
Int. J. Man-Machine Studies (1988) 29, 81-95 

Rough sets: probabilistic versus deterministic 
approach 

ZDZ1SLAW PAWLAK~, S. K. M, WON6r AND WOJCIECH ZIARKO~ 

t Department of Complex Control Systems, Polish Academy of Sciences, Baltycka 5, 
44-000 Gliwice, Poland, and $ Department of Computer Science, University of 
Regina, Regina, Saskatchewan, Canada, $4S OA2 

(Received 14 September 1987) 

1. Introduction 

The issue of knowledge representation and the method of inferring decision rules 
are of fundamental nature in the design of intelligent systems. When knowledge of 
the system is sufficient and precise (without uncertainty), many problems in artificial 
intelligence can be successfully modelled by techniques such as first order logic 
(Kowalski, 1979; Barr & Feigenbanm, 1981). For instance, the logical structure of a 
computer program can be precisely described by a set of decision rules (Hurley, 
1981). On the other hand, it is rather difficult, if possible at all, to describe 
unambiguously the knowledge and the decision-making process of a human expert 
such as a physician or a business manager. The knowledge acquired under these 
circumstances is often imprecise and incomplete. Many methods have been 
proposed to deal with the uncertain aspects inherent in a knowledge representation 
system. They vary from approaches based on subjective assignment to decision rules 
of some "certainty factors" (Shortliffe, 1976) to those based on fuzzy logic (Zadeh, 
1981). 

Recently, the notion of rough sets (Pawlak, 1982) was introduced, which provides 
a systematic framework for the study of the problems arising from imprecise and 
insufficient knowledge. Some of the advantages in using the rough-set concepts to 
expert systems design have been demonstrated by Pawlak, Slowinski & Slowinski 
(1986). However, in the existing rough-set model the probabilistic information 
crucial to non-deterministic classification (recognition) problems is not taken into 
consideration. For this reason, a probabilistic model has been proposed (Wong & 
Ziarko, 1986a, b) which is a natural extension of the rough-set method. The main 
advantage of the probabilistic model is that it provides a unified approach for both 
deterministic and non-deterministic knowledge representation systems. Further- 
more, an effective inductive algorithm can be developed for a variety of applications 
(Wong & Ziarko, 1986a). 

The main objective of this paper is to review and compare the fundamental results 
in the probabilistic and deterministic models of rough sets. In section 2, the basic 
ideas of rough sets are reviewed. We also present a method for simplifying a given 
knowledge representation system, which has been the subject of research for many 
years (Orlowska & Pawlak, 1984; Pawlak, 1984). In section 3, the probabilistic 
model is introduced and various concepts are explained. We conclude this section by 
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highlighting the similarities between the probabilistic and deterministic models and 
demonstrate that all basic concepts of the deterministic theory have their equiv- 
alence in the probabilistic approach. In section 4 we focus on the differences 
between these two models in the context of their utility for inducing decision rules 
from a set of examples. Finally, we discuss some known and potential applications 
of both models in medical diagnosis, engineering control and machine learning 
systems. 

2. Algebraic formalism of rough sets (deterministic case) 

Before introducing the notions of the probabilistic rough-set model, we first review 
the basic concepts of rough sets proposed by Pawlak (1982). 

2.1. BASIC CONCEPTS OF ROUGH SETS 

Let U denote a finite set of objects, and let R ~_ U • U be an equivalence relation on 
U. The pair A = (U, R) is called an approximation space. If (u, v) e U and u, v ~ R, 
we say that u and v are indistinguishable in A. R is referred to as an indiscernibility 
relation. 

Let R * =  {Xt, X 2 , . . . ,  Xn} denote the partition induced by the equivalence 
relation R, where Xi is an equivalence class of R (an elementary set of A). For any 
subset X ~_ U, we can define the lower A_(X) and upper A(X) approximations of X 
in the approximation space A = (U, R) as follows: 

_A(X)= U Xi 
xi~_x 

A(x)= U x, 
xlnx~ 

That is, _A(X) is the union of all those elementary sets in A, which are individually 
contained by X, whereas .4(X) is the union of all those Xj of which has a non-empty 
intersection with X. 

Given a subset X ~ U representing certain concept of interest, we can characterize 
the approximation space A = (U, R) with three distinct regions: 

(1) _A(X) is called the positive region POSA(X) of X in A; 
(2) A ( X ) -  _A(X) is called the boundary region BNDA(X) of X in A; 
(3) U - A(X) is called the negative region NEGA(X) of X in A. 

Since, by assumption objects belonging to the same equivalence class of R are 
indistinguishable, it may be impossible to say with certainty if objects in the 
boundary region belong to X. In other words, the characterization of objects in X by 
the indiscernibility relation R is not precise enough if BNDA(X)4= dp. However, if 
BNDA(X) = q~ (or _A(X) = A(X)), we say that set X is definable in A; otherwise X is 
said to be a non-definable or a rough set. Note that any definable subset of U can be 
completely characterized by means of the elementary sets in A. In general, there are 
four different kinds of non-definable (rough) sets: 

(1) set X is roughly definable if _A(X) 4: tp and A(X) :/= U; 
(2) set X is internally definable if _A(X) :/: qO and A(X) = U; 
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(3) set X is externally definable if A(X) = ~b and A(X)  4= U; 
(4) set X is totally non-definable if A(X) = q~ and .4(X) = U. 

Obviously, every (finite) union of elementary sets in an approximation space 
A = (U, R) is definable. The collection DEF(A) of all definable subsets in A 
uniquely defines a topological space TA = (U, DEF(A)). The operation of the lower 
and upper approximations on a set X can, in fact, be interpreted respectively as the 
interior and closure operations in the topological space TA. 

From the topological interpretation of the approximation operations, for 
X, Y =_ U, one can easily obtain the following properties: 

(1) _A(q,) = A(,I,); A_(U)=A(U) 
(2) _A(X) c X ~- fi~(X) 
(3) _A(XU Y) _D _A(X) U _A(Y) 
(4) _A(X Iq Y) = _A(X) fq _A(Y) 
(5) A ( X U  Y) =fi~(X) UA(Y) 
(6) A(x  n Y) ~ f t (X)  hA(Y) 
(7) A_(U-X)= U-A(X) 
(8) A ( u -  x )  = u -A_(X) 
(9) _A(_A(X)) = A(_A(X)) = _A(X) 

(10) A(A(x))  = A_ (A(X)) = A(x) .  

2.2. ATTRIBUTE DEPENDENCY IN A KNOWLEDGE REPRESENTATION SYSTEM 

The most natural application of rough sets is, perhaps, in those intelligent 
information systems in which the knowledge about a given set of objects can be 
characterized by the values of some selected attributes (features). Such a knowledge 
representation system (KRS) S= (U, C, D, V, p) can be formally defined as 
follows: 

U denotes a set of objects; 
C is a set of condition attributes; 
D is a set of action attributes; 
p : U x F--* V is an information function, where F = C U D, V = L_Jar V,, and V, 

is the domain of attribute a e F. 

Note that the restricted function, pu:F--*V defined by pu(a)=p(u,  a) for every 
u e U and a e F, provides the complete information about each object u in S. 

An example of a knowledge representation system is given in Table 1. In this 
table the information we have about the objects (cars) in the universe U =  
{u,, u2 . . . . .  ug} is characterized by means of the set C = {Size, Engine, Colour} of 
condition attributes and the set D = {Max-Speed, Acceleration} of decision attrib- 
utes. The domains of the individual attributes are given by: 

Vslz. = {compact, medium, full}, 

VE.gine = {diesel, gasoline, propane}, 

Vcolo.r = {black, white, silver}, 

VM~x-Speed = {low, medium, high}, 

VAcceteraaon = {poor, good, excellent}, 
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TABLE 1 
An example o f  a knowledge representation system 

U C D 

Car Size Engine Colour Max-Speed Acceleration 

u, medium diesel silver medium poor 
uz compact gasoline white high excellent 
u3 full diesel black high good 
u4 medium gasoline black medium excellent 
us medium diesel silver low good 
u6 full propane black high good 
u7 full gasoline white high excellent 
u8 compact gasoline white low good 

The notion of attribute dependency plays an important  role in pattern recognition, 
expert systems, and decision theory.  Therefore,  one of the main objectives in the 
analysis of a KRS is to investigate the dependency between the condition and action 
attributes. 

For instance, in the context of the example presented in Table 1, we may be 
interested in knowing which attributes really determine the speed and acceleration 
of a car and which attributes are not important in this regard. 

In a knowledge representation system S = (U, C, D, V, p) ,  for any subset G of 
condition attributes C or action attributes D, we can define an equivalence relation 

on U such that: 

(ui, u]) E G iffp(ui, g) = p(uj, g) for every g e G. 

Let  A ~ C ,  Bc_D,  and let A * = { X , , X z  . . . .  ,Xn} and B * = { Y , , Y 2 , . . . , Y m }  
denote the partitions on U induced respectively by the equivalence relations A and 
/~. An important question is that to what extent the partition B* as a whole can be 
approximated or characterized by the partition A*. Obviously, the quality of such an 
approximation depends very much on the relationship (dependency) between these 
two subsets of attributes A and B. 

In terms of the lower and upper  approximations _A(~) and ,4(Yj) of Yj �9 B* in the 
approximation space A = (U, A), one can construct the positive, boundary,  and 
negative regions of the partition B* as follows: 

POSA(B*) = L_J _A(Yj), 
Yj~B* 

BNDA(B*) = (_J (fit(Yj)-_A(Y/)), 
~eB* 

NEGA(B*)-- U -  U (fl(Yj). 
Yj~B* 

Based on the notions of rough sets, we can now define a plausible measure of the 
dependency of B on A by: 

0~_ yA(B) = IPOSA(B*)I /IUI ~-  1 
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where I " I denotes the cardinality of a set. Note that yA(B) = 1 when B is totally 
dependent on A (i.e. A functionally determines B). If 0 < yA(B) < 1, we say that B 
roughly depends on A. A and B are totally independent of each other when 
yA(B) = 0. In general, the dependency of B on A can be denoted by A-Z+B. 

For instance, it can be easily verified from Table 1 that: 

{Size, Engine, Colour} 0.5 > Max-Speed, 

{Size, Engine} o-s >Max-Speed, 

{Size} 0.375 >Max-Speed. 

This means that the knowledge represented by the values of the condition attributes 
Size, Engine and Colour is not sufficient to determine the speed of a car in all 
instances. It should also be noted that the attribute Colour is redundant or 
superfluous with respect to the attribute Max-Speed because the removal of the 
attribute Colour from the knowledge representation system would not affect the 
dependency between the set of the condition and decision attributes. We will discuss 
the problem of eliminating superfluous attributes in a knowledge representation 
system in subsection 2.4. 

We wish to emphasize that the concept of attribute dependency defined above is 
an algebraic one. The notion of probabilistic dependency (independency) will be 
introduced in section 3. 

2.3. DECOMPOSITION OF DECISION TABLES 

Any knowledge representation system S = (U, C, D, V, p) can be perceived as a 
decision table in which the values of attributes C stipulate the conditions for a 
particular decision as specified by the attribute values of D. 

A decision table S can be classified according to the dependency measure yc(D) 
as follows: 

(i) S is deterministic if ~'c(D) = 1. 
(ii) S is roughly deterministic if 0 < yc(D) < 1. 

(iii) S is totally non-deterministic if yc(D) = O. 

Clearly, in a totally non-deterministic decision table a number of possible actions 
may be taken for a given condition, while in a deterministic case each action is 
uniquely specified by a particular condition. 

Any decision table can be decomposed horizontally into two sub-tables such that 
one is deterministic and the other is totally non-deterministic as shown in Example 1. 
(One of these sub-tables may, of course, be empty.) 

2.3.1. Example 1 
From the knowledge representation system given by Table 1 one obtains: 

POSc(D*) = {u3, u4, u6, uT}, 

BNDc(D*) = {ul, u2, Us, us}- 



86 z .  PAWLAK E T  AL.  

TABLE 2 
Deterministic decision table 

U C D 

Car Size Engine Colour Max-Speed Acceleration 

u3 full diesel black high good 
u4 medium gasoline black medium excellent 
u6 full propane black high good 
u7 full gasoline white high excellent 

TABLE 3 
Non-deterministic decision table 

U C D 

Car Size Engine Colour Max-Speed Acceleration 

ul medium diesel silver medium poor 
u2 Compact gasoline white high excellent 
u5 medium diesel silver low good 
us Compact gasoline white low good 

Since CI-~D holds in POSe(D*) and C~ holds in BNDc(D*), Table 1 can be 
immediately decomposed into two sub-tables (Tables 2 & 3). 

2.4. E L I M I N A T I O N  OF S U P E R F L U O U S  A T T R I B U T E S  

In a knowledge representat ion system S = (U, C, D, V, p)  we describe each object  
by the attr ibute values of C. Very  often some of the attributes in C may be 
redundant  in the sense that they do not provide any additional information about  
the objects in S. 

Let B _~ C be a non-empty subset of  condition attributes. We say that B is a 
dependent set of  attributes if there exists a proper  subset B '  c B such t h a t / 3 '  = / ) ,  
i.e. B'A->B; otherwise B is an independent set. B is said to be  a reduct of C if B is a 
maximal independent  set of condition attributes. In general ,  more  than one reduct 
of C can be identified. The collection of all reducts of  C will be denoted by 
RED(C). 

With the notion of positive regions, we can extend the above definitions to take 
into account the set of  action attr ibutes D. We say that  B ~ C is a dependent  set 
with respect to D if there exists a proper  subset B ' c  B such that POSB,(D*)= 
POSB(D*); otherwise B is regarded as an independent  set with respect to D. A 
relative reduct B of C is defined to be a maximal independent  set of condition 
attributes with respect to D. The collection of  all such reducts will be denoted by 
REDo(C). 

Note that for any reduct or relative reduct (: of C, C-Y--> D always implies C-Z-> D. 
This observation provides us with an effective way to t ransform a decision table to a 
simpler one without any loss of information.  
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2. 4.1. Example 2 
It  can be easily verified that C = (Size, Engine} is the only relative reduct of C in 
the KRS given by Table  1. It can therefore  be t ransformed into another  
equivalent and simpler table (Table 4). It should be noted that  there may exist more 
than one reduct of C. The set of attributes belonging to the intersection of all 
reducts of C: 

CORE(C)= N B 
BERED(C) 

is referred to as the core of C. 
An attribute a e C is said to be indispensable if C~ :# t~ for  Ca = C - {a}. In fact, 

the core of C is equal to the union of all indispensable attributes in C. 
Similarly, we can define the relative core of C with respect to the decision 

attributes D. An at tr ibute a e C is said to be indispensable with respect to D if 
POSc_{,)(D*) =#POSc(D*). The relative core is equal to the intersection of all 
relative reducts, namely: 

CORED(C) = ~'l D 
BeREDD(C) 

which is the set of all indispensable attributes with respect to D. 
The core can be easily computed  f rom a KRS. Since every reduct contains the 

core, it is therefore advantageous to start with the core in order  to find a reduct as 
illustrated below by the following example.  

2. 4. 2. Example 3 
The relative core of the set of attributes C = (Size, Engine, Colour} with respect to 
the set D '  = {Max-Speed} is given by: 

CORED,(C) = (Size} 

There are two relative reducts of the set C with respect to D ' :  

Bt = (Size, Engine } 

BE = (Size, Colour} 

TABLE 4 
Reduced decision table 

N C D 

Car Size Engine Max-Speed Acceleration 

u~ medium diesel medium poor 
u2 compact gasoline high excellent 
u3 full diesel high good 
u4 medium gasoline medium excellent 
u5 medium diesel low good 
u6 full propane high good 
u7 full gasoline high excellent 
u8 compact gasoline low good 
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that is REDo,(C)= {B1, 02}. Obviously, 

CORED,(C ) = B 1 n B2 

Z. PAWLAK ET AL. 

3. Probabilistic rough-set model 

The algebraic concepts of rough sets as outlined in the previous section are not 
adequate to deal with information uncertainty inherent in many classification 
problems. This is primarily due to the fact that the rough-set model is based on a 
deterministic approach which deliberately ignores the available probabilistic infor- 
mation in its formalism. 

In this section we attempt to formulate the notions of rough sets from a 
probabilistic point of view. Incorporating the probabilistic aspects into the algebraic 
rough-set model provides a flexible and useful framework for the study of 
non-deterministic systems. 

3.1. P R E L I M I N A R I E S  

Given a finite set of objects U, an equivalence relation R on U, and a probabilistic 
measure P defined on the o-algebra of subsets of U, one can define a probabilistic 
approximation space ap as a triple, Ap = (U, R, P) .  In this context, each subset of 
U corresponds to a random event representing a certain "concept" of interest. 

Our primary objective here is to characterize an expert concept Y _  U in Ap by 
the known concepts Xi(i = 1, 2 . . . . .  n), the equivalence classes of R. Let P ( Y I  Xi) 
denote the probabilty of occurrence of event Y conditioned on event Xi. In other 
words, e(YlXi) is the probability that a randomly selected object with the 
description of concept iX',. belongs to Y. In terms of these conditional probabilities, 
one can define _Ap(Y) and Ap(Y) ,  the lower and upper probabilistic 
approximations of Y in ap = (U, R, P)  as follows: 

A p(Y)  = U x~ 
p(Ylx,)>l/2 

and 
f i e (Y )  = U Xi 

P( YIXi)>-- I/2 

Note that the above definitions are consistent with Bayes' decision procedure. 
Similarly to algebraic rough sets, we can partition the approximation space Ap into 
the probabilisitc positive, boundary, and negative regions of Y: 

POSAp(Y) = A_ p(Y) 

BNDA~(Y) = l ip (Y)  - A_ p(Y) = U Xi 
P( YIx,)= I/2 

NEGA~(Y) = U - f t e (Y)  = U Xi 
P( YIXi)< I/2 

Whenever an object belongs to POSA~(Y) (or NEGAp(Y)), one can conclude with 
some degree of confidence in a statistical sense that the object satisfies (or does not 
satisfy) concept Y. However, there is insufficient information for us to conclude 
whether an object in the boundary region matches concept Y or not. 
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If _Ap(Y) = ,4e(Y) (i.e. BNDA~(Y) = ~), we say that the concept Y is statistically 
definable in the probabilistic approximation Ap; otherwise Y is statistically non- 
definable. Any definable set can be fully characterized by the elementary sets in Ap. 
A non-definable set is called a statistically rough set which can be classified into one 
of the following categories: 

(1) Set Y is partially definable if _Ap(Y) # dp and .,~p(Y) 4= U. 
(2) Set Y is internally definable if _Ae(Y) 4: dp and ,4p(Y) = U. 
(3) Set Y is externally definable if A_p(Y) = q~ and Ap(Y) 4: U. 
(4) Set Y is totally non-definable if _Ap(Y) = ~ and _4p(Y) = U. 

In contrast to the algebraic formalism presented in section 2, the family of 
statistically rough sets does not generate a topological space. This is due to the fact 
that for any two concepts X, Y ~_ U, the identity ,4p(X) U ,Zip(Y) = f~e(X 0 Y) does 
not necessarily hold in the probabilistic approximation space. Some of the useful 
properties are summarized below: 

(1) _a,,(g,) =A,,(q,_); _Ap(U) =A,,(U) 
(2) de(X)  = X ~ A~,(X) 
(3) _Ap(X U Y) _~ _Ap(X) U Ae(Y) 
(4) A_ e(X A Y) c_ A_ e(X) N _Ap(Y) 
(5) Ae(XO Y) ~fi, p(X) UAp(Y) 
(6) f te(X f3 Y) ~_ fi, e(X) f3 Ae(Y) 

3.2. MEASURE OF STATISTICAL DEPENDENCY AND DEFINABILITY: THE 
INFORMATION DEPENDENCY 

The idea of statistical dependency of random events defined here is fundamentally 
different from the standard notion of statistical dependency known in probability 
theory. In the standard approach the random events E1 and E2 are said to be 
independent if P(E2 I El) = P(E2). This means that the probability of occurrence of 
the event E2 has not been affected by the fact that event E1 happened. In a similar 
way the independency of two random variables can be defined by considering all 
events corresponding to values of the first variable conditioned on the values of the 
second variable. If the requirement expressed by the above equation is not satisfied 
by some values of the random variables then the variables are said to be dependent 
and the degree of dependency can be determined using, for instance, the regression 
analysis. In the heart of such a definition of independency of random variables is the 
requirement of preservation of probability distribution. In other words, the con- 
ditional probability distribution of the first variable conditioned on each value of 
the second one is always the same as the unconditional distribution. However, this 
notion of independency (or the related notion of dependency) is useless when 
searching for such a notion of statistical dependency which would reasonably 
generalize the notion of functional (or partial functional) dependency. If the 
existence of functional dependency between variables (attributes) reflects our ability 
to determine values of one variable based on known values of the second then the 
adoption of the standard statistical dependency is totally incorrect because an 
example can very easily be constructed in which two variables are strongly 
dependent in functional sense and independent in statistical sense. Therefore, a new 
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dependency measure, referred to as an information dependency, has to be defined 
which combines statistical character with the ability to generalize the notion of 
functional dependency. 

In this section we study the statistical information dependency versus the algebraic 
dependency. The notion of information dependency leads to a measure of 
definability (the approximate classification) of a concept in a probabilistic 
approximation space. More importantly, it also provides a simple interpretation of 
algebraic and statistical dependencies in a knowledge representation system. 

Assume that there exists a probability measure P defined on the o-algebra of 
subsets of U. We may regard any partition of U as a random variable. Let 
X* = { X 1 ,  X 2 ,  �9 �9 �9 , Xn}  and Y* = {1/1, Yz . . . . .  Ym} denote the partitions induced, 
respectively, by two equivalence relations )(  and 17" on U. We suggest here, 
according to information theory (Shannon, 1948), that the normalized entropy 
function H(Y* IX*) defined by: 

H(Y* I X* ) = ~ P(Xi)H(Y* ] X,)/logm 
i = l  

where 

H(Y* IX  i) = P ( ~  IX i) log P(Yj IX  i) 
j = l  

provides a plausible measure of information dependency of Y on X. The function 
H(Y* ]X*) satisfies the following important properties: 

(1) 0--< H(Y* I X*) <- 1. 
(2) Partition Y is functionally dependent on partition X if and only if 

H(Y* I X*) = O. 
(3) Partition Y is completely independent of partition X if and only if 

H(Y* l X*) = 1. 

Thus, the conditional entropy function defined above provides a natural measure 
of the varying degree of definability of a concept or a set of concepts in a 
probabilistic approximation space. Given a concept I11 ~- U in Ap = ( U, R, P ) ,  we 
can define a partition Y* = {Y~, Y2 = U -  Y1} on U. Clearly, the entropy H(Y* I R*) 
provides an overall measure of how well the concept I"1 is being characterized by 
the partition R * =  {)(1, X2 . . . .  , Xn) induced by R. It is interesting to note that 
H(Y* I R*) is an upper bound of Bayes' classification error rate, namely: 

1 �9 
P(Xi) max {P(Yi [ Xl), P(Y2 I Xi)} - ~ H(Y I R*). 

i = 1  

In particular, concept I11 is definable (algebraically) in A = (U, R) if and only if 
H(Y*IR* ) = 0, whereas Y~ is totally non-definable (statistically) in Ap = (U, R, P) 
if and only if H(Y* I R*) = 1. 

3.3. INFORMATION ATrRIBUTE DEPENDENCY (INDEPENDENCY) 

The notion of information attribute dependency is in fact equivalent to that of 
partition dependency presented in the previous section. Let A* and B* be the 
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partitions induced by two arbitrary subsets of attributes in a knowledge repre- 
sentation system S = (U, C, D, V, p). The degree of information dependency of set 
A on set B can be measured by the entropy H(A* I B*): 

B H(A*IB*)) A 

3. 3.1. Example 4 
Consider the information dependency of the set of condition attributes C = 
{Size, Engine, Colour} on D = {Max-Speed, Acceleration} in the KRS given in 
Table 1. The dependency measure: H(D* I C * ) =  0.215 indicates strong (although 
not functional) relationship between C and D. 

3.4. STATISTICAL NOTIONS OF REDUCT AND CORE 

Similar to the algebraic formalism of rough sets, we can define, based on the idea of 
information dependency, the statistical notions of reduct and core as follows. 

We say that a subset of condition attributes A ~ C in S is a statistically dependent 
set if there exists a proper subset B c A  such that H(A*]B*)=H(A* IA*); 
otherwise A is said to be a statistically independent set. 

(1) Reduct. 
A statistical reduct K of C is a maximal statistically independent subset of 
condition attributes. The collection of all statistical reducts of C will be 
denoted by SRED(C).  A subset of condition attributes A ~ C is said to be a 
statistically dependent set in S with respect to D if there exists a proper subset 
B c A  such that H ( D * I B * ) = H ( D *  I A*); otherwise A is a statistically 
independent set with respect to D. 

(2) Relative reduct. 
A statistical relative reduct K of C is a maximal statistically independent 
subset of condition attributes with respect to D. The collection of all such 
reducts will be denoted by SREDo(C). An attribute c is said to be statistically 
dispensable (superfluous) in C if H(C* I (C - {c})*) = H(C* I C*); otherwise 
a is a statistically indispensable attribute in C. 

Likewise, an attribute c is said to be statistically dispensable in c with 
respect to D if H(D* I (C - {c})*) = H(D* I C*); otherwise c is a statistically 
indispensable attribute in C with respect to D. 

(3) Core. 
The statistical core is the set of all statistically indispensable condition 
attributes, which is in fact the intersection of all statistical reducts of C, 
namely: 

SCORE(C) = f-) B 
BESRED(C) 

(4) Relative core. 
The relative core is the set of statistically indispensable condition attributes 
with respect to D, which can also be written as the intersection of all relative 
reducts of C: 

SCORED(C) = I~ B 
BESRED(C) 
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Note that one can easily compute the reduct in a knowledge representation system. 
In many probabilistic classification problems, in order to simplify the decision rules, 
a reduct (preferably the smallest reduct consisting of a minimal number of 
attributes) need to be found. Since the set of attributes in the core appears in all 
reducts, it is therefore useful to start with the core in searching for a reduct. 

3. 4.1. Example 5 
From the knowledge representation system given in Table 1, one obtains: 

H(D* I (C - {Size})*) - H(D* ] C*) = 0.091 

H(D* I (C - (Engine})*) - H(D* I C*) = 0.0 

H(D* I (C - (Colour})*) - H(D* I C*) = 0.0 

These results imply that either Engine or Colour is a superfluous attribute in C with 
respect to D. That is, removing attribute Engine or Colour from C does not affect 
the overall dependency of D on C. Consider the subset of attributes Ca = C = 
{ Colour}. Since: 

H(D* I (C, - {Size})*) - H(D* I C~) = 0-364 

H(D* [ ( C a -  {Engine})*) - H ( D *  [C~')= 0-297 

both Size and Engine are essential attributes in making decisions about the 
Max-Speed and Acceleration of a car. In fact, the statistical relative reduct and core 
are given by: 

SREDo (C) = (Size, Engine } 

SCOREo(C) = {Size} 

4. Comparison of the probabilistic and algebraic rough-set models 

In this section the main differences between the deterministic and probabilistic rough 
set models are discussed. In particular, we want to emphasize the limitations of the 
deterministic model, which have motivated the introduction of the probabilistic 
approach. In both models the common goal is to characterize a concept Y ~ U in 
terms of the elementary concepts X1, Xz . . . . .  Xn in U. Depending on the 
application there are two possible scenarios: 

(1) The universe of discourse U is known in the sense that we know the 
specifications of all objects in U; 

(2) the universe of discourse U is known only partially, i.e. we know the 
specifications of objects in a subset E c U. 

An application of type (1) is a decision table which contains all feasible 
combinations of conditions and associated actions. In this case, every object in the 
universe is known. However, the majority of applications of interest belong to type 
(2) in which we have only partial knowledge about the universe U. The problem is 
to find a characterization of some concept Y c U based solely on the information 
contained in a test sample E. A typical application of this kind is machine learning 
where generalized decision rules are inferred from a training set of samples (Wong 
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& Ziarko 1986a). In this case, however, the data should be collected in a random 
fashion in order to ensure statistical validation of generated hypothesis. 

The fundamental difference between the deterministic and probabilistic ap- 
proaches lies in how the concept Y is characterized by the elementary concepts 
X1, X2 . . . . .  Xn. The deterministic method limits itself to three-valued decision 
("yes", "no", "do not know") in the characterization of a concept. That is, a set of 
decision rules can be created to determine whether an object satisfying the 
specification Des (Xi) of the known concept Xi also satisfies the specification 
Des (Y) of the concept Y. In the deterministic case the decision rules can be written 
as  

(1) Des (Xi)--) Des (I1) if Xi ~ POS (Y); 
(2) Des (X~)--) not Des (Y) if X~ c_ NEG (I1); 
(3) Des (X~)---) "unknown" if X~ c_ BND(Y).  

4.1.1. Example 6 
As an example, let us consider the collection of objects (cars) given in Table 1. 
Assume that we are interested in finding the characterization of the concept "good 
acceleration" in terms of the values of the attribute Size. The elementary concepts 
are "Size compact", "Size medium". It can be easily verified that the positive and 
negative regions of the concept "good acceleration" are both empty in the 
approximation space induced by values of the attribute Size. Thus, one obtains: 

Size := medium ---) "unknown"; 
Size: = compact---) "unkno wn" ; 
Size: = full--* "unknown". 

It is clearly demonstrated by the above example that the deterministic rough-set 
method is not able to caputre and make use of the statistical information available in 
the boundary region (see Wong & Ziarko, 1986b, a detailed discussion of this 
problem). The statistical information is totally ignored by the deterministic method 
(which can, in fact, be justified in some applications, e.g. in the analysis of decision 
tables: Pawlak, 1986). In many other applications, such an approach is not 
adequate. Using the statistical information available in the boundary region, the 
probabilistic model is aimed at providing a more complete characterization of given 
concept Y. 

In the probabilistic approach, the decision rules about a concept Y are given by: 

(1) Des (Xi)-~ Des (Y) if P(Y  I Xi) > 0.5 
(2) Des (Xi)-~ not Des (Y) if P(Y  I Xi) < 0.5 
(3) Des (Xi)---~ "'unknown" if P ( Y  [ X/) = 0-5 

where the certainty factor c for each rule is defined by c = Max (P(YIXi ) ,  
1 - P(YIX,)). 

It can be easily seen that whenever a conclusive decision can be made using 
deterministic decision rules the same decision can be made with probabilistic 
decision rules. The converse is not true, however, as all probabilistic rules with a 
certainty factor c < 1 will be interpreted as "unknown" in the deterministic case. 
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4.1.2. E x a m p l e  7 
Let us compute probabilistic rules for the concept "good acceleration" in Example 6. 
From Table 1 we obtain the following rules: 

Size  := m e d i u m  0-66) Accelerat ion  : = no t  good;  

Size:  = C o m p a c t  ) " u n k n o w n " ;  

S i ze  : = f u l l  0.66> Accelerat ion  := good.  

In contrast to the deterministic rules produced in the previous example, the above 
set of probabilistic rules can be used to predict the acceleration of a car based on its 
size. 

5, Conclusions 

A number of experimental systems have been implemented based on the deter- 
ministic rough-set theory. These applications include analysis of medical data of 
patients with duodenal ulcer (Pawlak, Slowinski & Slowinski, 1986), control 
algorithm acquisition in the process of cement kiln production (Mrozek, 1985), 
decision table analysis (Pawlak, 1986), pattern recognition (Wojcik, 1986) and 
approximate reasoning (Rasiowa & Skowron, 1986). The probabilistic model has 
proven to be a useful mathematical tool for dealing with some problems occurring 
in machine learning such as generation of decision rules from inconsistent training 
examples (Wong & Ziarko, 1986a) or training data analysis and reduction (the same 
applies to decision tables) (Ziarko, 1987). Experiments are under way on applica- 
tion of this model to isolated word recognition and for database design (Yasdi & 
Ziarko, 1987). The probabilistic model is also being used in experiments with design 
knowledge acquisition from artificially generated examples in the area of civil 
engineering (Arciszewski, Mustafa & Ziarko, 1987). The most comprehensive 
implementation of the probabilistic model is the system ANLYST (Ziarko, 1987) 
which is performing data analysis and reduction according to ideas presented in this 
article. 

Most recent unpublished applications of the deterministic model involve a very 
successful system for airline pilot performance evaluation (this system has been 
adopted as standard by Polish airlines), geographical data classification with respect 
to terrain types, questionnaire analysis in sociology and psychology, and a variety of 
other medical applications. It must be stressed here that all these applications were 
implemented after standard statistical methods had been tried repeatedly and failed 
to provide satisfactory results. This, obviously, does not imply that rough set 
methods are better or can replace statistical methods. Instead the accumulated 
experience suggests that these two approaches are complementary to each other; in 
particular, the rough set methods are more justified and useful when the size of the 
set of experimental data is too small to apply standard statistical methods. 

This research was supported in part by grants from the National Sciences and Engineering 
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