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Abstract — In this paper rudiments of the theory will be
outlined, and basic concepts of the theory will be illustrated
by a simple tutorial example, concerning churn modeling in
telecommunications. Real life applications require more ad-
vanced extensions of the theory but we will not discuss these
extensions here. Rough set theory has an overlap with many
other theories dealing with imperfect knowledge, e.g., evidence
theory, fuzzy sets, Bayesian inference and others. Neverthe-
less, the theory can be regarded as an independent, comple-
mentary, not competing, discipline in its own rights.
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1. Introduction

Rough set theory can be regarded as a new mathemati-
cal tool for imperfect data analysis. The theory has found
applications in many domains, such as decision support,
engineering, environment, banking, medicine and others.
This paper presents basis of the theory which will be illus-
trated by a simple example of churn modeling in telecom-
munications.
Rough set philosophy is founded on the assumption that
with every object of the universe of discourse some infor-
mation (data, knowledge) is associated. Objects charac-
terized by the same information are indiscernible (similar)
in view of the available information about them. The in-
discernibility relation generated in this way is the math-
ematical basis of rough set theory. Any set of all indis-
cernible (similar) objects is called an elementary set, and
forms a basic granule (atom) of knowledge about the uni-
verse. Any union of some elementary sets is referred to as
a crisp (precise) set – otherwise the set is rough (impre-
cise, vague). Each rough set has boundary-line cases, i.e.,
objects which cannot be with certainty classified, by em-
ploying the available knowledge, as members of the set or
its complement. Obviously rough sets, in contrast to pre-
cise sets, cannot be characterized in terms of information
about their elements. With any rough set a pair of precise
sets, called the lower and the upper approximation of the
rough set, is associated. The lower approximation consists
of all objects which surely belong to the set and the upper
approximation contains all objects which possibly belong
to the set. The difference between the upper and the lower
approximation constitutes the boundary region of the rough
set. Approximations are fundamental concepts of rough set
theory.
Rough set based data analysis starts from a data table called
a decision table, columns of which are labeled by attributes,
rows – by objects of interest and entries of the table are at-

tribute values. Attributes of the decision table are divided
into two disjoint groups called condition and decision at-
tributes, respectively. Each row of a decision table induces
a decision rule, which specifies decision (action, results,
outcome, etc.) if some conditions are satisfied. If a deci-
sion rule uniquely determines decision in terms of condi-
tions – the decision rule is certain. Otherwise the decision
rule is uncertain. Decision rules are closely connected
with approximations. Roughly speaking, certain decision
rules describe lower approximation of decisions in terms
of conditions, whereas uncertain decision rules refer to the
boundary region of decisions.
With every decision rule two conditional probabilities,
called the certainty and the coverage coefficient, are asso-
ciated. The certainty coefficient expresses the conditional
probability that an object belongs to the decision class spec-
ified by the decision rule, given it satisfies conditions of the
rule. The coverage coefficient gives the conditional proba-
bility of reasons for a given decision.
It turns out that the certainty and coverage coefficients sat-
isfy Bayes’ theorem. That gives a new look into the inter-
pretation of Bayes’ theorem, and offers a new method data
to draw conclusions from data.
In the paper rudiments of the theory will be outlined, and
basic concepts of the theory will be illustrated by a simple
tutorial example of churn modeling. Real life applications
require more advanced extensions of the theory but we will
not discuss these extensions in this paper.
Rough set theory has an overlap with many other theories
dealing with imperfect knowledge, e.g., evidence theory,
fuzzy sets, Bayesian inference and others. Nevertheless,
the theory can be regarded as an independent, comple-
mentary – not competing discipline, in its own rights.
More information about rough sets and their applications
can be found in the references and the Web.

2. Illustrative example

Let us start our considerations from a very simple tuto-
rial example concerning churn modeling in telecommuni-
cations, which is a simplified version of an example given
in [1]. In Table 1, six facts concerning six client segments
are presented.
In the table condition attributes describing client profile are:
In – incoming calls, Out – outgoing calls within the same
operator, Change – outgoing calls to other mobile operator,
the decision attribute describing the consequence is Churn
and N is the number of similar cases.
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Each row in the table determine a decision rule. E.g., row 2
determines the following decision rule: ”if the number of
incoming calls is high and the number of outgoing calls
is high and the number of outgoing calls to the mobile
operator is low then these is no churn”.
According to [1]: ”One of the main problem that have to
be solved by marketing departments of wireless operators
is to find the way of convincing current clients that they
continue to use the services. In solving this problems can
help churn modeling. Churn model in telecommunications
industry predicts customers who are going to leave the cur-
rent operator”.

Table 1
Client segments

Segment In Out Change Churn N

1 medium medium low no 200

2 high high low no 100

3 low low low no 300

4 low low high yes 150

5 medium medium low yes 220

6 medium low low yes 30

In other words we want to explain churn in terms of
clients profile, i.e., to describe market segments f4, 5, 6g
(or f1, 2, 3g) in terms of condition attributes In, Out and
Change.
The problem cannot be solved uniquely because the data
set is inconsistent, i.e., segments 1 and 5 have the same
profile but different consequences.
Let us observe that:

– segments 2 and 3 (4 and 6) can be classified as sets
of clients who certainly do not churn (churn),

– segments 1, 2, 3 and 5 (1, 4, 5 and 6) can be classified
as sets of clients who possibly do not churn (churn),

– segments 1 and 5 are undecidable sets of clients.

This leads us to the following notions:

– the set f2,3g (f4,6g) is the lower approximation of
the set f1,2,3g(f4,5,6g),

– the set f1,2,3,5g (f1,4,5,6g) is the lower approxima-
tion of the set f1,2,3g (f4,5,6g),

– the set f1,5g is the boundary region of the set
f1,2,3g(f4,5,6g),

which will be discussed in the next paragraph more exactly.

3. Information systems and
approximations

In this section we will examine approximations more ex-
actly. First we define a data set, called an information
system.

An information system is a pair S= (U;A), where U and A,
are finite, nonempty sets called the universe, and the set
of attributes, respectively. With every attribute a 2 A we
associate a set Va, of its values, called the domain of a.
Any subset B of A determines a binary relation I(B) on U ,
which will be called an indiscernibility relation, and de-
fined as follows: (x;y) 2 I(B) if and only if a(x) = a(y) for
every a 2 A, where a(x) denotes the value of attribute a
for element x. Obviously I(B) is an equivalence relation.
The family of all equivalence classes of I(B), i.e., a parti-
tion determined by B, will be denoted by U=I(B), or simply
by U=B; an equivalence class of I(B), i.e., block of the par-
tition U=B, containing x will be denoted by B(x). If (x;y)
belongs to I(B) we will say that x and y are B-indiscernible
(indiscernible with respect to B). Equivalence classes of the
relation I(B) (or blocks of the partition U=B) are referred
to as B-elementary sets or B-granules.
Suppose we are given an information system S= (U;A);
X �U , and B� A. Let us define two operations assign-
ing to every X �U two sets B�(X) and B�(X), called the
B-lower and the B-upper approximation of X, respectively,
and defined as follows:

B�(X) =
[

x2U

�
B(x) : B(x)� X

	
;

B�(X) =
[

x2U

�
B(x) : B(x)\X 6= Ø

	
:

Hence, the B-lower approximation of a set is the union
of all B-granules that are included in the set, whereas
the B-upper approximation of a set is the union of all
B-granules that have a nonempty intersection with the set.
The set

BNB(X) = B�(X)�B�(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e.,
BNB(X) = Ø, then X is crisp (exact) with respect to B;
in the opposite case, i.e., if BNB(X) 6= Ø; X is referred to
as rough (inexact) with respect to B.
Thus, the set of elements is rough (inexact) if it cannot
be defined in terms of the data, i.e. it has some elements
that can be classified neither as member of the set nor its
complement in view of the data.

4. Decision tables and decision rules

If we distinguish in an information system two disjoint
classes of attributes, called condition and decision at-
tributes, respectively, then the system will be called a de-
cision table and will be denoted by S= (U;C;D), where C
and D are disjoint sets of condition and decision attributes,
respectively.
Let S= (U;C;D) be a decision table. Every x2U deter-
mines a sequence c1(x); : : : ;cn(x); d1(x); : : : ;dm(x), where
fc1; : : : ;cng=C and fd1; : : : ;dmg= D.
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The sequence will be called a decision rule induced
by x (in S) and will be denoted by c1(x); : : : ;cn(x) !
d1(x); : : : ;dm(x) or in short C!x D.
The number suppx(C;D) = jA(x)j = jC(x)\D(x)j will be
called a support of the decision rule C!x D and the number

σx(C;D) =
suppx(C;D)

jU j
;

will be referred to as the strength of the decision rule
C!x D, where jXj denotes the cardinality of X.
With every decision rule C!x D we associate the certainty
factor of the decision rule, denoted cerx(C;D) and defined
as follows:

cerx(C;D) =
jC(x)\D(x)j

jC(x)j
=

suppx(C;D)

jC(x)j
=

σx(C;D)

π
�
C(x)

� ;

where π
�
C(x)

�
= jC(x)j

jUj .
The certainty factor may be interpreted as a conditional
probability that y belongs to D(x) given y belongs to C(x),
symbolically πx(DjC).
If cerx(C;D) = 1, then C !x D will be called a certain
decision rule; if 0 < cerx(C;D) < 1 the decision rule will
be referred to as an uncertain decision rule.
Besides, we will also use a coverage factor of the decision
rule, denoted covx(C;D) and defined as

covx(C;D) =
jC(x)\D(x)j

jD(x)j
=

suppx(C;D)

jD(x)j
=

σx(C;D)

π
�
D(x)

� ;

where π
�
C(x)

�
= jD(x)j

jUj .
Similarly

covx(C;D) = πx(CjD) :

If C !x D is a decision rule then D !x C will be called
an inverse decision rule. The inverse decision rules can be
used to give explanations (reasons) for a decision.
For Table 1 we have the certainty and coverage factors are
as shown in Table 2.

Table 2
Parameters of the decision rules

Decision rule Strength Certainty Coverage
1 0.20 0.48 0.33
2 0.10 1.00 0.17
3 0.30 1.00 0.50
4 0.15 1.00 0.38
5 0.22 0.52 0.55
6 0.03 1.00 0.07

Let us observe that if C!x D is a decision rule then
[

y2D(x)

�
C(y) : C(y)� D(x)

	

is the lower approximation of the decision class D(x), by
condition classes C(y), whereas the set

[

y2D(x)

�
C(y) : C(y)\D(x) 6= Ø

	

is the upper approximation of the decision class by condi-
tion classes C(y).
Approximations and decision rules are two different meth-
ods to express properties of data. Approximations suit bet-
ter to express topological properties of data, whereas de-
cision rules describe in a simple way hidden patterns in
data.

5. Probabilistic properties
of decision tables

Decision tables (and decision algorithms) have important
probabilistic properties which are discussed next.
Let C !x D be a decision rule and let Γ = C(x) and
∆ = D(x). Then the following properties are valid:

∑
y2Γ

cery(C;D) = 1; (1)

∑
y2∆

covy(C;D) = 1; (2)

π
�
D(x)

�
= ∑

y2Γ
cery(C;D) �π

�
C(y)

�
=

= ∑
y2Γ

σy(C;D); (3)

π
�
C(x)

�
= ∑

y2∆
covy(C;D) �π

�
D(y)

�
=

= ∑
y2∆

σy(C;D); (4)

cerx(C;D) =
covx(C;D) �π

�
D(x)

�

∑
y2∆

covy(C;D) �π
�
D(y)

� =
σx(C;D)
π
�
C(x)

� ; (5)

covx(C;D) =
cerx(C;D) �π

�
C(x)

�

∑
y2Γ

cery(C;D) �π
�
C(y)

� =
σx(C;D)
π
�
D(x)

� : (6)

That is, any decision table satisfies Eqs.(1)–(6). Observe
that formulae (3) and (4) refer to the well known total
probability theorem, whereas (5) and (6) refer to Bayes’
theorem.
Thus in order to compute the certainty and coverage factors
of decision rules according to formula (5) and (6) it is
enough to know the strength (support) of all decision rules
only. The strength of decision rules can be computed from
data or can be a subjective assessment.

6. Decision algorithm

Any decision table induces a set of ”if ... then” decision
rules.
Any set of mutually, exclusive and exhaustive decision
rules, that covers all facts in S and preserves the indis-
cernibility relation included by S will be called a decision
algorithm in S.
An example of decision algorithm in the decision Table 1
is given below:
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cer.
1) if (In, high) then (Churn, no) 1.00
2) if (In, low) and (Change, low) then (Churn, no) 1.00
3) if (In, med.) and (Out, med.) then (Churn, no) 0.48
4) if (Change, high) then (Churn, yes) 1.00
5) if (In, med.) and (Out, low) then (Churn, yes) 1.00
6) if (In, med.) and (Out, med.) then (Churn, yes) 0.52

Finding a minimal decision algorithm associated with
a given decision table is rather complex. Many methods
have been proposed to solve this problem, but we will not
consider this problem here.

If we are interested in explanation of decisions in terms of
conditions we need an inverse decision algorithm which is
obtained by replacing mutually conditions and decisions in
every decision rule in the decision algorithm.

For example, the following inverse decision algorithm can
be understood as explanation of churn (no churn) in terms
of client profile:

cer.
1’) if (Churn, no) then (In, high) and (Out, med.) 0.33
2’) if (Churn, no) then (In, high) 0.17
3’) if (Churn, no) then (In, low) and (Change, low) 0.50
4’) if (Churn, yes) then (Change, yes) 0.38
5’) if (Churn, yes) then (In, med.) and (Out, med.) 0.55
6’) if (Churn, yes) then (In, med.) and (Out, low) 0.07

Observe that certainty factor for inverse decision rules are
coverage factors for the original decision rules.

7. What the data are telling us

The above properties of decision tables (algorithms) give
a simple method of drawing conclusions from the data and
giving explanation of obtained results.

From the decision algorithm and the certainty factors we
can draw the following conclusions.

� No churn is implied with certainty by:

– high number of incoming calls,

– low number of incoming calls and low number
of outgoing calls to other mobile operator.

� Churn is implied with certainty by:

– high number of outgoing calls to other mobile
operator,

– medium number of incoming calls and low
number of outgoing calls.

� Clients with medium number of incoming calls and
low number of outgoing calls within the same op-
erator are undecided (no churn, cer. = 0.48; churn,
cer. = 0.52).

From the inverse decision algorithm and the coverage fac-
tors we get the following explanations:

– the most probable reason for no churn is low general
activity of a client,

– the most probable reason for churn is medium num-
ber of incoming calls and medium number of outgo-
ing calls within the same operator.

8. Summary

In this paper the basic concepts of rough set theory and its
application to drawing conclusions from data are discussed.
For the sake of illustration an example of churn modeling
in telecommunications is presented.

References
[1] J. Grant, “Churn modeling by rough set approach”, manuscript, 2001.

[2] S. K. Pal and A. Skowron, Eds., Rough Fuzzy Hybridization. Springer,
1999.

[3] Z. Pawlak, Rough Sets – Theoretical Aspects of Reasoning about Data.
Boston, London, Dordrecht: Kluwer, 1991.

[4] Z. Pawlak, “Decision rules, Bayes’ rule and rough sets”, in New Di-
rection in Rough Sets, Data Mining, and Granular-Soft Computing,
N. Zhong, A. Skowron, and S. Ohsuga, Eds. Springer, 1999, pp. 1–9.

[5] Z. Pawlak, “New look Bayes’ theorem – the rough set outlook”,
in Proc. Int. RSTGC-2001, Matsue Shimane, Japan, May 2001,
pp. 1–8; Bull. Int. Rough Set Soc., vol. 5, no. 1/2, 2001.

[6] L. Polkowski and A. Skowron, Eds., Rough Sets and Current Trends
in Computing. Lecture Notes in Artificial Intelligence 1424, Springer,
1998.

[7] L. Polkowski and A. Skowron, Eds., Rough Sets in Knowledge Dis-
covery. Vol. 1–2, Springer, 1998.

[8] L. Polkowski, S. Tsumoto, and T. Y. Lin, Eds., Rough Set Methods
and Applications – New Developments in Knowledge Discovery in
Information Systems. Springer, 2000, to appear.

[9] N. Zhong, A. Skowron, and S. Ohsuga, Eds., New Direction in Rough
Sets, Data Mining, and Granular-Soft Computing. Springer, 1999.

More info about rough sets can be found at:

http://www.roughsets.org
http://www.cs.uregina.ca/�roughset
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