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Abstract

The use of graphs to represent independence structure in multivariate probability
models has been pursued in a relatively independent fashion across a wide variety of
research disciplines since the beginning of this century� This paper provides a brief
overview of the current status of such research with particular attention to recent de�
velopments which have served to unify such seemingly disparate topics as probabilistic
expert systems� statistical physics� image analysis� genetics� decoding of error�correcting
codes� Kalman �lters� and speech recognition with Markov models�

� Introduction

Let U � fX�� � � � � XNg be a set of random variables� representing for example� symptoms and

diseases in a medical diagnosis context� features and classes in a pattern recognition problem� or

properties of individual particles in a statistical physics problem� Let p�U� represent the joint

distribution for U� In this paper we will use the term graphical models to refer to a family of

techniques which exploit a duality between graph structures and probability models�

The central idea behind graphical models is to represent the independence structure in p�U� by

an annotated graph� The nodes of the graph are in one�to�one correspondence with the variables inU

and the edges of the graph re	ect the independence structure �if any� in p�U�� Thus� for example�

a probability model with no independence structure �namely� every variable depends directly on

every other variable� is represented by a completely connected graph� Conversely� a model p�U�

where all variables are independent of each other is represented by a graph with no edges between

any of the nodes� Of more usual interest are the families of probability models which lie between

these extremes� Annotation of the graph is achieved by factoring the underlying probability model

p�U� into conditional probability tables �for directed graphs� or potential functions �for undirected
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graphs�� These factors are stored as tables or simple functions at the individual nodes� These local

tables and functions represent the numerical speci�cation of local dependencies and are the vehicle

for e�cient calculations using the graph formalism�

It is well known that for moderately large N � speci�cation and manipulation of p�U� directly is

intractable unless there exists considerable structure in the probability model� For example� with

N binary variables� a model with no independence structure requires the speci�cation of O��N �

probability values� Furthermore� calculations of particular posterior probabilities given observed

evidence will also tend to scale exponentially in N � rendering such models useless in practice� This

intractability has been well�known in dierent disciplines for some time and there has been consider�

able� and often independent� work in dierent areas on exploiting independence structure to achieve

tractability�

In statistics� the use of graphical frameworks to represent and manipulate multivariate proba�

bility distributions is by now well�established �Whittaker �
����� Lauritzen �
������ In an arti�cial

intelligence �AI� context� Pearl �
���� independently developed a substantial body of theory for

constructing and manipulating conditional independence relations using directed graphical models

called belief networks� In statistical physics� there is a long tradition of performing e�cient prob�

ability calculations on lattice systems of large numbers of particles whose probability distributions

have certain Markov properties �Kinderman and Snell� 
����� This work� linked with related ideas

in statistics �Isham� 
��
�� motivated a whole sub�discipline of image analysis based on Markov

random �elds �Geman and Geman� 
���� and related work in neural network modeling using Boltz�

mann machines �Hinton and Sejnowski� 
����� The fact that all of these models are closely related

is relatively well�known although not always explicitly referred to in the literature�

Less well known are recent realizations that the �extended family� of graphical models also

encompasses some very well�known and widely used techniques in engineering� Speci�cally� hidden

Markov models �including the forward�backward algorithm� as used in speech recognition can be

viewed as special cases of graphical models �Smyth� Heckerman and Jordan� 
����� Kalman �ltering

equations and models can be pro�tably viewed from a graphical model context �Levy� Benveniste�

and Nikoukhah� 
����� and a variety of well�known algorithms for decoding error�correcting codes

turn out to be special cases of more general graphical model algorithms �MacKay� McEliece� and

Cheng� in press ��

The purpose of this paper is to brie	y review some of these connections� The paper does not

discuss the details of graphical models in any depth� for a recent introductory exposition see Jensen

�
���� and for a more mathematical viewpoint see Lauritzen �
����� The paper by Smyth� Hecker�
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man� and Jordan �
���� discusses links between dierent forms of graphical models used in statistics�

AI� physics� and engineering� The primary goal of this paper is to point the reader to the relevant

literature on the topic and promote the viewpoint that graphical models provide a uni�ed and useful

framework for a large class of problems involving probabilistic inference�

� A Brief Introduction to Graphical Models

Graphical models fall into two general classes� those based on acyclic directed graphs �ADGs��

and those based on undirected graphs �UGs�� There is a third category based on mixed graphs

which are beyond the scope of this paper� Both ADG and UG representations rely on the notion of

decomposing the underlying multivariate probability distribution into a factored form� For ADGs

the factors are local conditional probabilities� for UGs they are local clique functions �non�negative

functions related to probabilities�� In this context� ADGs are easier to construct and interpret since

they have a clearer probabilistic semantics than UGs in terms of the numerical speci�cation of the

probability model� ADGs and UGs can each e�ciently represent probability distributions which the

other cannot represent in e�cient form� The directed ADG formalism is primarily used in AI and

statistics where cause�eect relationships are important in modeling and can be made explicit by

the use of directed arcs in the graph� The undirected UG formalism is popular in the statistical

physics and image processing communities where associations between variables �particles or pixels�

are considered correlational rather than causal� UGs under various guises are variously referred to

in the literature as Markov random �elds� Markov networks� Boltzmann machines� and log�linear

models� ADGs are often referred to as Bayesian networks� belief networks� or recursive graphical

models� and less frequently as causal networks� directed Markov networks� and probabilistic �causal�

networks�

A graphical model contains both structure and parameters� The structure of the model consists

of the speci�cation of a set of conditional independence relations for the probability model p�U��

represented as a set of missing edges in the graph for the graphical model� If variable Xi does

not depend directly on variable Xj� then there is no edge between them� The precise semantic

implications dier between ADGs and UGs� but the central concept is the same� a node is connected

to those other nodes on which it directly depends� Note that a graph structure implies a set of

probability models which are constrained to obey the independence assumptions as represented by

the connectivity of the graph� Conversely� the independence relations which are implicit in the

�ADGs are also often referred to as directed acyclic graphs �DAGS�� however� the term ADG is more precise� since
the term DAG implies a directed version of an acyclic graph� which is not well	de
ned�
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probability model p�U�� constrain the possible corresponding graphical structures�

The parameters of a graphical model consist of the speci�cation of the joint probability distribu�

tion p�U�� This speci�cation is in factored form and the factors are de�ned locally on the nodes of

the graph� Inference is the problem is of calculating posterior probabilities for variables of interest

given observed data and given a speci�cation of the probabilistic model� Typical inference problems

include calculating the probability of a class variable given observed features �in classi�cation� and

calculating the probability of observed data under various dierent models �as in speech recogni�

tion�� The related task of maximum a posteriori �MAP� identi�cation is the determination of the

most likely state of a set of unobserved variables� given observed data and the probabilistic model�

The learning or estimation problem is that of determining the parameters �and possibly structure�

of the probabilistic model from data�

� Why use Graphical Models�

A key point is that the analysis and manipulation of multivariate models involving independence re�

lations can be considerably facilitated by exploiting the relationship between probability models and

graphs� The major advantages to be gained are in model description and computational e�ciency�

��� Model Description

Graphs are a natural medium for representing information in a compact form which humans can

grasp� understand� and use� In particular� the structure of a graphical model clari�es the conditional

independencies in the implied probability models� allowing model assessment and revision� Whit�

taker �
���� chapter �� provides a number of examples which clearly demonstrate that even with

relatively few variables it is much easier to reason about independence relations using a graph than

it is without� In addition� the fact that the graphical model forces the modeller to explicitly encode

and confront independence assumptions can be extremely useful in model�building� This can be

particularly useful for example in areas such as AI� statistical modeling in the social and medical

sciences� and time�series modeling�

��� Computational E�ciency

Graphical models are a powerful basis for specifying e�cient algorithms for computing quantities

of interest in the probability model� e�g�� calculation of the probability of observed data given the

model� Computational inference methods are often based on undirected representations �Lauritzen

and Spiegelhalter� 
����� ADGs can be reduced to an equivalent UG structure in a relatively
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straightforward manner� although the corresponding UG may be less e�cient at representing the

same probability distribution as the original ADG� i�e�� have more edges� The �canonical� graphical

form for computation is the �clique tree� �Jensen� 
����� which is constructed from the UG rep�

resentation via triangulation� Inference simply consists of local message passing in the clique tree�

The �clique tree inference algorithms� �Jensen� 
���� are quite general and subsume the earlier more

specialized inference algorithms such as those proposed by Pearl �
����� The complexity of the local

inference algorithms scale as the sum of the sizes of the clique state�spaces �where a clique state�space

is equal to the product over each variable in the clique of the number of states of each variable��

Thus� local clique updating can reduce the complexity of exact inference and MAP calculations on

U from O�mN � to O�mK �� where N is the total number of variables� K is the number of variables in

the largest clique� and all variables are assumed to take m discrete values� For dense graphs� exact

computations are intractable �K becomes very large� and a variety of approximation schemes exist�

largely based on sampling techniques which have evolved from statistical physics methodologies for

intractable lattice�type graphs�

A key feature of computation in graphical models is that these inference algorithms can be speci�

�ed automatically �in eect� �compiled�� once the initial structure of the graph is determined� Note

that the graphical model framework provides no panacea for avoiding the combinatorial parameter

explosion which can result when one tries to build more realistic models� Rather� it allows one to

identify an e�cient inference procedure in an automatic manner� if the structure of the model permits

e�cient inference�

� Relationships between Speci�c Classes of Graphical Mod�

els

��� Belief networks as ADGs

In AI the best known family of graphical models are belief networks� Belief networks are ADGs

which were developed originally by Pearl �
���� for probabilistic reasoning or �probabilistic expert

systems�� Pearl �
���� p�
��� notes that the origins of such models can be traced to the work of

Wright �
��
� in genetics� Belief networks have gained widespread acceptance and application within

AI in areas such as diagnosis� planning� robotics� computer vision� and so forth �see� for example�

Heckerman� Wellman� and Mamdani� 
����� From an AI perspective the well�de�ned semantics

of an ADG� where each node is a direct descendant of its �causal� parents� provide a useful and

practical language for knowledge elicitation� In addition� belief networks provide a sound and e�cient
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Figure 
� An ADG for a �rst�order HMM� The Hi and the Oi are the hidden state variables and
the observable variables� respectively� 
 � i � N �

framework for dealing with uncertainty� in contrast to earlier attempts within AI to handle uncertain

reasoning� More recently there has been signi�cant interest and progress in learning or estimating

both the parameters and structure of belief networks from data� thus broadening their application

to problems where large data sets are available and perhaps relatively little or no prior knowledge in

the form of available experts �Buntine� 
���� Heckerman� Geiger� and Chickering� 
����� In a related

context� learning of multivariate regression and classi�cation models such as neural networks� can

also be treated pro�tably within a graphical model framework �Buntine� 
�����

��� Hidden Markov models as ADGs

The well�known ��rst�order� hidden Markov model �HMM� �as widely used in speech recognition�

is a particularly simple probability model and has a direct representation as a graphical model �Fig�

ure 
�� Speech recognition systems take advantage of the fact that there exist e�cient algorithms

�linear in the length of the Markov chain� for solving the inference and MAP problems associated

with recognition� Inference is solved by the forward�backward algorithm and the MAP problem

is handled by the Viterbi algorithm �Rabiner� 
����� Since we can represent a HMM as a simple

graphical model� it follows that the inference and MAP problems can be solved by the standard

algorithms developed by Pearl �
����� Lauritzen and Spiegelhalter �
����� and subsequent re�ne�

ments �Jensen� Lauritzen and Olesen �
����� Smyth� Heckerman� and Jordan �
���� show that the

forward�backward algorithm and Viterbi algorithms are in fact directly equivalent to the Pearl et al

algorithms� i�e�� these algorithms had been developed completely independently in both communi�

ties� The equivalence is not surprising once one realizes that a HMM is a relatively simple graphical

model� Of much greater signi�cance is the fact that the graphical model algorithms are perfectly

general and can thus handle arbitrary extensions to the standard ��rst�order� model� No additional

eort is required in terms of deriving new inference procedures for more complicated models� since
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Figure �� An ADG for a simple convolutional encoder�decoder� The Ui are the input information
bits� the Si are the state variables of the convolutional encoder� the Xi are the code words� and the
Yi are the received noisy codewords 
 � i � N � Note that all of the dependencies in the model are
deterministic except the dependence of Yi on Xi� which models a memoryless noisy channel� The
inference problem �which is equivalent to decoding� is to determine the most likely values for the
information bits Ui given the observed noise codewords Yi�

the inference algorithms follow directly from the general speci�cations of Pearl et al� Examples of

more complex HMM structures to account for coarticulation in speech and multiple hidden chains

to couple audio and video signal inputs are discussed in Smyth� Heckerman and Jordan �
�����

��� Decoding Algorithms for Error Correcting Codes as ADGs

In error correcting coding applications a sequence of �information bits� is converted into a sequence

of codewords which is transmitted over a noisy channel� At the receiving end of the channel� a

decoder must try to estimate the original information sequence� given only the noisy codeword

sequence� It has recently been realized that the decoding process is well�modeled as inference on a

graphical model� The inference problem is that of calculating the probability of the input sequence

given the observed codewords� The graphical model for the problem arises from the coupling of the

deterministic mapping of inputs to codewords with the noisy channel process mapping codewords

into noisy observations� Typically the resulting graph is highly structured� Figure � shows the ADG

for a convolutional decoder� The algorithms developed in the coding literature for decoding tend to

be very similar to the forward�backward algorithm and Viterbi algorithms used for HMMs� Thus� it

is not surprising that one can recreate these algorithms as special cases of the more general graphical

model inference algorithms�

While this direct equivalence of existing algorithms is interesting �as with HMMs�� the more
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signi�cant aspect is the capability which graphical models provide for synthesizing new decoding

algorithms using more complex structures� From a graphical model viewpoint� extensions to deal

with channels with memory� multiple interleaved codes� iterative decoding for approximate solutions�

and so forth� can all be handled in a straightforward and systematic manner� The power of graphical

models in this context has only recently been realized by the coding community and there is currently

signi�cant research activity on decoders based on graphical models �e�g�� MacKay� McEliece and

Cheng� in press� Kschischang and Frey� in press��

��� Kalman Filter and Related Algorithms as ADGs

Kalman �lters� and related linear models for dynamical systems� are essentially very similar to HMMs

but where the hidden state variables are real�valued rather than discrete� Thus� it should not be

surprising to the reader at this point to learn that such models can also be represented within the

graphical model family� again as ADGs due to the causal nature of temporal processes �Kenley� 
�����

More recently there have been signi�cant extensions which have proceeded by showing the direct

equivalence of the standard Kalman prediction�smoothing equations to graphical model inference

algorithms� and by then exploiting the generality of graphical models to propose novel extensions

to standard Kalman �lters within a uni�ed framework �Levy� Benveniste� and Nikoukah� 
�����

In the context of more general time�series modeling� graphical models can also play a useful role�

For example� Berzuini and Larizza �
���� describe a complex medical application treated within a

graphical model framework

��� Markov Random Fields as UGs

As mentioned earlier� Markov random �elds �MRFs� are the most well�known undirected graphical

model formalism and were originally developed in statistical physics to model systems of particles

interacting in a �d or �d lattice �Kinderman and Snell� 
����� More recently MRFs have been

widely applied to problems in image analysis� where pixels or voxels play the role of particles in the

physical system� The resulting UGs have many loops� resulting in exponential complexity in N �the

number of nodes� for exact solutions to the inference problem� A wide variety of techniques have been

developed for approximating the exact solution� Physicists and statisticians have developed elaborate

techniques based on iterative sampling �Monte�Carlo� ideas which are guaranteed to converge under

fairly general conditions �Gilks� Richardson� and Spiegelhalter �
������ Closed form approximations

to the exact solution have also been popular� For example� the use of �mean��eld� approximations

are motivated by physical arguments on the nature of cumulative long�range particle interactions�

�



and the popular Iterative Conditional Modes algorithm for image analysis relies on greedy local

maximization of the posterior probability of the pixel labels given the observed data �Besag� 
�����

It is also worth noting that many directed graphical models of practical interest have su�ciently

dense structure to not admit e�cient exact solutions� Thus� since inference with an ADG is typically

carried out by inference on a related UG� there is increasing interest and utility in exploring the UG

approximations for applications involving ADGs �see for example� Saul and Jordan �
������

� Conclusion

There has been a recent convergence of ideas relating probability models and graph structures� The

graph formalism is an eective and e�cient representation for multivariate independence structure�

both for model construction and for inference� The ability to view seemingly dierent algorithms

for seemingly dierent problems within a uni�ed graphical model framework can provide powerful

insights� More important is the fact that the graphical model framework enables the construction and

application of novel and relatively complex multivariate models in a straightforward and systematic

manner�
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