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INTRODUCTION 

In today’s globalized world, email is a primary source of communication. This communication 
can vary from personal, business, corporate to government.  With the rapid increase in email 
usage, there has also been increase in the SPAM emails. SPAM emails, also known as junk email 
involves nearly identical messages sent to numerous recipients by email. Apart from being 
annoying, spam emails can also pose a security threat to computer system. It is estimated that 
spam cost businesses on the order of $100 billion in 2007. In this project, we use text mining to 
perform automatic spam filtering to use emails effectively. We try to identify patterns using 
Data-mining classification algorithms to enable us classify the emails as HAM or SPAM. 

LEARNING DATA 

The data used for this project was taken from the Spam Assassin public corpus website. It 
consists of two data sets: train and test. Each dataset contains a randomly selected collection of 
emails in plain text format, which have been labelled as HAM or SPAM. The training data is 
used to build a model for classifying emails into HAM and SPAM. The test data is used to check 
the accuracy of the model built with the training data. The training data set contains 400 emails 
with 283 ham and 117 spam emails. The test data contains 200 emails with 139 ham and 61 
spam emails.  

DATA PREPROCESSING 

The emails in the learning data are in plain text format. We need to convert the plain text into 
features that can represent the emails. Using these features we can then use a learning algorithm 
on the emails. A number of pre-processing steps are first performed. 

We convert the plain text files to files with one word per line. In this project, we look at emails 
just as a collection of words. So, to make it easier we convert each file into a list of words using 
Bourne Shell Scripts (extractmultfiles.sh and extractwords.sh).The output files are named as 
‘filename.words.’  

STOP WORDS 

There are some English words which appear very frequently in all documents and so have no 
worth in representing the documents. These are called STOP WORDS and there is no harm in 
deleting them. Example: the, a, for etc. There are also some domain specific (in this case email) 
stop words such as mon, tue, email, sender, from etc. So, we delete these words from all the files 
using a Bourne Shell Script. These words are put in a file ‘words.txt’. The shell script takes 
multiple files as an argument and then deletes all the stop words mentioned in the words.txt file. 
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STEMMING 

The next step to be performed is stemming. Stemming is used to find a root of a word and thus 
replacing all words to their stem which reduces the number of words to be considered for 
representing a document. Example: sings, singing, sing have sing as their stem. In the project, we 
use JAVA implementation of Porter stemming algorithm which is slightly modified to meet our 
needs. The resultant files are named with an extension ‘words_stemmed’. 

INVERTED INDEX FILE 

In the next step, we create an inverted index file. This file has 3 columns – word, filename and 
frequency of word in the file. The file is sorted in alphabetical order of words. For this, we first 
create an inverted file for each individual file and then append them all together to build one 
inverted index file. The snapshot of the index file looks as: 

abl spam_4_train 1 
abl spam_55_train 1 
abl spam_8_train 1 

abli spam_47_train 1 
abmv spam_111_train 3 
abo ham_94_train 1 

abound ham_6_train 1 
abovement ham_173_train 1 

abr ham_3_train 2 
abreau ham_277_train 8 
abreauj ham_277_train 2 
abroad ham_193_train 2 

absbottom ham_31_train 1 
absenc ham_273_train 1 

 

For this task, we create two Bourne script files. The script ‘filename.sh’ creates files with an 
extension ‘.out’ which is an inverted index file for a single file. Then the script ‘append.sh’ 
appends all the ‘.out’ files together and sorts them in alphabetical order of words. 

ATTRIBUTE SELECTION  

In the next step, we chose words to represent all the emails from the inverted index file. We use 
“Bag of words” method to select attributes, i.e. we use a set of words as attributes. We have to 
select some n specific words as all the documents contain thousands of unique words altogether 
and we cannot use all of these words for learning algorithm. 

For this process, we use information-gain method. We use this method as it’s a class 
dependent method, so on average it gives better accuracy. We use a JAVA program to 
calculate the gain value for each word using the formula- 
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In this case, P(C) refers to the probability of ham and spam class which can be calculated 
easily as we already have a predefined number of ham and spam emails. Next is P(w) 
which is the probability of the given word. It is given by the number of documents 
containing the word / total number of documents. P(C|w) ,means the number of 
documents which are labelled as spam or ham and which also contain the word w divided 
by the probability of the word w. So, looking at the inverted index file we can easily 
calculate all the values.   

The JAVA program generates a text file with all the words and their respective gain values. For 
this project, we manually select top 10, 15 and 20 words with highest gain values and put them in 
separate files. 

ATTRIBUTE VALUE REPRESENTATION 

Once we have selected words, the next step is to represent the values for the selected attributes. 
We assign numerical values to them using 2 different methods –  

a. Term Frequency 
Definition: TF = t (i,j)  

  This gives the frequency of a word i in jth document. 

b. TF-IDF (Term Frequency - Inverted Document Frequency)  
Definition: TF×IDF = t(i,j) × log(N/n) 

Here N = total number documents and n = number of documents that contain the 
respective word. 

For each of this method, we use a JAVA program which creates a text file in a tabular 
format with the document name, attribute name and attribute value with the class value 
specifying it’s a spam or ham email. A snapshot of this file looks as: 

File name listinfo beenther subscrib remov mailman Error Keyword Bulk Preced archiv class 
ham_120_train 0 5 0 4 4 2 3 3 7 2 ham 
spam_120_train 3 1 2 6 7 4 5 5 3 5 spam 
ham_225_train 1 3 3 1 5 2 5 4 2 7 ham 
ham_82_train 4 0 2 3 3 6 3 6 5 0 ham 
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ARFF FILES 

Once we have the file in the above mentioned format, we convert this file into .arff format to 
process it in WEKA. We use Excel to convert the file to CSV format and thereby adding the 
headers. 

TEST DATA 

At this point, we have .arff files for training data. We also need test files in the same format as 
training data so they are compatible. We repeat the all the above steps except 5 where we 
calculate Information Gain, and convert the test files to arff format also. 

PROCESS FLOW DIAGRAM 

The whole process of classification is depicted in the following diagram: 
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File 1 1 3 4 spam 
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WEKA 

The training data set arff files are given as an input to WEKA and different classifying 
algorithms such as Naïve Bayes, Bayes Net, Neural Network, k-NN and Decision Table were 
used to build models. Then, the test data set arff files were tested to find the classification 
accuracy of each model. The k-NN method gives the highest classification accuracy using k=3, 
cross-validation with 10 folds and 20 attributes. The accuracy came up to 94.5 %.  

TESTING STATISTICS 

The following data shows the testing statistics of different models on the test data. The data 
shown here is for the frequency method used for attribute value representation with 20 attributes 
and cross validation with 10 folds. 

Naïve Bayes        

Classification Accuracy: 81%                                                             
== Confusion Matrix === 
a   b   <-- classified as 
  56   5 |   a = spam 
  33 106 |   b = ham 
 
Bayesian Network 
 
Classification Accuracy: 80%      
=== Confusion Matrix === 
 a   b   <-- classified as 
  58   3 |   a = spam 
  37 102 |   b = ham 
 
Neural Network 

Classification Accuracy: 93.5 %      
=== Confusion Matrix === 
   a   b   <-- classified as 
  56   5 |   a = spam 
   8 131 |   b = ham 
 
SMO 

Classification Accuracy: 88.5 %      
=== Confusion Matrix === 
  a   b   <-- classified as 
  47  14 |   a = spam 
   9 130 |   b = ham 
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k-NN (k=1) 

Classification Accuracy: 91.25 %      
=== Confusion Matrix === 
 a   b   <-- classified as 
 102  15 |   a = spam 
  20 263 |   b = ham 
 
k-NN (k=3) 

Classification Accuracy: 94.5 %     
=== Confusion Matrix === 
 a   b   <-- classified as 
  58   3 |   a = spam 
   8 131 |   b = ham 
 
Decision Table 

Classification Accuracy: 88 %  
=== Confusion Matrix ===    
a   b   <-- classified as 
  45  16 |   a = spam 
   8 131 |   b = ham 
 
C 4.5  

Classification Accuracy: 90.5 % 
=== Confusion Matrix === 
 
   a   b   <-- classified as 
  57   4 |   a = spam 
  15 124 |   b = ham 
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EXPERIMENTAL RESULTS 

From our experiments with different number of attributes and learning algorithms, we look at the 
classification accuracy for the built models on testing data and then compare the results -  

 

METHOD: FREQUENCY 

No. of 
attributes  

Bayesian 
Network 

Naïve 
Bayes 

Neural 
Network 

SMO K-Nearest 
Neighbour 

(k=3) 

C 4.5 Decision 
Table 

10  78.5 77.5 92 89.5 93.5 91 90 

15  79 76.5 90.5 87.5 92 91.5 90 

20  80 81 93.5 88.5 94.5 90.5 88 
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METHOD: TF-IDF 

No. of 
attributes  

Bayesian 
Network 

Naïve 
Bayes 

Neural 
Network 

SMO K-Nearest 
Neighbour 

(k=3) 

C 4.5 Decision 
Table 

10  89.5 89 90.5 88.5 90 90.5 88.5 

15  71 90 93 89.5 93 91 88.5 

20  78 88.5 89.5 87.5 91.5 87 83 

 

 

 

The tables above show the classification accuracy for different classifiers using 10 -15 -20 
attributes for both frequency and TF/IDF methods. We didn’t experiment with more than 20 
attributes as the data set contains only 400 documents, so according to us 20 is an optimal value.  

CONCLUSION 

Given a set of words, we used feature selection to obtain words which allo us to distinguish 
between spam and ham emails. We also compared the accuracy of various classifiers in 
predicting the class attribute. We see that k-NN method gives the highest classification accuracy 
no matter how many attributes are used and which method is used. Also, the value for k = 3 
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gives better result than k = 1. We also see that on average the accuracy improves as the number 
of attributes increase. It is possible that the accuracy may increase more than 94.5 % if we 
further increase the number of attributes.  

PROGRAMS 

For this project, we have written many Bourne Shell Scripts and JAVA programs. In this section 
we will explain how to compile and use these programs and the functionality of each of these. 

stopwords.sh 

This script takes multiple arguments and removes all the stop words from the file. We run this 
script by using following command: 

stopwords.sh filename1 filename2 

For our ease we provide the filenames at once using ‘*.words’ parameter which takes all the 
words files in the current directory. 

stopwords.sh *.words 

Stemmer.java 

This is Porter algorithm with some modifications. This program finds the root of the words and 
replace them with their root. In this program, we consider all the files in train and test data set 
and create new files with extension ‘.stemmer’ in the respective folders. No arguments are 
provided for this program. 

Compile Command: javac Stemmer.java 

Run Command: java Stemmer 

filename.sh & append.sh 

After the stemmer program, we run filename.sh bourne shell script. This script takes multiple 
stemmed files created from the above program as argument and converts each file to an inverted 
file specifying all the words in the file with their frequency and filename. The script creates new 
files with extension ‘.out’ in the current directory. We run the script using command: 

filename.sh *.stemmer 

After each file is used to create inverted file, we append all these ‘.out’ files to create one 
inverted index file using the ‘append.sh’ bourne shell script using the command- 

append.sh *.out 
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The script generates a file called ‘append.out’. 

InformationGain.java 

This file is used to calculate the gain value of each unique word occurring in the append.out file 
created above for the train data. The program also uses 2 other java classes – Line.java and 
InvertNode.java. These programs need to be compiled first. 

javac Line.java 
javac InvertNode.java 
 
Then we compile and run the InformationGain class. 

javac InformationGain.java 
java InformationGain 
 
The program creates a file called ‘InfoGain.txt’ which outputs each word with their gain value in 
an increasing order of their gain values. 
 
FileGenerator.java 
 
This program generates a text file in a tabular format using the frequency method for attribute 
value representation. The files reads the manually created selected words file which has the top 
10/15/20 words based on their gain values and creates a new file named 
‘a_frequency_b_attribute’ which is used to create arff file later. Here a = {train,test} and b = 
{10,15,20}. Compile and run the program using commands: 
 
javac FileGenerator.java 
java FileGenerator 
 
TIFDF.java 

This program also generates a text file in the same format as above except using the TF-IDF 
method for attribute value representation. The new created files are named as 
‘a_tfidf_b_attributes’ where a = {train,test} and b ={10,15,20} 

Compile and run the program using commands: 
javac TIFDF.java 
java TIFDF 
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