the examples may represent sam-
ples of a process taken at some specific moments in
time; attributes, the parameters of the process; and
decisions, actions taken by the operators (experts). 

The main concept of rough set theory is an indis-
cernibility relation, normally associated with a set of
attributes--for example, the set consisting of attribut-
es Headache and Muscle_pain from Table 1. Examples
e1 and e2 are characterized by the same values of
both attributes: for the attribute Headache the value is
yes for e1 and e2 and for the attribute Muscle_pain the
value is yes for both e1 and e2. Moreover, example e3
is indiscernible from e1 and e2. Examples e4 and e6
are also indiscernible from each other. Obviously, the
indiscernibility relation is an equivalence relation.
Sets that are indiscernible are called elementary sets.
Thus, the set of attributes Headache and Muscle_pain
defines the following elementary sets: {e1, e2, e3}, {e4,
e6}, and {e5}. Any finite union of elementary sets is
called a definable set. In our case, set {e1, e2, e3, e5} is
definable by the attributes Headache and Muscle_pain,

since we may define this set by saying that any mem-
ber of it is characterized by the attribute Headache
equal to yes and the attribute Muscle_pain equal to yes
or by the attribute Headache equal to no and the
attribute Muscle_pain equal to no. 

Due to the concept of indiscernibility relation, it is
very simple to define redundant (or dispensable)
attributes. If a set of attributes and its superset define
the same indiscernibility relation (i.e., if elementary
sets of both relations are identical), then any attribute
that belongs to the superset and not to the set is
redundant. In the example from Table 1, let the set of
attributes be the set {Headache, Temperature} and its
superset be the set of all three attributes, i.e., the set
{Headache, Muscle_pain, Temperature}. Elementary sets

of the indiscernibility relation defined
by the set {Headache, Temperature} are
singletons, i.e., sets {e1}, {e2}, {e3}, {e4},
{e5}, and {e6}, and so are elementary
sets of the indiscernibility relation
defined by the set of all three attribut-
es. Thus, the attribute Muscle_pain is
redundant. On the other hand, the set
{Headache, Temperature} does not con-
tain any redundant attribute, since ele-
mentary sets for attribute sets
{Headache} and {Temperature} are not
singletons. Such a set of attributes,
with no redundant attribute, is called
minimal (or independent). The set P
of attributes is the reduct (or covering)
of another set Q of attributes if P is

minimal and the indiscernibility relations, defined by
P and Q, are the same (the last condition says that ele-
mentary sets, determined by indiscernibility relations
defined by P and Q, are identical). 

In our example, the set {Headache, Temperature} is a
reduct of the original set of attributes {Headache, Mus-
cle_pain, Temperature}. Table 2 presents a new infor-
mation table based on this reduct.

So far we have not included a decision in our dis-
cussion. By analogy with attributes, we can define ele-
mentary sets associated with the decision as subsets of
the set of all examples with the same value of the deci-
sion. Such subsets will be called concepts. For Tables
1 and 2, the concepts are {e1, e4, e5} and {e2, e3, e6}.
The first concept corresponds to the set of all patients
free from flu, the second one to the set of all patients
sick with flu. The question is whether we may tell who
is free from flu and who is sick with flu on the basis of
the values of attributes in Table 2. To answer this ques-
tion, we may observe that in terms of rough set theo-
ry, decision Flu depends on attributes Headache and
Temperature, since all elementary sets of indiscernibili-
ty relation associated with {Headache, Temperature} are
subsets of some concepts. As a matter of fact, one may
induce the following rules from Table 2:

(Temperature, normal) -> (Flu, no), 
(Headache, no) and (Temperature, high) -> (Flu,
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no), 
(Headache, yes) and (Temperature, high) ->
(Flu, yes), 
(Temperature, very_high) -> (Flu, yes).

Now, say that data from Table 2 is enhanced by two
additional examples, e7 and e8, as presented in Table
3. Elementary sets of indiscernibility relation defined
by attributes Headache and Temperature are {e1}, {e2},
{e3}, {e4}, {e5, e7}, and {e6, e8}, while concepts defined
by decision Flu are {e1, e4, e5, e8} and {e2, e3, e6, e7}.

Obviously, in Table 3 the decision Flu does not
depend on attributes Headache and Temperature since
neither {e5, e7} nor {e6, e8} are subsets of any concept.
In other words, neither concept is definable by the
attribute set {Headache, Temperature}. We say that Table
3 is inconsistent because examples e5 and e7 are con-
flicting (or are inconsistent)—for both examples the
value of any attribute is the same, yet the decision value
is different. (Examples e6 and e8 are also conflicting.)

In this situation, rough set theory offers a tool to
deal with inconsistencies. The idea is very simple—
for each concept X the greatest definable set con-
tained in X and the least definable set containing X
are computed. The former set is called a lower approx-
imation of X; the latter is called an upper approximation
of X. In the case of Table 3, for the concept {e2, e3,
e6, e7}, describing people sick with flu, the lower
approximation is equal to the set {e2, e3}, and the
upper approximation is equal to the set {e2, e3, e5,
e6, e7, e8}, as depicted in Figure 1.

Similarly, for the concept {e2, e3, e6, e7}, the lower
approximation is {e2, e3} and the upper approxima-
tion is {e2, e3, e5, e6, e7, e8}. Either of these two con-
cepts is an example of a rough set, a set that is
undefinable by given attributes. The set {e5, e6, e7,
e8}, containing elements from the upper approxima-
tion of X that are not members of the lower approxi-
mation of X, is called a boundary region. Elements of
the boundary region cannot be classified as members
of the set X. On the other hand, rough sets may also
be defined as sets having nonempty boundary regions. 

For any concept, rules induced from its lower

approximation are certainly valid (hence such
rules are called certain). Rules induced from the
upper approximation of the concept are possibly
valid (and are called possible). For Table 3, certain
rules are:

(Temperature, normal) -> (Flu, no), 
(Headache, yes) and (Temperature, high) ->
(Flu, yes), 
(Headache, yes) and (Temperature, very_high) ->
(Flu, yes);
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Figure 1. 
Lower and upper
approximations of
set X

Table 2. Reduced Information Table.

Table 3. Inconsistent Information Table.
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and possible rules are:

(Headache, no) -> (Flu, no), 
(Temperature, normal) -> (Flu, no), 
(Temperature, high) -> (Flu, yes), 
(Temperature, very_high) -> (Flu, yes).

A few measures of uncertainty were developed
within rough set theory. The most frequently used
are: a quality of lower approximation and a quality of
upper approximation. For a given set X of examples,
not necessarily definable by a set P of attributes, the
quality of lower approximation is the ratio of the
number of all elements in the lower approximation
of X to the total number of examples. Similarly, the
quality of upper approximation is the ratio of the
number of all elements in the upper approximation
of X to the total number of examples. Thus, in the
example from Table 3, for the concept X = {e1, e4, e5,
e8}, the quality of lower approximation is 0.25 and
the quality of upper approximation is 0.75. 

The quality of lower approximation may be inter-
preted as the ratio of the number of all certain classi-
fied examples by attributes from P as being in X to the
number of all examples of the information table. It is
a kind of relative frequency. Furthermore, the quali-
ty of lower approximation is a belief function according
to Dempster-Shafer theory. Also, the quality of upper
approximation is the ratio of the number of all possi-
bly classified examples by attributes from P as being
in X to the number of all examples of the system.
Therefore, it is again a kind of relative frequency.
The quality of upper approximation is a plausibility
function from the Dempster-Shafer theory viewpoint
[3]. Rough set theory is objective—for a given infor-
mation table, qualities of corresponding approxima-
tions are computed. On the other hand, the
Dempster-Shafer theory is subjective—it is assumed
that values of belief (or plausibility) are given by an
expert. (For further information about relations
between rough set theory and the Dempster-Shafer
theory, consult [15].) 

Applications of Rough Sets
The rough set theory has proved to be very useful in
practice, as is clear from the record of many real-life
applications. Descriptions of some of the implemen-
tations may be found in [9], [18], and [24]. Howev-
er, most applications of rough set methodology are
not covered by publications and are still in progress
because of tedious collection of expermental data
and development of new software. 

The main problems that can be approached using
rough set theory include data reduction (i.e., elimi-
nation of superfluous data), discovery of data depen-
dencies, estimation of data significance, generation
of decision (control) algorithms from data, approxi-
mate classification of data, discovery of similarities or
differences in data, discovery of patterns in data, and
discovery of cause-effect relationships. 

In particular, the rough set approach has found
interesting applications in medicine, pharmacology,
business, banking, market research, engineering
design, meteorology, vibration analysis, switching
functions, conflict analysis, image processing, voice
recognition, concurrent system analysis, decision
analysis, character recognition, and other fields. 

Rough Sets, Knowledge Acquisition,
and Machine Learning
Knowledge in the form of rules, induced by learning
from training examples, may be used in rule-based
expert systems. These rules are more general than
information contained in the original input data, since
new examples, which do not match examples from the
original data, may be correctly classified by the rules. 

The empirical learning system called Learning
from Examples based on Rough Sets (LERS ), devel-
oped at the University of Kansas, consists of two
options of machine learning from examples and two
options of knowledge acquisition [3, 4]. Machine
learning options produce a sufficient set of rules to
cover all examples in the information table. Knowl-
edge acquisition options produce much bigger sets of
all rules that can be induced by a given option from
the input data given by an information table. As was
shown in [5], the machine learning approach is not
adequate as a tool for knowledge acquisition when an
expert system must deal with incomplete informa-
tion. The knowledge acquisition options of the sys-
tem LERS are examples of appropriate rule
induction methods for building knowledge bases for
expert systems working with incomplete information. 

LERS may induce a set of rules from examples
given in the form of an information table and may
classify new examples using that set of rules. First
LERS tests the input data for consistency. If data is
inconsistent then lower and upper approximations of
each concept are computed [4]. Now the user is
offered an option to choose between two machine
learning options and two knowledge acquisition
options. If a machine learning option is used, then the
system induces a single minimal discriminant descrip-
tion for each concept. If a knowledge acquisition
option is applied, a complete set of rules is induced. 

System LERS has been used for two years by NASA’s
Johnson Space Center as a tool to develop expert sys-
tems of the type most likely to be used in medical deci-
sion-making on board the space station Freedom. 

Another application of LERS was enhancing facili-
ty compliance under Sections 311, 312, and 313 of
Title III, the Emergency Planning and Community
Right to Know. The project was funded by the U.S.
Environmental Protection Agency. 

LERS was also used in two medical applications, to
compare the effects of warming devices for postoper-
ative patients and to assess preterm labor risk for
pregnant women. Prediction of preterm birth is a
poorly understood domain. The existing manual
methods of assessment of preterm birth are 17%–

92 November 1995/Vol. 38, No. 11  COMMUNICATIONS OF THE ACM



AIemerging technologies

38% accurate. The machine learning system was used
for three different datasets about pregnant women.
Rules induced by LERS were used in conjunction
with a classification scheme of LERS, based on a
“bucket brigade algorithm” of genetic algorithms and
enhanced by partial matching. The resulting predic-
tion of preterm birth in new, unseen cases is much
more accurate (68%–90%). 

Yet another interesting use of LERS was made in a
study of global climate change. Rules, describing
influence on global temperature, were induced from

data characterized by attributes such as solar energy
output, volcanic activity, Southern Oscillation Index,
CO2 trend, and CO2 residual. Experts in the area
gained new insight into the mechanism of global cli-
mate change, as reported in [6].

Rough Sets and Decision Analysis
The rough-set approach to decision analysis has been
implemented in computer systems called RoughDAS
and RoughClass, developed at the Poznan University
of Technology in Poland. They perform the explana-
tion and prescription tasks, respectively. The systems
have been used in several domains of practical appli-
cations. Many of them have been presented in [18]. 

One application in medicine concerned verifica-
tions of indications for treatment of duodenal ulcer
by highly selective vagotomy (HSV). Using rough set
manipulations on a set of 122 patients described by a
set of 11 preoperative attributes, the description has
been reduced to five relevant attributes that ensure
an acceptable quality of classification. The reduced
attributes were based on tests that could show nega-
tive side-effects affecting patients. Application of 44
decision rules obtained from lower approximations
of the classes of good and bad results of the operation
to 70 new patients gave an increase of good results of
HSV from 82% to 93% [17]. 

A
nother application concerned
analysis of the relationship
between the chemical struc-
ture and antimicrobial activity
of 201 quaternary imidazolium
compounds. The compounds
were described by eight attrib-
utes concerning structure and

were divided into five classes of activity. The reduct
of attributes discovered with the RoughDAS system

was composed of four attributes. Two sets of deci-
sion rules, one of 22 and one of 35 rules, gave clear
advice on how to design new antimicrobially active
compounds, in terms of the relevant characteristics
of the structure [8]. 

In the domain of technical diagnostics, the rough
set theory has been applied to analysis of diagnostic
capacity of vibroacoustic symptoms. The rough set
approach appeared to be a good tool for objective
comparison of different methods of defining symp-
tom limit values for both noise and vibration attribut-

es used in the diagnostics of ball bearings. As a result
of this study, the superiority of vibration symptoms
over noise symptoms was established and a classifier
of the technical state of rolling bearings has been
built, consisting of 14 decision rules using three rele-
vant symptoms (out of 12) [10]. 

In the domain of finance, the rough set approach
has been used to identify firms with a bankruptcy risk.
A real experience of Greek Industrial Development
Bank ETEVA has been analyzed in order to assess its
policy of granting credit to firms. The conclusions
drawn from this analysis, expressed in clear terms of
rules well supported by examples, were appreciated
by financial experts. Both qualitative (unordered)
and quantitative attributes were taken into account—
the difficult task within the traditional multicriteria
decision-making approach to construction of a value
function. The sets of decision rules obtained use only
5%–7% of conditions from the initial table [19]. 

An interesting empirical study, now in progress,
concerns the use of the rough set approach to reduc-
tion of data for a neural network classifying micro-
scopic pictures of brain tumors. It has found that
learning time accelerates data reduction by up to 4.72
times. A side result of this study is a claim that the min-
imum number of neurons in the hidden layer is equal
to the cardinality of the smallest reduct. These promis-
ing results show that the rough set approach is a use-
ful tool for preprocessing of data for neural networks.

Rough Sets and Knowledge Discovery
As indicated previously, the applications of rough
sets methodology actually implemented cover a wide
spectrum of domains. An important application, that
is enjoying increasing attention, is Knowledge Dis-
covery in Databases (KDD). Knowledge discovery, or
database mining, is a relatively new subdomain of AI
concerned with the problem of digging out an extra
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dimension of nontrivial knowledge from ever-grow-
ing databases of corporate and other information.
One of the primary tasks in this context is the dis-
covery and characterization of inter-data connec-
tions or relationships; for example, between
symptoms and diseases in medical databases. The
discovered descriptions of fundamental factors
occurring in such relationships help users better
understand the nature of the phenomena about
which the data is collected, or can be used for pre-
diction [20, 21, 24, 25]. Another aspect, also handled
using the rough set approach, is the discovery of
abnormal patterns or behaviors in data for the pur-
pose of detecting fraud or intrusion [23]. 

The methodologies for KDD are mostly rooted in
prior research in statistics, database theory and
machine learning [22]. However, newer develop-
ments in the area of rough sets position this
methodology as one of the mainstream approaches
to KDD problems [23--25]. 

T
he techniques of rough sets have
been used for the purpose of
KDD-related research for the last
five years. In particular, the avail-
ability of PC-based commercial
software systems for database min-
ing, such as Datalogic [20], have
made this technology accessible to

users from different sectors of industry and science.
Currently, the rough set methodology is being used,
among other areas, in market research [25], medical
data analysis [17], drug research [8], sensor data
analysis for the purpose of control, and research lead-
ing to the design of new composite materials. The
analysis of stock market data has confirmed some well-
known market rules and has led to the discovery of
some interesting new rules [25]. The knowledge dis-
covery methodology that uses an extension of the
original model of rough sets, called variable-precision
rough sets, and the decision matrix method [23] have
been implemented at the University of Regina in the
newest set of workstation-based tools for knowledge
discovery, called KDD-R. KDD-R was used for analysis
of medical data and is currently supporting market
research for the telecommunications industry.

Conclusions
The rough set methodology has proved its soundness
and usefulness in many real-life applications. Rough
set theory offers effective methods that are applicable
in many branches of AI. One of the advantages of
rough set theory is that programs implementing its
methods may easily run on parallel computers. 

Nevertheless, several problems remain to be
solved. Though the rough set theory has been devel-
oped on solid mathematical foundations, many theo-
retical problems still await proper clarification.
Rough logic—a logic for imprecise reasoning based
on rough set philosophy—seems to be the most

important topic. Development of methods based on
rough set theory for neural networks and genetic
algorithms also seems to be very important. Rough
controllers, i.e., controllers based on rough set theo-
ry, also seem to be a very promising area of applica-
tions. However, a qualitative control theory based on
the rough set philosophy, must be created. The rela-
tionships of the rough set theory to nonstandard
analysis, nonparametric statistics, and qualitative
physics are other important topics.
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