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Abstract. Rough set theory allows one to find reducts from a decision table, 
which are minimal sets of attributes preserving the required quality of classifi-
cation. In this article, we propose a number of algorithms for discovering all 
generalized reducts (preserving generalized decisions), all possible reducts 
(preserving upper approximations) and certain reducts (preserving lower ap-
proximations). The new RAD and CoreRAD algorithms, we propose, discover 
exact reducts. They require, however, the determination of all maximal attribute 
sets that are not supersets of reducts. In the case, when their determination is in-
feasible, we propose GRA and CoreGRA algorithms, which search approximate 
reducts. These two algorithms are well suited to the discovery of supersets of 
reducts from very large decision tables. 

1   Introduction 

Rough set theory has been conceived as a non-statistical tool for analysis of imperfect 
data [17]. Rough set methodology allows one to discover interesting data dependen-
cies, decision rules, repetitive data patterns and to analyse conflict situations [24]. 
The reasoning in the rough set approach is based solely on available information. 
Objects are perceived as indiscernible if they have the same description in the system. 
This may be a reason for uncertainty. Two or more objects identically described in 
the system may belong to different classes (concepts). Such concepts, though vague, 
can be defined roughly by means of a pair of crisp sets: lower approximation and 
upper approximation. Lower approximation of a concept is a set of objects that surely 
belong to that concept, whereas upper approximation is a set of objects that possibly 
belong to that concept. 

Rough set theory allows one to find reducts from a decision table, which are mini-
mal sets of attributes preserving the required quality of classification. For example, a 
reduct may preserve lower approximations of decision classes, or upper approxima-
tions of decision classes, or both. A number of methods for discovering reducts have 
already been proposed in the literature [2-8, 11, 15-17, 20-31]. The most popular 



Towards Scalable Algorithms for Discovering Rough Set Reducts      121 

methods are based on discernibility matrices [20]. Other methods are based, e.g., on 
the theory of cones and fences [7, 19]. Unfortunately, the existing methods are not 
capable to discover all reducts from very large decision tables, although research on 
discovering rough set decision rules in large data sets started a few years ago (see 
e.g., [9-10, 14]). One may try to overcome this problem either by applying heuristics 
or data sampling or both, or by restricting search to looking for some reducts instead 
of all of them.  

Recently, we have proposed the GRA-like (GeneralizedReductsApriori) algorithms 
for discovering approximate generalized, possible and certain reducts from very large 
decision tables [13]. This article extends the results obtained in [13]. Here, we pro-
pose new algorithms - RAD and CoreRAD - for discovering exact generalized, possi-
ble and certain reducts. CoreRAD is a variation of RAD, which uses information on 
the so-called core in order to restrict the number of candidates for reducts and the 
number of scans of the decision table. The new algorithms require the determination 
of all maximal sets that are not supersets of reducts (MNSR). The knowledge of 

MNSR is sufficient to evaluate candidates for reducts correctly. The method of 
creating and pruning candidates is very similar to the one proposed in GRA [13]. In 
the case, when the calculation of MNSR is infeasible, we advocate to search ap-
proximate reducts. In the article, we first introduce the theory behind approximate 
reducts and then present in detail respective algorithms (GRA and CoreGRA). 

The layout of the article is as follows: In Section 2, we remind basic rough set no-
tions and prove some of their properties that will be applied in the proposed algo-
rithms. In Section 3, we propose the RAD algorithm for discovering generalized and 
possible reducts. A number of optimizations of the basic algorithm are discussed as 
well. The CoreRAD algorithm, which calculates both the core and the reducts, is 
offered in Section 4. In Section 5, we discuss briefly how to adapt RAD and Core-
RAD for the discovery of certain reducts. The notions of approximate reducts are 
introduced in Section 6. We prove that approximate reducts are supersets of exact 
reducts. The properties of approximate generalized reducts are used in the construc-
tion of the GRA algorithm, which is presented in Section 7. In Section 8, we discuss 
the CoreGRA algorithm, which calculates both the approximate generalized reducts 
and the approximate core. In Section 9, we propose simple modifications of GRA and 
CoreGRA that enable the usage of these algorithms for discovering approximate cer-
tain reducts. Section 10 concludes the results indicating that the proposed solutions 
can be applied in the case of incomplete decision tables as well. 

2   Basic Notions 

2.1   Information Systems 

An information system (IS) is a pair S = (O, AT), where O is a non-empty finite set of 
objects and AT is a non-empty finite set of attributes, such that a: O → Va for any 
a∈AT, where Va is called domain of the attribute a.  



122      Marzena Kryszkiewicz and Katarzyna Cichoń 

An attribute-value pair (a,v), where a∈AT and v∈Va, is called an atomic descriptor. 
An atomic descriptor or its conjunction is called a descriptor [20]. A conjunction of 
atomic descriptors for attributes A⊆AT is called A-descriptor.  

Let S = (O, AT). Each subset of attributes A⊆AT determines a binary indiscernibil-
ity relation IND(A), IND(A) = {(x,y)∈O×O| ∀a∈A, a(x) = a(y)}. The relation IND(A), 
A⊆AT, is an equivalence relation and constitutes a partition of O. Objects indiscerni-
ble with regard to their description on attribute set A in the system will be denoted by 
IA(x); that is, IA(x) = {y∈O| (x,y)∈IND(A)}. 

Property 1 [9]. Let A, B ⊆ AT.  
a) If A ⊆ B, then IB(x) ⊆ IA(x).  
b) IA∪B(x) = IA(x) ∩ IB(x). 

c) IA(x) = ∩a∈A Ia(x). 

Let X⊆O and A⊆AT. AX is defined as a lower approximation of X iff AX = 

{x∈O| IA(x) ⊆ X} = {x ∈ X | IA(x) ⊆ X}. AX is defined as an upper approximation of 

X iff AX = {x∈O| IA(x) ∩ X ≠ ∅} = ∪{IA(x)| x ∈ X}. AX is the set of objects that 

belong to X with certainty, while AX is the set of objects that possibly belong to X. 

2.2   Decision Tables 

A decision table is an information system DT = (O, AT∪{d}), where d∉AT is a dis-
tinguished attribute called the decision, and the elements of AT are called conditions. 
The set of all objects whose decision value equals k, k∈Vd, will be denoted by Xk. Let 
us define the function ∂A: O → P(Vd), A⊆AT, as follows [18]: 

∂A(x) = {d(y)| y∈IA(x)}. 

∂A will be called A-generalized decision in DT. For A = AT, an A-generalized decision 
will be also called briefly a generalized decision. 
 
Table 1. DT = (O, AT∪{f}) extended
by generalized decision ∂AT. 

Table 2. DT’ = (O, AT∪{∂AT}) – sorted and reduc-
ed version of DT from Table 1. 

x∈O a b c D e f ∂AT  x∈O in DT� (x∈O in DT) a b c d e ∂AT 
1 1 0 0 1 1 1 {1}  1 (3,4) 0 1 1 0 3 {1,2} 
2 1 1 1 1 2 1 {1}  2 (5) 0 1 1 2 2 {2} 
3 0 1 1 0 3 1 {1,2}  3 (1) 1 0 0 1 1 {1} 
4 0 1 1 0 3 2 {1,2}  4 (9) 1 0 0 3 2 {3} 
5 0 1 1 2 2 2 {2}  5 (6,7) 1 1 0 2 2 {2,3} 
6 1 1 0 2 2 2 {2,3}  6 (8) 1 1 0 3 2 {3} 
7 1 1 0 2 2 3 {2,3}  7 (2) 1 1 1 1 2 {1} 
8 1 1 0 3 2 3 {3}         
9 1 0 0 3 2 3 {3}         

Example 1. Table 1 describes a sample decision table DT. The conditional attributes 
are as follows: AT = {a, b, c, d, e}. The decision attribute is f. One may note that 
objects 3 and 4 are indiscernible with respect to the conditional attributes in AT. 
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Hence, ∂AT for object 3 contains both the decision 1 for object 3, as well as the deci-
sion 2 for object 4. Analogously, ∂AT for object 4 contains both its own decision (2), 
as well as the decision of object 3 (1). Please see the last column in Table 1 for gener-
alized decision ∂AT for all objects in DT. Let X1 be the class of objects determined by 
decision 1; that is, X1 = {1,2,3}. The lower and upper approximations of X1 are as 

follows: ATX1 = {1,2} and ATX1 = {1,2,3,4}.  � 

Property 2 shows that the approximations of decision classes can be expressed by 
means of an A-generalized decision. 

Property 2 [9-11]. Let Xi ⊆ O and A⊆AT. 
a) IA(x) ⊆ Xi iff ∂A(x) = {i}. 
b) IA(x) ∩ Xi ≠ ∅ iff i ∈ ∂A(x). 
c) AXi = {x∈O| ∂A(x) = {i}}. 

d) AXi = {x∈O| i ∈ ∂A(x)}. 
e) ∂A(x) = ∂A(y) for any (x,y)∈IND(A). 

By Property 2e, objects having the same A-descriptor have also the same 
A-generalized decision value; that is, the A-descriptor uniquely determines the 
A-generalized decision value for all objects satisfying this descriptor. In the sequel, 
the A-generalized decision value determined by A-descriptor t, such that t is satisfied 
by at least one object in the system, will be denoted by ∂t. Table 2 shows the general-
ized decision values determined by atomic descriptors that occur in Table 1. 

Table 3. Generalized decision values ∂(a,v) determined by atomic descriptors (a,v), where 
a∈AT, v∈Va, supported by DT from Table 1. 

(a,v) (a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1) (d,2) (d,3) (e,1) (e,2) (e,3) 

∂(a,v) {1,2} {1,2,3} {1,3} {1,2,3} {1,2,3} {1,2} {1,2} {1} {2,3} {3} {1} {1,2,3} {1,2} 

We note that the A- and B-generalized decision values for object x provide an upper 
bound on the A∪B-generalized decision value for x. 

Property 3 [13]. Let A,B⊆AT, x∈DT. ∂A∪B(x) ⊆ ∂A(x) ∩ ∂B(x). 

Proof: ∂A∪B(x) = {d(y)| y∈IA∪B(x)} = /* by Property 1b */ = {d(y)| y∈(IA(x) ∩ IB(x))} 
⊆ {d(y)| y∈IA(x)} ∩ {d(y)| y∈IB(x)} = ∂A(x) ∩ ∂B(x).  ! 

We conclude further that the elementary a-generalized decision values for x, a∈A, 
can be used for calculating an upper bound on the A-generalized decision value for x. 

Corollary 1. Let A⊆AT and x∈DT. ∂A(x) ⊆ ∩a∈A ∂a(x) = ∩a∈A ∂(a, a(x)). 

Example 2. The {ce}-generalized decision value calculated from DT in Table 1 for 
object 5 (∂{ce}(5) = {1,2}) equals its upper bound ∂c(5) ∩ ∂e(5) = ∂(c,1) ∩ ∂(e,2) = {1,2} 
∩ {1,2,3} = {1,2}. On the other hand, the {ce}-generalized decision value for object 
6 (∂{ce}(6) = {2,3}) is a proper subset of its upper bound ∂c(6) ∩ ∂e(6) = ∂(c,0) ∩ ∂(e,2) 
= {1,2,3} ∩ {1,2,3} = {1,2,3}.  ! 
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Corollary 2. Let A⊆B⊆AT, x∈DT. ∂B(x) ⊆ ∂A(x). 

Proof: By Property 3, ∂B(x) ⊆ ∂A(x) ∩ ∂B\A(x). Hence, ∂B(x) ⊆ ∂A(x).  ! 

Finally, we observe that A- and B-generalized decision values for object x, where 
A⊆B⊆AT, are identical when their cardinalities are identical. 

Proposition 1. Let A⊆B⊆AT and x∈DT. ∂A(x) = ∂B(x) iff |∂A(x)| = |∂B(x)|. 

Proof: (⇒) Straightforward. 

(⇐) Let |∂A(x)| = |∂B(x)| (*). Since, A⊆B, then by Corollary 2, ∂A(x) ⊇ ∂B(x). Taking 
into account (*), we conclude ∂A(x) = ∂B(x).  ! 

2.3   Reducts for Decision Tables 

Reducts for decision tables are minimal sets of conditional attributes that preserve the 
required properties of classification. In what follows, we provide definitions of re-
ducts preserving lower and upper approximations of decision classes and objects’ 
generalized decisions, respectively. 

Let ∅≠A⊆AT. A is a certain reduct (c-reduct) of DT iff A is a minimal attribute set 
such that 

                                       ∀x∈O, x∈ATXd(x) ⇒ IA(x) ⊆ Xd(x)                                   (c) 

A certain reduct is a set of attributes that allows us to distinguish each object x be-
longing to the lower approximation of its decision class in DT from the objects that 
do not belong to this approximation. 

A is a possible reduct (p-reduct) of DT iff A is a minimal attribute set such that 

                                               ∀x∈O, IA(x) ⊆ ATXd(x)                                          (p) 

A possible reduct is a set of attributes that allows us to distinguish each object x in 
DT from objects that do not belong to the upper approximation of its decision class. 

A is a generalized decision reduct (g-reduct) of DT iff A is a minimal set such that 

                                                  ∀x∈O, ∂A(x) = ∂AT(x)                                          (g) 

A generalized decision reduct is a set of attributes that preserves the generalized de-
cision value for each object x in DT. In the sequel, a superset of a t-reduct, where 
t ∈ {c, p, g}, will be called a t-super-reduct.  

Corollary 3. AT is a superset of all c-reducts, p-reducts, and g-reducts for any DT. 

Proposition 2. Let A ⊆ AT. 
a) If A satisfies property (c), then all of its supersets satisfy property (c). 
b) If A does not satisfy property (c), then all of its subsets do not satisfy (c). 
c) If A satisfies property (p), then all of its supersets satisfy property (p). 
d) If A does not satisfy property (p), then all of its subsets do not satisfy (p). 
e) If A satisfies property (g), then all of its supersets satisfy property (g). 
f) If A does not satisfy property (g), then all of its subsets do not satisfy (g). 

Proof: Let A⊆B⊆AT and x∈O. 
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Ad a) Let A satisfy property (c) and x∈ATXd(x). We are to prove that IB(x) ⊆ Xd(x). 
Since A satisfies property (c), then IA(x) ⊆ Xd(x) (*). By Property 1a, IB(x) ⊆ IA(x) (**). 
By (*) and (**), IB(x) ⊆ Xd(x). 
Ad b) Analogous to a). 
Ad c) Let A satisfy property (g). We are to prove that ∂B(x) = ∂AT(x). Since A satisfies 
property (g), then ∂A(x) = ∂AT(x) (*). By Corollary 2, ∂AT(x) ⊆ ∂B(x) ⊆ ∂A(x) (**). 
By (*) and (**), ∂B(x) = ∂AT(x). 
Ad b, d, f) Follow immediately from Proposition 2a, b, c, respectively.  ! 

Corollary 4. 
a) c-super-reducts are all and the only attribute sets that satisfy property (c). 
b) p-super-reducts are all and the only attribute sets that satisfy property (p). 
c) g-super-reducts are all and the only attribute sets that satisfy property (g). 

Proof: By definition of reducts and Proposition 2.  ! 

Interestingly, not only g-reducts, but also p-reducts and c-reducts, can be deter-
mined by examining generalized decisions. 

Theorem 1 [11]. The set of all generalized decision reducts of DT equals the set of all 
possible reducts of DT. 

Lemma 1 [13]. A⊆AT is a c-reduct of DT iff A is a minimal set such that 
∀x∈O, ∂AT(x) = {d(x)} ⇒ ∂A(x) = {d(x)}. 

Proof: By Property 2a,c.  ! 

Corollary 5 [13]. A⊆AT is a c-reduct of DT iff A is a minimal set such 
that∀x∈O, ∂AT(x) = {d(x)} ⇒ ∂A(x) = ∂AT(x). 

2.4   Core 

The notion of a core is meant to be the greatest set of attributes without which an 
attribute set does not satisfy the required classification property (i.e. is not a super-
reduct). The generic notion of a t-core, t ∈ {c, p, g}, corresponding to c-reducts, p-
reducts and g-reducts, respectively, is defined as follows: 

t-core = {a∈AT| AT\{a} is not a t-super-reduct}. 

Clearly, the p-core and g-core are the same. 

Proposition 3. Let R be all reducts of the same type t, where t ∈ {c, p, g}. 

t-core = ∩R. 

Proof: Let us consider the case when R is the set of all c-reducts. Let b ∈ c-core. 
Hence b is an attribute in AT such that AT\{b} is not a superset of c-reduct. By Corol-
lary 4a and Proposition 2b, no attribute set without b satisfies property (c). Hence, no 

attribute set without b is a c-reduct. Thus, all c-reducts contain b; that is, ∩R ⊇ {b}. 

Generalizing this observation, ∩R ⊇ c-core. 
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Now, we will prove by contradiction that ∩R \ c-core is an empty set. Let 

d ∈ ∩R and d ∉ c-core. Since d ∉ c-core, then, by definition of a core, AT\{d} is a 
superset of some c-reduct, say B. Since B is a subset of AT\{d}, then B does not con-
tain d either. This means that among c-reducts, there is an attribute set (B), which 

does not contain d. Therefore, d ∉ ∩R, which contradicts the assumption. 

The cases when R is the set of all p-reducts or g-reducts can be proved analogously 
from Corollary 4b,c and Proposition 2d,f, respectively.  ! 

3   Discovering Generalized Reducts 

3.1   Main Algorithm 

Notation for RAD 

• Rk – candidate k attribute sets (potential g-reducts); 
• Ak – k attribute sets that are not g-super-reducts; 
• MNSR – all maximal conditional attribute sets that are not g-super-reducts; 
• MNSRk – k attribute sets in MNSR; 
• DT’ – reduced DT; 
• x.a – the value of an attribute a for object x; 
• x.∂AT – the generalized decision value for object x. 

 

Algorithm. RAD; 

DT’ = GenDecRepresentation-of-DT(DT); 
MNSR = MaximalNonSuperReducts(DT’);  
/* search g-reducts - note: g-reducts are all attribute sets that are not subsets of any set in MNSR */ 
if |MNSR|AT|-1| = |AT| then return AT;        // optional optimizing step 1 
R1 = {{a}| a∈AT};   A1 = {};           // initialize 1 attribute candidates for g-reducts 
forall B ∈ MNSR do move subsets of B from R1 to A1; // subsets of non-super-reducts are not reducts 
for (k = 1; Ak ≠ {}; k++) do begin 

if |MNSR| = 1 then return ∪k Rk;              // optional optimizing step 2 
 MNSR = MNSR \ MNSRk;  // MNSRk is not useful any more – optional optimizing step 3 
 /* create k+1 attribute g-reducts Rk+1 and non-g-super-reducts Ak+1 from Ak and MNSR */ 
 RADGen(Rk+1, Ak+1, Ak, MNSR); 

endfor; 
return ∪k Rk; 

The RAD (ReductsAprioriDiscovery) algorithm we propose starts by determining 
the reduced decision table DT’ that stores only conditional attributes AT and the 
AT-generalized decision for each object in DT instead of the original decision (see 
Section 3.2 for the description of the GenDecRepresentation-of-DT function). Each 
class of objects indiscernible w.r.t. AT ∪ {∂AT} in DT (see Table 1) is represented by 
one object in DT’ (see Table 2). Next, DT’ is examined in order to find all maximal 
attribute sets MNSR that are not g-super-reducts (see Section 3.3 for the description 

of the MaximalNonSuperReducts function). The information on MNSR is sufficient 
to derive all g-reducts; namely, g-reducts are these sets each of which has no superset 
in MNSR (i.e., is a g-super-reduct), but all proper subsets of which have supersets 

in MNSR (i.e., are not g-reducts).  
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Now, RAD creates initial candidates for g-reducts that are singleton sets and are 
stored in R1. The candidates in R1 that are subsets of MNSR are moved to 

1 attribute non-g-super-reducts A1. The main loop starts. In each k-th iteration, k ≥ 1, 

k+1 attribute candidates Rk+1 are created from k attribute sets in Ak, which are not g-
super-reducts (see Section 3.4 for the description of the RADGen procedure). The 
information on non-g-super-reducts MNSR is used to prune candidates in Rk+1. 

Namely, each candidate in Rk+1 that has a superset in MNSR is not a g-super-

reduct. Therefore it is moved from Rk+1 to Ak+1. The algorithm stops when Ak = {}. 
Optional optimizing steps in RAD are discussed in Section 3.5. 

3.2   Determining Generalized Decision Representation of Decision Table 

The GenDecRepresentation-of-DT function starts with sorting the given decision 
table DT w.r.t. the set of all conditional attributes and (optionally) the decision attrib-
ute. The sorting enables fast determination of the generalized decision values for all 
classes of objects indiscernible w.r.t. AT. Each such class will be represented by one 
object in the new decision table DT’ = (AT, {∂AT}), where the decision attribute is 
replaced by the generalized decision. 

function GenDecRepresentation-of-DT(decision table DT); 

DT’ = {}; 
sort DT with respect to AT and d;   // apply any ordering of attributes in AT, e.g. lexicographical 
x = first object in DT;        // or null if DT is empty 
while x is not null do begin 
  forall a∈AT do x’.a = x.a;   x’.∂AT = {d(y)| y∈IAT(x)};   add x’ to DT’; 

x = the first object located just after IAT(x) in DT; 
endwhile; 

return DT’; 

3.3   Calculating Maximal Non-super-reducts 

The purpose of the MaximalNonSuperReducts function is to determine all maximal 
conditional attribute sets that are not g-super-reducts. To this end, each object in the 
reduced decision table DT’ is compared with all other objects from different general-
ized decision classes. The result of the comparison of two objects, say x and y, be-
longing to different classes is the set of all attributes on which x and y are indiscerni-
ble. Clearly, such a resulting set is not a g-super-reduct, since it does not discern at 
least one pair of objects belonging to different generalized decision classes. The com-
parison results, which are non-g-super-reducts, are stored in the NSR variable. After 

the comparison of objects is accomplished, NSR contains a superset of all maximal 

non-g-super-reducts. The function returns MAX(NSR), which can be calculated as 
the final step or on the fly. For DT’ from Table 2, MaximalNonSuperReducts will find 
NSR = {abc, b, bc, e, bde, be, bce, ac, ace, ae, abce, abe}, and eventually will re-

turn MAX(NSR) = {abce, bde}. 
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function MaximalNonSuperReducts(reduced decision table DT’); 

 NSR = {}; 
  forall objects x in DT’ do 
   forall objects y following x in DT’ do 
    if x.∂AT ≠ y.∂AT then 
    /* objects x and y should be distinguishable as they belong to different generalized decision classes; */ 
    /* the set {a∈AT| x.a = y.a} is not a g-super-reduct since it does not distinguish between x and y      */ 
     insert in {a∈AT| x.a = y.a}, if non-empty, to NSR; 
return MAX(NSR);        // note: MAX(NSR) contains all maximal non-g-super-reducts 

3.4   Generating Candidates for Reducts 

The RADGen procedure has 4 arguments. Two of them are input ones: k attribute 
non-g-super-reducts Ak and the maximal non-g-super-reducts MNSR. The two 

remaining candidates Rk+1 and Ak+1 are output ones. After the completion of the 

function, Rk+1 contains k+1 attribute g-reducts and Ak+1 contains k+1 attribute non-
g-super-reducts. During the first phase of the procedure, new k+1 attribute candidates 
are created by merging k attribute non-g-super-reducts in Ak that differ only in their 
final attributes. The characteristic feature of such a method of creating candidates is 
that no candidate that is likely to be a solution (here: g-reduct) is missed and that no 
candidate is generated twice (please, see the detailed description of the Apriori algo-
rithm [1] for justification). In the second phase, it is checked for each newly obtained 
k+1 attribute candidate whether all its proper k attribute subsets are contained in non-
g-super-reducts Ak. If yes, then a candidate remains in Rk+1; otherwise it is pruned as 

a proper superset of some g-super-reduct. Finally, all candidates in Rk+1 that are sub-

sets of maximal non-g-super-reducts MNSR are found non-g-super-reducts too, and 

thus are moved to Ak+1. 

procedure RADGen(var Rk+1, var Ak+1, in Ak, in MNSR); 

 forall B, C ∈Ak do                           /* Merging */ 
 if B[1] = C[1] ∧ ... ∧ B[k-1] = C[k-1] ∧ B[k] < C[k] then begin 
  A = B[1]•B[2]•...•B[k]•C[k];   add A to Rk+1; 
 endif; 

 forall A∈Rk+1 do                            /* Pruning */ 
 forall k attribute sets B ⊂ A do 

if B ∉ Ak then delete A from Rk+1;       // A is a proper superset of g-super-reduct B 
 forall B∈MNSR do move subsets of B from Rk+1 to Ak+1; /* Removing subsets of non-g-super-reducts */ 
return; 

3.5   Optimizing Steps in RAD 

In the main algorithm, we offer an optimization that may speed up checking which 
candidates are not g-reducts (optimizing step 3) and two optimizations for reducing 
the number of useless iterations (optimizing steps 1 and 2). 

In step 3, k attribute sets are deleted from MNSR since they are useless for identi-
fying non-g-superset-reducts among l attribute candidates, where l > k. 
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Optimizing step 1 is based on the following observation: the condition |MNSR|AT|-1| 
= |AT| implies that all AT\{a} sets are not g-super-reducts. Hence, AT is the only g-
reduct for DT and thus the algorithm can be stopped. 

Optimizing step 2 can be applied when |MNSR| = 1. This condition implies that 

all sets in Ak, which are not g-super-reducts, have exactly one - the same superset, 

say B, in maximal non-g-super-reducts MNSR. If one continues the creation of k+1 

attribute candidates Rk+1 by merging sets in Ak, then the new k+1 attribute candi-
dates would be still subsets of B. Hence, they would be pruned by the RADGen pro-
cedure from Rk+1 to Ak+1. As a result, one would obtain Rk+1 = {} and |MNSR| = 

1. Such a scenario would continue when creating longer candidates until Al = {B}, l 

> k. Then, RADGen will produce empty Rl+1 and empty Al+1; that is, the condition, 

which stops the RAD algorithm. In conclusion, the condition |MNSR| = 1 implies 
that no more g-reducts will be discovered, so the algorithm can be stopped. 

3.6   Illustration of RAD 

Let us illustrate now the discovery of g-reducts of DT from Table 1. We assume that 
maximal non-g-super-reducts MNSR are already found and are equal to {{abce}, 
{bde}}. Table 4 shows how candidates for g-reducts change in each iteration. 

Table 4. Rk and Ak after verification w.r.t. MNSR in subsequent iterations of New. 

k Ak (each X in Ak has a superset in MNSR) Rk (each X in Rk has no superset in MNSR) 
1 {a}, {b}, {c}, {d}, {e}  
2 {ab}, {ac}, {ae}, {bc}, {bd}, {be}, {ce}, {de} {ad}, {cd} 
3 {abc}, {abe}, {ace}, {bce}, {bde}  
4 {abce}  

4   Core-Oriented Discovery of Generalized Reducts 

4.1   Main Algorithm 

In this section, we offer the CoreRAD procedure, which finds not only g-reducts, but 
also their core. The layout of CoreRAD reminds that of RAD. CoreRAD, however, 
differs from RAD in that it first checks if the set of all maximal non-g-super-reducts 
MNSR is empty. If yes, then each single conditional attribute is a g-reduct, so 

CoreRAD returns {{a}| a∈AT} as the set of all g-reducts and ∩a∈AT {a} = ∅ as the 
g-core (by Proposition 3). Otherwise, CoreRAD determines the g-core by definition 
from all maximal |AT|-1 non-g-super-reducts in MNSR. All sets in MNSR that 
are not supersets of the g-core are deleted, since the only candidates considered in 
CoreRAD will be the g-core and its supersets. If the reduced MNSR is an empty set, 

then the g-core does not have subsets in MNSR and thus it is the only g-reduct. 

Otherwise, the g-core is not a g-reduct, and the new candidates R|core|+1 are created by 
merging the g-core with the remaining attributes in AT. Clearly, the new candidates 
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which have supersets in maximal non-g-super-reducts MNSR are not g-reducts 

either, and hence are moved from R|core|+1 to A|core|+1. From now on, CoreRAD is 
performed in the same way as RAD.  

Algorithm. CoreRAD; 

 DT’ = GenDecRepresentation-of-DT(DT); 
 MNSR = MaximalNonSuperReducts(DT’);  
 if MNSR = {} then return (∅,{{a}| a∈AT});       // each conditional attribute is a g-reduct 
 core = ∅; 
 forall A∈MNSR|AT|-1 do begin {a} = AT\A;   core = core ∪ {a} endfor; 
 if |MNSR|AT|-1| = |AT| then return (AT, AT);    // or if core = AT then - optional optimizing step 1 
 MNSR = {B ∈ MNSR| B ⊇ core};       // g-reducts are supersets of the g-core 

 if MNSR = {} then return (core, {core}); // g-core is a g-reduct as there is no its superset in MNSR 

 MNSR = MNSR \ MNSR|core|;     // or equivalently MNSR = MNSR \ {core};  
/* initialize candidate for reducts as g-core’s supersets */ 
 startLevel = |core| + 1;   RstartLevel = {};   AstartLevel = {}; 

 forall a∈AT \ core do begin A = core ∪ {a};   RstartLevel = RstartLevel ∪ {A} endfor; 
 forall B ∈ MNSR do move subsets of B from RstartLevel to AstartLevel;  
 for (k = startLevel; Ak ≠ {}; k++) do begin 
   if |MNSR| = 1 then return (core, ∪k Rk);            // optional optimizing step 2 
   MNSR = MNSR \ MNSRk;   // MNSRk is not useful any more – optional optimizing step 3 
   /* create k+1 attribute g-reducts Rk+1 and non-g-super-reducts Ak+1 from Ak and MNSR */ 
   GRAGen(Rk+1, Ak+1, Ak, MNSR); 
 endfor; 
return (core, ∪k Rk); 

4.2   Illustration of CoreRAD 

We will illustrate now the core-oriented discovery of g-reducts of DT from Table 1. 
We assume that MNSR has already been calculated and equals {{abce}, {bde}}. 
Hence, core = AT / {abce} = {d}. Now, we leave only the supersets of the core in 
MNSR; thus MNSR becomes equal to {{bde}}. Table 5 shows how candidates 
for g-reducts change in each iteration (here: only 1 iteration was sufficient). 

Table 5. Rk and Ak after verification w.r.t. MNSR in subsequent iterations of CoreRAD. 

K Ak (each X in Ak has a superset in MNSR) Rk (each X in Rk has no superset in MNSR) 
2 {bd}, {de} {ad}, {cd} 

5   Discovering Certain Reducts 

RAD and CoreRAD can easily be adapted for the discovery of certain reducts. It suf-
fices to modify line 4 of the MaximalNonSuperReducts function as follows: 

if (x.∂AT ≠ y.∂AT) and (| x.∂AT | = 1 or | y.∂AT | = 1) then 

This modification guarantees that all objects from lower approximations of all de-
cision classes, which have singleton generalized decisions, will be compared with all 
objects not belonging to the lower approximations of their decision classes. 
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6   Approximate Attribute Reduction 

6.1   Approximate Reducts for Decision Table 

The discovery of reducts may be very time consuming. Therefore, one may resign 
from calculating strict reducts and search more efficiently for approximate reducts, 
which however, should be supersets of exact reducts and subsets of AT. In this sec-
tion, we introduce the notion of such approximate reducts based on the observation 

that for any object x in O: ∩a∈A ∂a(x) ⊇ ∂A(x) (by Corollary 1). 
Let ∅≠A⊆AT. AT is defined an approximate generalized decision reduct (ag-

reduct) of DT iff ∃x∈O, ∩a∈AT ∂a(x) ⊃ ∂AT(x). Otherwise, A is an approximate gen-
eralized decision reduct (g-reduct) of DT iff A is a minimal set such that 

∀x∈O, ∩a∈A ∂a(x) = ∂AT(x)                                        (ag) 

Corollary 5 specifies properties of certain decision reducts in terms of generalized 
decisions. By analogy to this corollary, we define an approximate certain decision 
reduct as follows: 

AT is defined an approximate certain decision reduct (ac-reduct) of DT iff ∃x∈O, 

∂AT(x) = {d(x)} ⇒ ∩a∈AT ∂a(x) ⊃ ∂AT(x). Otherwise, A is defined an approximate 
certain reduct (ac-reduct) of DT iff A is a minimal attribute set such that 

∀x∈O, ∂AT(x) = {d(x)} ⇒ ∩a∈A ∂a(x) = ∂AT(x)                     (ac) 

In the sequel, a superset of a t-reduct, t ∈ {ac, ag}, will be called a t-super-reduct. 

Corollary 6. AT is a superset of all ac-reducts and ag-reducts for any DT. 

Proposition 4. Let x∈O and A ⊆ AT. If ∩a∈A ∂a(x) = ∂AT(x), then: 

a) ∩a∈A ∂a(x) = ∂A(x) = ∂AT(x). 

b) ∀B ⊆ AT, B⊃A ⇒ ∩a∈B ∂a(x) = ∂B(x) = ∂AT(x). 

Proof: Let ∩a∈A ∂a(x) = ∂AT(x) (*). 

Ad a) By Corollaries 1-2, ∩a∈A ∂a(x) ⊇ ∂A(x) ⊇ ∂AT(x). Taking into account (*), 

∩a∈A ∂a(x) = ∂A(x) = ∂AT(x). 
Ad b) Let B ⊆ AT, B⊃A. By Corollary 2, ∂A(x) ⊇ ∂B(x) ⊇ ∂AT(x). Taking into account 

Proposition 4a, ∩a∈A ∂a(x) = ∂A(x) = ∂B(x) = ∂AT(x) (**). Clearly, ∩a∈A ∂a(x) ⊇ 

∩a∈B ∂a(x) ⊇ ∩a∈AT ∂a(x). Taking into account (**), ∂B(x) = ∂AT(x) = ∩a∈A ∂a(x) ⊇ 

∩a∈B ∂a(x) ⊇ ∩a∈AT ∂a(x) ⊇ ∂AT(x). Hence, ∩a∈B ∂a(x) = ∂B(x) = ∂AT(x).  ! 

Corollary 7.  
a) An ag-reduct is a g-super-reduct.  
b) An ag-reduct is a p-super-reduct. 
c) An ac-reduct is a c-super-reduct. 
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Proof: Ad a) Let A be an ag-reduct. If ∃x∈O, ∩a∈AT ∂a(x) ⊃ ∂AT(x), then A = AT, 
which by Corollary 3 is a g-super-reduct. Otherwise, by definition of an ag-reduct 

and Proposition 4a, ∀x∈O, ∩a∈A ∂a(x) = ∂A(x) = ∂AT(x). Thus A satisfies property (g). 
Hence, by Corollary 4c, A is a g-super-reduct. 
Ad b) Follows from Theorem 1 and Corollary 7a. 
Ad c) Analogous, to the proof of Corollary 7a. Follows from the definition of an 
ac-reduct, Corollary 3, Corollary 5, Corollary 4a and Proposition 4a. 

Proposition 5. Let A ⊆ AT. 
a) If A satisfies property (ag), then all of its supersets satisfy property (ag). 
b) If A does not satisfy property (ag), then all of its subsets do not satisfy (ag). 
c) If A satisfies property (ac), then all of its supersets satisfy property (ac). 
d) If A does not satisfy property (ac), then all of its subsets do not satisfy (ac). 

Proof: Ad a,c) Follow from Proposition 4. 
Ad b, d) Follow immediately from Proposition 5a, c, respectively.  ! 

Corollary 8. 
a) ag-super-reducts are all and the only attribute sets that satisfy property (ag). 
b) ac-super-reducts are all and the only attribute sets that satisfy property (ac). 

Proof: By definition of respective approximate reducts and Proposition 5.  ! 

6.2   Approximate Core 

An approximate core will be defined in usual way; that is, 

t-core = {a∈AT| AT\{a} is not a t-super-reduct}, where t ∈ {ac, ag}. 

Proposition 6. Let R be all approximate reducts of the same type t, t ∈ {ac, ag}. 

t-core = ∩R. 
Proof: Follows from Corollary 8 and Proposition 5, and is analogous to the proof of 
Proposition 3.  ! 

7   Discovering Approximate Generalized Reducts 

7.1   Main Algorithm 

The GRA (GeneralizedReductsApriori) algorithm, we have recently introduced in 
[13], finds all ag-reducts from the decision table DT. Unlike in RAD, GRA, does not 
need to store all maximal non-g-super-reducts MNSR. On the other hand, GRA 
requires the candidates for reducts to be evaluated against the decision table. The 
validation of the candidate solution against the decision table DT in our algorithm 
consists in checking if the candidate satisfies property (ag); that is, if the intersection 
of the elementary generalized decisions of the attributes in the candidate set deter-
mines the same generalized decision value as the set of all conditional attributes AT 
does for each object in DT. We will use the following properties in the process of 
searching reducts in order to prune the search space efficiently: 
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• Proper supersets of ag-reducts are not ag-reducts, and hence such sets shall not be 
evaluated against the decision table. 

• Subsets of attribute sets that are not ag-super-reducts are not ag-reducts, and thus 
such sets shall not be evaluated against the decision table. 

• An attribute set whose all proper subsets are not ag-super-reducts may or may not 
be an ag-reduct, and hence should be evaluated against the decision table. 

Since our algorithm is to work with very large decision tables, we propose to re-
strict the number of decision table objects against which a candidate should be evalu-
ated. Our proposal is based on the following observation: 

• If an attribute set A satisfies property (ag) for the first n objects in DT (or reduced 
DT’) and does not satisfy it for object n+1, then A is certainly not an ag-reduct 
and thus evaluating it against the remaining objects in DT (DT’) is useless. 

• If an attribute set A satisfies property (ag) for the first n objects in DT (or DT’), 
then property (ag) will be satisfied for these objects for all supersets of A. Hence, 
the evaluation of the first n objects should be skipped for a candidate that is a 
proper superset of A. 

The GRA algorithm starts with building the reduced version DT’ of decision table 
DT (see Section 3.2 for the description of the GenDecRepresentation-of-DT func-
tion). DT’ stores only the AT-generalized decisions instead of the original decisions. 
Next, the a-generalized decision value for each atomic descriptor (a,v) occurring in 
DT (or in DT’) is calculated as the set of the decisions (or the union of the AT-
generalized decisions) of the objects supporting (a,v) in DT (or in DT’). Each pair: 
(atomic descriptor, its generalized decision) is stored in Γ. Now GRA creates initial 
candidates for ag-reducts. The initial candidates are singleton sets and are stored in 
R1. The set of 1 attribute non-ag-super-reducts A1, as well as known maximal non-

ag-super-reducts NSR, are initialized to an empty set. The main loop starts. In each 

k-th iteration, k ≥ 1, the k attribute candidates Rk are evaluated during one pass over 
DT’ (see Section 7.2 for the description of the EvaluateCandidates procedure). As a 
side effect of evaluating of Rk, all k attribute non-ag-super-reducts Ak are found and 

known maximal non-ag-super-reducts NSR are updated. The case when NSR|AT| = 
AT indicates that AT does not satisfy property (ag) for some object. Hence, by defini-
tion AT is the only ag-reduct and the algorithms stops. Otherwise, k+1 attribute can-
didates Rk+1 are created from k attribute sets in Ak, which turned out not to be ag-
super-reducts (see Section 7.4 for the description of the GRAGen procedure). The 
information on non-ag-super-reducts NSR is used to prune the candidates in Rk+1. 

Namely, each candidate in Rk+1 that has a superset in NSR is known a priori not to 

be an ag-reduct. Therefore it is moved from Rk+1 to Ak+1. The algorithm stops when 

Rk = Ak = {}. Optimizations steps 1-2 in GRA are analogous to steps 1-2 in RAD, 
which were discussed in Section 3.5. 
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Modified or additional notation for GRA 

• Rk – candidate k attribute sets (potential ag-reducts); 
• Ak – k attribute sets that are not ag-super-reducts; 
• A.id – the identifier of the object against which attribute set A should be evaluated; 
• NSR – quasi maximal attribute sets found not to be ag-super-reducts; 
• NSRk – k attribute sets in NSR; 
• x.identifier – the identifier of object x; 
• Γ - the set containing generalized decision values determined by atomic descriptors supported by 

objects in DT (DT’); that is: Γ = ∪a∈AT, v∈Va {{(a,v), ∂(a,v))}. 

 

Algorithm. GRA; 

DT’ = GenDecRepresentation-of-DT(DT); 
/* calculate a-generalized decision value for each atomic descriptor (a,v) supported by DT (or DT’) */ 

for each conditional attribute a∈AT do 
for each domain value v∈Va do begin compute ∂(a,v);   store ((a,v), ∂(a,v)) in Γ endfor; 

/* initialize 1 attribute candidates */ 
R1 = {{a}| a∈AT};   A1 = {};   NSR = {};  // conditional attributes are candidates for ag-reducts 
for each A in R1 do A.id = 1;    // the evaluation of candidate A should start from object 1 in DT’ 

/* search reducts */ 
for (k = 1; Ak ≠ {} ∨ Rk ≠ {}; k++) do begin 
  if Rk ≠ {} then begin 
  /* find and move non-ag-reducts from Rk to Ak and determine maximal non-ag-super-reducts NSR */ 

  EvaluateCandidates(Rk, Ak, Γ, NSR); 
  if |NSR|AT|| = 1 then return AT;          // or equivalently, if NSR|AT| = AT then 
  if |NSR|AT|-1| = |AT| then return AT;               // optional optimizing step 1 

  elseif |NSR| = 1 then return ∪k Rk;              // optional optimizing step 2 
 endif; 
 /* create k+1 attribute candidates Rk+1 and non-ag-super-reducts Ak+1 from Ak and NSR */ 
 GRAGen(Rk+1, Ak+1, Ak, NSR); 
endfor; 

return ∪k Rk; 

A characteristic feature of our algorithm, which is shared by all Apriori-like algo-
rithms (see [1] for the Apriori algorithm), is that the evaluation of candidates requires 
no more than n scans of the data set (decision table), where n is the length of a long-
est candidate (here: n ≤ |AT|). 

GRA, however, differs from Apriori in several ways. First of all, our candidates are 
sets of attributes instead of descriptors. Next, we evaluate candidates whether they 
satisfy property (ag), while the evaluation in Apriori consists in calculating the num-
ber of objects satisfying candidate descriptors. Additionally, our algorithm uses dy-
namically obtained information on non-ag-super-reducts to restrict the search space 
as quickly as possible. Another distinct optimizing feature of our algorithm is that the 
majority of candidates is evaluated against a fraction of the decision table instead of 
the entire decision table (see Section 7.2). Namely, having found that a candidate A 
does not satisfy the required property (ag) for some object x, the next objects are not 
considered for evaluating this candidate at all. In addition, the evaluation of candi-
dates that are proper supersets of the invalidated candidate A starts from object x. 
These two optimizations may speed up the evaluation process considerably. 
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7.2   Evaluating Candidates for Approximate Reducts 

The EvaluateCandidates procedure takes 4 arguments: k attribute candidates for ag-
reducts Rk, k attribute sets that are known not to be ag-super-reducts Ak, the general-
ized decisions determined by atomic descriptors Γ, and known maximal non- ag-
approximate-super-reducts NSR. For each object read from DT’, the candidates in 

Rk that should be evaluated against this object are identified. These are candidates A 
such that A.id equals the identifier of the object. Let x be the object under considera-
tion and A be a candidate such that A.id = x.identifier. The upper bound ∂ on ∂A(x) is 
calculated from the generalized decisions determined by the atomic descriptors stored 
in Γ. If ∂ equals x.∂AT, then A satisfies property (ag) for object x and still has a chance 
to be an ag-reduct. Hence, A.id is incremented to indicate that A should be evaluated 
against the next object after x in DT’ too. Otherwise, if ∂ ≠ x.∂AT, then A is certainly 
not an ag-reduct and thus is moved from candidates Rk to non-ag-super-reducts Ak. 
Additionally, the MaximalNonAGSuperReduct procedure (see Section 7.3) is called 
to determine a quasi maximal superset (nsr) of A that does not satisfy property (ag) 
for object x either. If nsr obtains the maximal possible length (i.e. |nsr| = |AT|), AT is 
returned as the maximal set the approximate generalized decision of which differs 
from the real AT-generalized decision, and the procedure stops. Otherwise, the found 
non-ag-super-reduct is stored in NSR’. Since the evaluation of candidates against 

objects may result in moving all candidates from Rk to Ak, scanning of DT’ is 
stopped as soon as all candidates turned out false ones. 

The last step of the EvaluateCandidates procedure consists in updating maximal 
non-ag-super-reducts NSR with NSR’. Please note that k attribute sets are not 

stored in the final NSR since they are useless for identifying non-super-reducts 
among l attribute candidates, where l > k. 

procedure EvaluateCandidates(var Rk, var Ak, in Γ, var NSR); 

/* assert: Γ = ∪a∈AT, v∈Va {{(a,v), ∂(a,v))} */ 
NSR’ = {}; 
for each object x in DT’ do begin 
  for each candidate A in Rk do 
   if A.id = x.identifier then begin 
    ∂ = ∩a∈A ∂(a, x.a);                  // note: each ((a, x.a), ∂(a, x.a)) ∈ Γ 
    if ∂ ≠ x.∂AT then begin              // or equivalently: if | ∂ | ≠ | x.∂AT | then 
     move A from Rk to Ak; 
     nsr = MaximalNonAGSuperReduct(A, x, ∂ , Γ);   // find a quasi maximal non-ag-super-reduct 
     if nsr = AT then begin NSR = {AT}; return endif; // or equivalently: if |nsr| = |AT| then 
     add nsr to NSR’; 
    else A.id = x.identifier + 1         // A should be evaluated against the next object 

endif 
  endif; 

  if Rk = {} then break; 
endfor; 
NSR = MAX((NSR’ \ NSRk’) ∪ (NSR \ NSRk)); 

return; 
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7.3   Calculating Quasi Maximal Non-approximate Generalized Super-reducts 

The MaximalNonAGSuperReduct function is called whenever a candidate, say A, 
does not satisfy property (ag) for some object x. This function returns a quasi maxi-
mal superset of A that does not satisfy property (ag) for x. Clearly, there may be many 
such supersets of A; however the function creates and evaluates supersets of A in a 
specific order. Namely, nsr variable, which initially equals A, is extended in each 
iteration with one attribute (assigned to variable a) that is next after the one recently 
added to nsr. Please note that the first attribute in AT is assumed to be next to the last 
attribute in AT. The creation of supersets stops when an evaluated attribute nsr∪{a} 
satisfies property (ag) for object x. Then, MaximalNonAGSuperReduct returns nsr as 
a known maximal superset of A, which is not an ag-super-reduct. 

function MaximalNonAGSuperReduct(in A, in x, in ∂, in Γ); 

/* assert: ∂ ≠ x.∂AT */ 
nsr = A;   ∂nsr = ∂;   previous_a = last attribute in A; 
for (i=1; i <= |AT|; i++) do 

if previous_a = last attribute in AT then a = first attribute in AT 
else a = next attribute after previous_a in AT; 
previous_a = a;   ∂nsr = ∂nsr ∩ ∂(a, x.a);             // note: each ((a, x.a), ∂(a, x.a)) ∈ Γ 
if ∂nsr = x.∂AT then break else add a to nsr; 

endfor; 
return nsr; 

7.4   Generating Candidates for Reducts 

The GRAGen procedure differs from RADGen only in the pruning phase in that it 
determines the id field of each k+1 attribute candidate, say A, as a side effect of 
checking if A has all its k attribute subsets in Ak. Namely, A.id is assigned the maxi-

mum of the id fields of A’s subsets in Ak. Such value of A.id field means that there 

was a subset of A in Ak that satisfied property (ag) for A.id-1 objects. Hence, A is 
known a priori to satisfy this property for A.id-1 objects and the first object against 
which it should be evaluated has identifier equal to A.id. 

procedure GRAGen(var Rk+1, var Ak+1, in Ak, in NSR); 

forall B, C ∈Ak do                           /* Merging */ 
  if B[1] = C[1] ∧ ... ∧ B[k-1] = C[k-1] ∧ B[k] < C[k] then begin 
   A = B[1]•B[2]•...•B[k]•C[k];   add A to Rk+1;   A.id = 1; 
  endif; 

forall A∈Rk+1 do                            /* Pruning */ 
forall k attribute sets B ⊂ A do 

if B ∈ Ak then A.id = max(A.id, B.id) 
else delete A from Rk+1;            // A is a proper superset of super-reduct B 

forall B ∈ NSR do move subsets of B from Rk+1 to Ak+1; /* Removing subsets of non-super-reducts */ 
return; 

Example 3. We will illustrate GRAGen by showing how the candidates of size 3 are 
created. Let A2 = {{ab}[id:2], {ac}[id:3], {ae}[id:2], {bc}[id:3], {bd}[id:2], {be}[id:3], 



Towards Scalable Algorithms for Discovering Rough Set Reducts      137 

{ce}[id:3], {de}[id:2]} (the indices provide information on identifiers of objects recently 
evaluated for respective attribute sets) and NSR = {{abce}, {bde}}. 

The first phase of the procedure consists in creating candidates R3 from pairs of 

sets in A2 that differ only in their final attributes. Thus, we receive the following 

candidates: R3 = {{abc}[id:1], {abe}[id:1], {ace}[id:1], {bcd}[id:1], {bce}[id:1], {bde}[id:1]}. 

The pruning phase deletes these candidates from R3 that do not have at least one of 

their 2 attribute subsets in A2. In addition, the field id of each candidate is set to 

maximum of id values of all proper subsets of the candidates in A2. The only candi-

date in R3 that does not have some of its 2 attribute subsets in A2 is {bcd}. Namely, 

{cd} is such a subset of {bcd}, which does not belong to A2. The fact that {cd}∉A2 
means that {cd} is an ag-super-reduct. Hence, {bcd} is known a priori to be a proper 
superset of an ag-reduct. Thus, this candidate is pruned from candidates R3. As a 

result, R3 becomes equal to {{abc}[id:3], {abe}[id:3], {ace}[id:3], {bce}[id:3], {bde}[id:3]}. 
The final phase determines candidates that are certainly not ag-reducts as they are 

subsets of previously found non-ag-super-reducts NSR. Such candidates are moved 

from R3 to A3. Eventually, A3 = {{abc}[id:3], {abe}[id:3], {ace}[id:3], {bce}[id:3], 

{bde}[id:3]} and R3 = {}. Hence, no 3 attribute candidates should be evaluated against 
the decision table.  ! 

7.5   Illustration of GRA 

In this section, we illustrate the discovery of ag-reducts for DT from Table 1. We 
assume that the reduced decision table DT’ (see Table 2) has already been deter-
mined. Table 6 shows how candidates change in each iteration before and after vali-
dation (if any) against DT’. In this process, the reduced decision table was scanned 
twice in order to evaluate the candidate sets. Only 8 candidates were evaluated 
against DT’, although 21 attribute sets were enumerated (that is, occurred in R or A). 
As a result, 2 approximate ag-reducts were found; namely, {ad} and {cd}, which are 
exact g-reducts (see Section 3.6). 

Table 6. Rk, Ak, and NSR in subsequent iterations of GRA. 

k Rk before valida-
tion 

Ak before validation Rk after 
validation 

Ak after validation NSR’ NSR 

1 {a}[id:1], {b}[id:1], 
{c}[id:1], {d}[id:1], 
{e}[id:1] 

  {a}[id:2], {b}[id:1], 
{c}[id:3], {d}[id:2], 
{e}[id:2] 

{abc}, {b}, 
{c}, {de}, 
{abce} 

{abce}, 
{de} 

2 {ad}[id:2], {bd}[id:2], 
{cd}[id:3] 

{ab}[id:2], {ac}[id:3], 
{ae}[id:2], {bc}[id:3], 
{be}[id:2], {ce}[id:3], 
{de}[id:2]} 

{ad}[id:8], 
{cd}[id:8]  

{ab}[id:2], {ac}[id:3], 
{ae}[id:2], {bc}[id:3], 
{bd}[id:2], {be}[id:3], 
{ce}[id:3], {de}[id:2] 

{bde} {abce}, 
{bde} 

3  {abc}[id:3], {abe}[id:3], 
{ace}[id:3], {bce}[id:3], 

{bde}[id:3] 

   {abce} 

4  {abce}[id:3]     
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8   Core-Oriented Discovery of Approximate Generalized Reducts 

8.1   Main Algorithm 

Algorithm. CoreGRA; 

  DT’ = GenDecRepresentation-of-DT(DT); 
  for each conditional attribute a∈AT do 
    for each domain value v∈Va do begin compute ∂(a,v);   store ((a,v), ∂(a,v)) in Γ endfor; 
/*initialize 1 attribute candidates */ 
  R1 = {{a}| a∈AT};   A1 = {};   NSR = {};   // conditional attributes are candidates for ag-reducts 
  for each A in R1 do begin A.id = 1; A.nsr = A endfor; 

/* find and move non-reducts from R1 to A1; determine maximal non-reducts */ 

  EvaluateCandidates1(R1, A1, Γ, NSR); 
  if |NSR|AT|| = 1 then return (AT, AT);          // or equivalently, if NSR|AT| = AT then 
/* determine core */ 
  core = ∅;   core.id = 1; 
  forall A∈NSR|AT|-1 do begin {a} = AT\A; core = core ∪ {a}; core.id = max(core.id, {a}.id) endfor; 
/* create candidate for reducts as core’s supersets */ 
  if core = ∅ then begin 
   startLevel = 2; 
   ReductsAprioriGen(R2, A2, A1, NSR); //create 2 attribute candidates from 1 attribute non-ag-reducts 
  else begin 
   NSR = {B ∈ NSR| B ⊇ core};    // ag-reducts are supersets of ag-core 
   if |core| > 1 then 
     if NSR ≠ {} then        // ag-core is not an ag-reduct as there is its superset in NSR 

      NSR = NSR \ NSR|core|     // or equivalently NSR = NSR \ {core};  
     else begin 
      R|core| = {core};   A|core| = {};   EvaluateCandidates(R|core|, A|core|, Γ, NSR); 
      if |NSR|AT|| = 1 then return (AT, AT); 
     endif; 
   if R|core| = {core} then return(core, R|core|)         // or equivalently if |R|core|| = 1 then 
   else begin 
     startLevel = |core| + 1;   RstartLevel = {};   AstartLevel = {}; 

     forall {a}∈A1 such that a∉core do begin 
      A = core ∪ {a};   A.id = max(core.id, {a}.id);     // candidates should contain ag-core 
      RstartLevel = RstartLevel ∪ {A} 
     endfor;  
     forall B ∈ NSR do move subsets of B from RstartLevel to AstartLevel; 
   endif 
  endif; 
  for (k = startLevel; Ak ≠ {} ∨ Rk ≠ {}; k++) do begin       /* ag-reducts’ regular search */ 

   if Rk ≠ {} then begin 
   /* find and move non-ag-reducts from Rk to Ak and determine maximal non-ag-super-reducts NSR */ 
    EvaluateCandidates(Rk, Ak, Γ, NSR); 
    if |NSR|AT|| = 1 then return (AT, AT) endif; 
   elseif |NSR| = 1 then return (core; ∪k Rk);            // optional optimizing step 
   endif; 
   GRAGen(Rk+1, Ak+1, Ak, NSR);     // create (k+1)-candidates from k attribute non-ag-reducts 
  endfor; 
return (core; ∪k Rk); 
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The CoreGRA algorithm, we propose, finds not only ag-reducts, but also their 
core. The layout of CoreGRA reminds that of GRA. CoreGRA, however, differs from 
GRA, in that it evaluates 1 attribute candidates in special way that provides sufficient 
information to determine the ag-core, and next creates subsequent candidates only as 
supersets of the found ag-core. CoreGRA calls the EvaluateCandidate1 procedure 
(see Section 8.2) in order to evaluate 1 attribute candidates. Unlike the EvaluateCan-
didate procedure, EvaluateCandidate1 guarantees that all maximal |AT|-1 non-
ag-super-reducts will be determined and returned in NSR. Using this information, 
the ag-core will then be calculated according to its definition. 

If the ag-core is an empty set, then 2 attribute and longer candidates are created and 
evaluated as in GRA. Otherwise, all sets in NSR that are not supersets of the ag-core 
are deleted, since the only candidates considered in CoreGRA will be the ag-core and 
its supersets. If the ag-core contains only one attribute, it is not evaluated because 
singleton attributes were already evaluated. The ag-core is not evaluated also in the 
case, when NSR, already restricted to non-ag-super-reducts being the core’s super-
sets, is not empty. In this case, the ag-core is also a non-ag-super-reduct as a subset 
of some non-ag-super-reduct in NSR. Otherwise, the ag-core is evaluated. Provided 
the ag-core is found an ag-reduct, it is returned as the only ag-reduct. If the ag-core is 
not a reduct, the new candidates R|core|+1 are created by merging the core with the 
remaining attributes in AT. Clearly, the new candidates which have supersets in maxi-
mal known non-ag-super-reducts NSR, are not ag-reducts either, and hence are 

moved from R|core|+1 to A|core|+1. From now on, CoreGRA is performed in the same 
way as GRA. 

It is expected that CoreGRA should perform better than GRA, when the ag-core 
consists of a sufficient number of attributes. Then fewer iterations should be per-
formed and probably fewer candidates will be evaluated. Nevertheless, when the 
number of attributes in the ag-core is small, CoreGRA may be less effective than 
GRA because of the more exhaustive evaluation of 1 attribute candidates (their nsr 
fields are likely to be evaluated against the entire decision table in CoreGRA). 

8.2   Evaluating Singleton Candidates 

Below we describe the EvaluateCandidates1 procedure, which is primarily intended 
to be applied only to 1 attribute candidates in CoreGRA, although it can be applied 
for evaluating candidates of any length. It is assumed that an additional field nsr is 
associated with each k attribute candidate A in Rk.  

The EvaluateCandidates1 procedure differs from EvaluateCandidates in that after 
discovering that a candidate A is not an ag-reduct, it is not removed from Rk immedi-
ately. Nevertheless, EvaluateCandidates1 stops advancing A.id field as soon as the 
first object invalidating A is found (like EvaluateCandidates does). In such a case, 
instead of evaluating A, its nsr field is extended and evaluated against the remaining 
objects in the decision table as long as nsr obtains the maximal possible length (i.e. 
|nsr| = |AT|) or the end of the decision table is reached. In the former case, AT is re-
turned as the maximal set the approximate generalized decision of which differs from 
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the real AT-generalized decision, and the procedure stops. In the latter case, the re-
maining candidates A in Rk that turned out not ag-reducts (i.e. such that A.id ≠ 

|DT|+1), are moved to Ak and NSR’ is updated with their nsr fields. 

procedure EvaluateCandidates1(var Rk, var Ak, in Γ, var NSR); 

 NSR’ = {}; 
 for each object x in DT do begin 

  for each candidate A in Rk do begin 
   ∂ = ∩a∈A.nsr ∂(a, x.a);                  // note: each ((a,x.a), ∂(a,x.a)) ∈ Γ 
   if ∂ ≠ x.∂AT then begin               // or equivalently: if |∂t| = |x.∂AT| then 
    A.nsr = MaximalNonAGSuperReduct(A.nsr, x, ∂, Γ);   // find a maximal non-ag-super-reduct 
    if A.nsr = AT then begin NSR = {AT}; return endif  // or equivalently: if |A.nsr| = |AT| then 
   elseif A.id = x.identifier then A.id = x.identifier + 1 // evaluate A’s supersets against the next object 

  endif; 
   endfor; 
   if Rk = {} then break; 
 endfor; 
 for each candidate A in Rk do 

 if A.id ≠ |DT|+1 then move A from Rk to Ak;   add A.nsr to NSR’ endif;  // A is not an ag-reduct 
NSR = MAX(NSR’ \ NSRk’); // NSR = MAX((NSR’ \ NSRk’) ∪ (NSR \ NSRk)) for k > 1 

return; 

8.3   Illustration of CoreGRA 

In this section, we illustrate how CoreGRA searches ag-reducts in the decision table 
DT from Table 1. Table 7 shows how candidates change in each iteration before and 
after validation against the reduced decision table DT’ from Table 2. 

After 1 attribute candidates were evaluated by EvaluateCandidates1, NSR became 

equal to {{abce}, {de}}. Thus, {abce} was the only set in NSR the length of which 
was equal to |AT|-1. Hence, the ag-core was determined as AT\{abce} = {d}. Since 
the new candidates were to be supersets of the ag-core, all sets from NSR that were 

not supersets of the ag-core were pruned and NSR became equal to {{de}}. The ag-
core {d} is not an ag-reduct, as it was not present in the set of the positively evaluated 
candidates R1 (here: R1 = ∅). 

New candidates were created by merging the ag-core with the remaining attributes 
in AT resulting in the following 4 attribute candidates: {ad}, {bd}, {cd}, {de}. One of 
them ({de}) was known a priori not to be an ag-reduct as a subset of the known non-
ag-super-reduct {de} in NSR. From now on, CoreGRA proceeded as GRA. The 
execution of the CoreGRA algorithm resulted in enumeration of 9 attribute sets in-
stead of 21 (see Section 7.5). 

Table 7. Rk, Ak, and NSR in subsequent iterations of CoreGRA. 

k Rk before validation Ak before 
validation

Rk after 
validation

Ak after validation NSR’ NSR 

1 {a}[id:1], {b}[id:1], {c}[id:1], 
{d}[id:1], {e}[id:1] 

  {a}[id:2], {b}[id:1], {c}[id:3], 
{d}[id:2], {e}[id:2] 

{abc}, {bc}, {c}, 
{de}, {abce} 

{abce}, 
{de} 

2 {ad}[id:2], {bd}[id:2], 
{cd}[id:3]  

{de}[id:2] {ad}[id:8], 
{cd}[id:8] 

{bd}[id:2], {de}[id:2]} {bde} {bde} 
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9   Discovering Approximate Certain Reducts 

Approximate certain reducts of DT are defined by means of generalized decisions 
only of objects in DT with singleton AT-generalized decisions. This observation sug-
gests that the GRA and CoreGRA algorithms shall calculate ac-reducts of DT cor-
rectly, provided the candidate attribute sets are evaluated only against the objects in 
DT with singleton AT-generalized decisions. This can be achieved in two ways: 

a) either the initialization of candidates in the GRA procedure should be preceded 
by an additional operation that removes all objects from DT (or DT’) that have 
non-singleton AT-generalized decisions and renumbers the remaining objects; 

b) or the evaluation of candidates should be modified so that to ignore objects with 
non-singleton AT-generalized decisions safely (please, see [13]). 

10   Conclusion 

In the article, we have offered two new algorithms: RAD and CoreRAD for discover-
ing all exact generalized (and by this also possible) and certain reducts from decision 
tables. In addition, CoreRAD determines the core. Both algorithms require the calcu-
lation of all maximal attribute sets MNSR that are not super-reducts. An Apriori-

like method of determining reducts based on MNSR was proposed. Our method of 

determining MNSR is orthogonal to the methods that determine a discernibility 

matrix (DM), which stores information on sets of attributes each of which discerns 
at least one pair of objects that should be discerned, and return the family of all such 
minimal sets (MDM). The reducts are then found from MDM by applying Boo-
lean reasoning.  

The calculation of MNSR (as well as MDM) requires comparing each pair of 
objects in the decision table and finding maximal (minimal) attribute sets among 
those that are the result of the objects’ comparison. This operation is very costly 
when the number of objects in a decision table is large. In order to overcome this 
problem one may use a reduced table (AT, {∂AT}), which stores one object instead of 
many original objects that are indiscernible on AT and ∂AT. Nevertheless, when the 
number of objects in the reduced table is still large or the number of MNSR 

(MDM) is large, the calculation of reducts may be infeasible. Our preliminary ex-

periments indicate that the determination of MNSR is a bottleneck of the proposed 
RAD-like algorithms in such cases. To the contrary, the proposed Apriori-like method 
of determining reducts based on MNSR is very efficient.  

In the case, when the determination of MNSR is infeasible, we advocate to search 
approximate reducts. In the article, we have defined such approximate reducts based 
on the properties of a generalized decision function. We have shown that for each 
A-generalized decision one may derive its upper bound (A-approximate generalized 
decision) from elementary a-generalized decisions, where a∈A. Whereas exact gen-
eralized (certain) reducts preserve the AT-generalized decision for all objects (for 
objects with singleton generalized decisions), each approximate generalized (certain) 
reduct A guarantees that A-approximate generalized decision is equal to the 
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AT-generalized decision for all objects (for objects with singleton generalized deci-
sions). An exception to the rule is the case, when there is an object for which the 
approximate AT-generalized decision differs from the actual AT-generalized decision. 
Then the entire set of conditional attributes AT is defined as a reduct. We have proved 
that approximate generalized and certain reducts are supersets of exact reducts of 
respective types. In addition, approximate generalized reducts are supersets of exact 
possible reducts. 

We have presented GRA and CoreGRA algorithms for discovering approximate 
generalized (and by this also possible) reducts and certain reducts from very large 
decision tables. The experiments we have carried out and reported in [13] prove that 
the GRA-like algorithms are scalable with respect to the number of objects in a deci-
sion table and that CoreGRA tends to outperform GRA with increasing number of 
conditional attributes. For a few conditional attributes, however, GRA may find re-
ducts faster. Nevertheless, the experiments need to be continued to fully recognize the 
performance characteristics of particular GRA-like algorithms. 

Finally, we note that all the proposed algorithms are capable to discover all dis-
cussed types of reducts from incomplete decision tables as well. The only difference 
consists in a slightly different determination of generalized decision value for atomic 
descriptors, namely ∂A(x) = {d(y)| y∈SA(x)}, where SA(x) = {y∈O | ∀a∈A, (a(x) = 
a(y)) ∨ (a(x) is NULL) ∨ (a(y) is NULL)} (see e.g. [12]). In the future, we intend to 
develop scalable algorithms for discovering all exact reducts. 
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