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R E V I E W

Inferring Cellular Networks
Using Probabilistic Graphical Models

Nir Friedman

High-throughput genome-wide molecular assays, which probe cellular networks from
different perspectives, have become central to molecular biology. Probabilistic graph-
ical models are useful for extracting meaningful biological insights from the resulting
data sets. These models provide a concise representation of complex cellular net-
works by composing simpler submodels. Procedures based on well-understood
principles for inferring such models from data facilitate a model-based methodology
for analysis and discovery. This methodology and its capabilities are illustrated by
several recent applications to gene expression data.

Research in molecular biology is undergo-
ing a revolution. The availability of com-
plete genome sequences facilitates the de-
velopment of high-throughput assays that
can probe cells at a genome-wide scale.
Such assays measure molecular networks
and their components at multiple levels.
These include mRNA transcript quantities,
protein-protein and protein-DNA interac-
tions, chromatin structure, and protein
quantities, localization, and modifications.
These rich data illuminate the working of
cellular processes from different perspec-
tives and offer much promise for novel
insights about these processes (1).

The challenge for computational biology
is to provide methodologies for transforming
high-throughput heterogeneous data sets into

biological insights about the underlying
mechanisms. Although high-throughput as-
says provide a global picture, the details are
often noisy, hence conclusions should be sup-
ported by several types of observations. Inte-
gration of data from assays that examine
cellular systems from different viewpoints
(for instance, gene expression and protein-
protein interactions) can lead to a more co-
herent reconstruction and reduce the effects
of noise. To perform such an integration,
however, we must understand the biological
principles that couple the different measure-
ments. In addition, the conclusions of the
analysis should go beyond a mere description
of the data and should provide new knowl-
edge about the relevant biological entities and
processes, ideally in the form of concrete,
testable hypotheses.

To answer this challenge, we need to
build models of the biological system. A
model is a simplifying abstraction. It gen-

erates predictions of system behavior under
different conditions (as reflected by obser-
vations) and illuminates the roles of various
system components in these behaviors. We
focus on probabilistic models, which use
stochasticity to account for measurement
noise, variability in the biological system,
and aspects of the system that are not cap-
tured by the model.

In a model-based approach to data anal-
ysis, we start by defining the space of
possible models that we are willing to con-
sider. This modeling decision depends on
the phenomena we wish to describe and
how they are reflected by the observations.
We then use a learning procedure to select
the model that best fits the actual observa-
tions. (Such procedures are referred to by
different names in different disciplines, in-
cluding inference, estimation, reverse engi-
neering, and system identification.) Finally,
we use the learned model to reason about
the data, make predictions, and glean in-
sights and hypotheses.

An important aspect of model-based ap-
proaches is the shift from a procedural
methodology to a declarative one. In a pro-
cedural method, we focus on the sequence
of steps from the data to the conclusions.
For example, when relating transcription
factor binding sites in the promoter regions
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of genes to their expression profiles, we can
start by finding clusters of coexpressed
genes and then search for overrepresented
elements in the promoters of the genes in
each cluster (2). Alternatively, we can
group genes with similar binding sites in
their promoter regions, and then test wheth-
er they are coexpressed (3).

In contrast, in a declarative approach we
start by designing a model that encompasses
both gene expression and binding sites. As
explained below, such a model explicitly de-
scribes the assumptions we make about the
relations between the two types of data. By
doing so, we clarify what kinds of predictions
we can perform with each model, after we
learn its parameters from the data and how
these parameters relate to the biological phe-
nomena we are attempting to capture. Next,
we apply well-understood principles such as
maximum likelihood estimation to fit the
model to the data. This can be done using a
general-purpose strategy (such as Expecta-
tion Maximization, gradient ascent, or Gibbs
sampling) in the context of the particular
model. By treating different data sets within
one model, the learning procedure can com-
bine evidence from multiple data sets and
reach more robust conclusions.

The model-based approach is widely used
in biological sequence analysis (4), for which
there is a range of established sequence mod-
els such as Hidden Markov Models. For cel-
lular networks, the structure of the underlying
processes that generate the observed mea-
surements is not fully characterized, and the
question of which mechanism to model—and
at what granularity—is open-ended and de-
pends on the biological question we are at-
tempting to answer.

In this review, I examine the use of a class
of mathematical models known as probabilis-
tic graphical models (5, 6) for model-based
analysis of cellular networks. These models
were developed in the fields of machine
learning and statistics for modeling complex
systems with multiple interacting entities.
They are closely related to probabilistic se-
quence models but are not restricted to se-
quential observations.

Probabilistic graphical models are suitable
for this task for several reasons. They provide
a concise language for describing probability
distributions over the observations. The com-
putational procedures for reasoning in graph-
ical models are derived from basic principles
of probability theory. In addition, the litera-
ture on graphical models provides approaches
to learning from data that are derived from
basic well-understood principles in statistics.
These approaches allow the use of observa-
tions to “fill in” many model details. Further-
more, they provide principles for combining
multiple local models into a joint global mod-
el. This provides flexibility when construct-

ing models for novel data sets or experimen-
tal designs. Using graphical models, one can
construct simple submodels and then com-
bine them for the full model. Finally, the
declarative nature of graphical models pro-
vides an advantage when we need to extend
the model to account for additional aspects of
the system or new observations.

My emphasis is on the modeling choices
and how they facilitate different analysis
tasks. For each of these models, we also need
to apply inference and learning procedures. In
some cases, we can adopt generic strategies.
In others, finding computationally efficient
algorithms is a major challenge, and the de-
tails of the algorithms (not discussed here)
greatly affect the results.

Probabilistic Graphical Models
When modeling a biological system, we are
interested in entities that are involved in the
system under study (e.g., genes) and their
different attributes (e.g., expression level).
In a probabilistic model, we treat each of
these attributes as a random variable (7 ).
Random variables include observed at-
tributes, such as the expression level of a
particular gene in a particular experiment,
as well as hidden attributes that are assumed
by the model, such as the cluster assignment of
a particular gene. A model embodies the de-
scription of the joint probability distribution of
all the random variables of interest.

Probabilistic graphical models represent
multivariate joint probability distributions
via a product of terms, each of which in-
volves only a few variables. The structure
of the product is represented by a graph that
relates variables that appear in a common
term. This graph specifies the product form
of the distribution and also provides tools
for reasoning about the properties entailed
by the product (5). For a sparse graph, the
representation is compact and in many cas-
es allows effective inference and learning.

In Bayesian Networks, the joint distri-
bution over a set X � {X1, …, Xn} of ran-
dom variables is represented as a product of
conditional probabilities. A Bayesian net-
work associates with each variable Xi a
conditional probability P(Xi�Ui), where Ui

� X is the set of variables that are called
the parents of Xi. Intuitively, the values of
the parents directly influence the choice of
value for Xi. The resulting product is of the
form

P(X1, …, Xn) � �
i

P(Xi�Ui) (1)

The graphical representation is given by a
directed graph where we put edges from
Xi’s parents to Xi (Fig. 1, A to C). If the
graph is acyclic, the product decomposition
of Eq. 1 is guaranteed to be a coherent
probability distribution.

Bayesian networks appear naturally in
several domains in biology. In pedigree
analysis, for example, the joint distribution
of genotypes in a pedigree is a product of
conditional probabilities of the genotype of
each individual given the genotypes of its
two biological parents. In phylogenetic
models, the probability over all possible
sequences during evolution is the product
of the conditional probability of each se-
quence given its latest ancestral sequence
in the phylogeny.

To specify a model completely, we need
to describe the conditional probability as-
sociated with each variable. In general, any
statistical regression model may be used.
For example, we can consider models
where each P(Xi�Ui) is a linear regression of
Xi on Ui. Alternatively, we can use decision
trees to represent the probability of a dis-
crete variable Xi given the values of its
parents. The choice of a specific parametric
representation of the conditional probabili-
ties is often dictated by our knowledge or
assumptions about the domain.

Another class of models are Markov Net-
works, which represent a joint distribution as
a product of potentials. Each potential cap-
tures the interactions among a (small) set of
variables and specifies the “desirability” of
joint value assignments to these variables.
This results in a product of the form

P(X1, …, Xn) �
1

Z�
j

�j[Cj] (2)

where �j[Cj] is the jth potential over the
variables Cj � X, and Z is a normalizing
constant that ensures that the total probability
mass is 1 (Fig. 1, D to F). A canonical
example of an undirected model is an Ising
model, where each random variable repre-
sents the orientation of an element (e.g., mag-
netic particle) and the potential between pairs
of elements captures the compatibility of two
elements. The joint probability is determined
by the overall compatibility of each assign-
ment of values according to all the potentials.

Another related class of models are Chain
Graphs, which involve a product of conditional
probabilities and potentials. In many domains
there is additional structure, beyond the product
form, that can be exploited for concise repre-
sentation (8). Below, we discuss one such class
of models that captures additional structure.

A crucial question for the tasks we ex-
amine here is inferring, or “learning,” mod-
els from observations (6, 8). The general
aim is to learn a model that is as close as
possible to the underlying distribution from
which the observations were made. We dis-
tinguish two main tasks: parameter estima-
tion and model selection. In parameter es-
timation, we learn the parameters of the
conditional probabilities for a given model
structure. This task is often addressed as a
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maximum likelihood problem. In model se-
lection, we select among different model
structures to find one that best reflects the
dependencies in the domain. This task is
often addressed as a discrete optimization
problem where we try to maximize a score
that measures how well each candidate
structure matches the observed data (22).

Once we specify or learn a model that de-
scribes a joint distribution, we can use it to com-
pute the likelihood of our observa-
tions and make predictions about the
value of unobserved random vari-
ables given these observations. There
is a wide choice of exact and approx-
imate methods for answering such
queries. These exploit, when possi-
ble, the structure of the product form
for efficient computation (5, 9).

From Clustering to
Regulation
We now consider a graphical mod-
el for gene expression data and
then examine how to extend it to
the modeling of cis-regulatory ele-
ments. The main sources of high-
throughput data on the behavior of
cellular networks are gene expres-
sion profiles, obtained using DNA
microarrays. A typical data set re-
ports the expression level of thou-
sands of genes as measured by sev-
eral dozens or hundreds of arrays.
We treat these as observations of
the values of random variables
Xg,a, where g is an index over
genes and a is an index over arrays.

A fairly simple modeling as-
sumption is that genes can be par-
titioned into clusters of coex-
pressed genes, and that the genes
in each cluster have a typical ex-
pression level in each array. We
might also assume that arrays are
partitioned into array clusters,
which capture relevant biological
context, and that the expression
of a gene is roughly the same in
arrays that belong to the same
array cluster. We can pose this
model by adding random vari-
ables, so that GeneClusterg de-
notes the cluster assignment of
gene g, and ArrayClustera denotes the cluster
assignment of array a. The underlying as-
sumption is that the expression of gene g in
array a depends on the value of GeneClusterg

and ArrayClustera. This model assumes that
all measurements that correspond to a partic-
ular gene cluster–array cluster pair are gov-
erned by the same conditional distribution.

We can describe such a model as a
Bayesian network. The structure of the
Bayesian network is regular, in the sense

that each expression attribute Xg,a has par-
ents GeneClusterg and ArrayClustera. The
actual network structure depends on the
number of genes and arrays in the data set
(see Fig. 2A for a small example). The
description by a Bayesian network, howev-
er, does not explicitly represent two impor-
tant aspects. First, the random variables
denote attributes of different entities, such
as genes and arrays. Second, a general

scheme or template is shared by all entities
of the same type. For example, the condi-
tional probability of P(Xg,a�GeneClusterg,
ArrayClustera) is similar for different
choices of g and a. By capturing such
regularities, we can provide a more concise
representation of the model. One such rep-
resentation is the language of relational
Bayesian networks (10, 11). Figure 2B
shows a template model for the clustering
problem, from which we can generate the

Bayesian network once we are given the set
of genes and arrays.

The model just described can achieve high
likelihood if the cluster and gene assignment
partitions the original measurements into
blocks with approximately uniform expres-
sion within each block (11). We can learn
such a partition by using an Expectation
Maximization procedure that iterates between
an E-step, which uses current parameters to

find the probabilistic cluster as-
signment of genes and arrays, and
an M-step, which reestimates the
distribution within each gene/
array cluster combination on the
basis of this assignment.

This basic model can be ex-
tended to capture additional insight
about the biological mechanisms.
We consider one example here. It
is common to assume that coex-
pression of genes reflects coregula-
tion. A key regulation mechanism
involves binding of transcription
factors to promoter regions of
genes. Thus, we aim to identify the
transcription factor binding sites in
the promoter region of genes that
can explain observed coexpression.
To do this, we extend the model to
include observations about promot-
er sequences. A straightforward ap-
proach is to maintain the clustering
model, where genes in the same clus-
ter have similar expression patterns,
and in addition associate each cluster
with the transcription factors that reg-
ulate it. Although such a description
oversimplifies the biological mecha-
nism, it can capture the first-order
signal while ignoring many differ-
ences between the expression and
regulation of specific genes.

There are several ways to
translate this intuition into a
mathematical model. One ap-
proach is to annotate promoters
with characterized binding sites,
and then use these as new at-
tributes of the gene entity. The
random binary variable Rg, j de-
notes whether gene g has a bind-
ing site of transcription factor j.
Then, we can design a model

where the cluster assignment of each gene
directly influences the associated binding
sites and expression attributes (12, 13).

Alternatively, we can attempt to maxi-
mize the likelihood of gene expression pro-
files given the promoter region content.
Again, we introduce binding site attributes to
the gene entity, but now we assume that the
gene cluster depends on these attributes (14,
15). Such a model focuses on binding sites
that predict expression and does not attempt

Fig. 1. (A) A Bayesian network over five binary random variables. Vertices
are labeled with random variable names (A to E); edges correspond to
direct dependencies. (B) The product form specified by this Bayesian
network structure. A full specification of the joint distribution for these
random variables requires 31 parameters; this product form requires 10
parameters. (C) An example of one conditional distribution in the product
form that specifies P(C�A,B). (D) A Markov network over the same five
variables. (E) A product form that induces this Markov network structure.
This is a product of four potential functions, each a function of a subset
of the variables. (F) One potential in this product form.
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to account for the occurrences of other bind-
ing sites, which might be relevant under con-
ditions that are not represented in the expres-

sion data. We can augment this model by
modeling the probability of a binding site
given the actual promoter sequence. We in-

troduce new entities that denote the promoter
regions, and model Rg,j as depending on the
promoter sequence Seqg (Fig. 2D). The pa-
rameters of this conditional probability char-
acterize the specific motif recognized by the
transcription factor. This extension allows us
to learn the characterization of the binding
site while learning how its presence influenc-
es gene expression.

A crucial detail in building such a model
is the representation of the conditional distri-
butions associated with GeneClusterg. This
distribution describes how the existence of
binding sites in the promoter region deter-
mines (or predicts) what cluster the gene
belongs to. The conditional probabilities ex-
plored so far involve fairly generic represen-
tation of decision trees (14) or additive votes
(15). Both representations manage to recon-
struct some aspects of yeast transcriptional
circuits. However, it is not clear whether
either one matches the underlying logic in
biological regulation.

Learning in this type of model combines
similarity of genes in terms of expression and
in terms of their promoters. In training the
model, there are steps where we find new
binding sites that explain assignments of
genes to clusters, steps that reassign genes to
new clusters on the basis of both their expres-
sion profile and their promoter region, and
steps that reestimate the distributions of ex-
pression within each cluster. Thus, learning
involves information flow between the two
types of data and allows the combination of
weak evidence from both sources. This infor-
mation is channeled through the gene cluster
variables. Thus, to achieve high likelihood,
the gene cluster variables must represent
clusters of genes with both coherent expres-
sion profiles and similar promoters. At the
same time, the learning procedure must iden-
tify the binding site motifs that are most
predictive of these cluster assignments.

Segal et al. (15) applied such a model to
two data sets of yeast gene expression pro-
files. One involved �800 genes in 77 arrays
of different yeast cell cycle stages (16); the
other involved �1000 genes in 173 arrays of
yeast under environmental stress conditions
(17). They showed that, without using prior
knowledge, their procedure identified several
dozen binding site motifs. More than half of
these corresponded to motifs that have been
characterized in the literature; the resulting
gene clusters corresponded to known biolog-
ical processes and function annotations. This
correspondence is significantly more pro-
nounced than for standard clusters learned
from gene expression alone. In addition, their
model suggests a specific cis-regulatory cir-
cuit that in many cases corresponds to prior
knowledge about regulation in yeast.

The clustering model can be extended to
involve other types of mechanisms and ob-

Fig. 2. (A) A Bayesian network for the clustering problem in a simple data set with three genes and two
arrays. The random variable Xg,a denotes the spot that measures expression of gene g in array a, GCg
denotes the cluster of gene g, and ACa denotes the array cluster of array a. (B) A relational Bayesian
network template for the basic clustering model. Boxes delimit entity types; dotted lines correspond to
relations between entities (e.g., the relation between a spot entity and a gene entity denotes that the
spot measures the expression of the particular gene). Each spot entity has a single attribute that
measures an expression level and is associated with a gene entity and an array entity. Each
gene entity is associated with a gene cluster, and each array entity with an array cluster. (C)
Representation of the conditional distribution of expression levels given the clusters of the
corresponding gene and array. Each combination of values of the respective gene-cluster and
array-cluster variables is associated with parameters of a Gaussian distribution (mean � and
standard deviation �). (D) A template model that also includes promoter sequences. Each gene
entity is associated with a promoter entity that has a sequence attribute that reports the DNA
sequence of the promoter. The gene entity now has new attributes, where Rj indicates whether the gene
is regulated by the jth transcription factor. This indicator depends on the promoter sequence. The cluster
of the gene depends on the combination of these indicators.
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servations. For example, we can assume that
active transcription factor binding sites
should correspond to observations of tran-
scription factor location data (18). We can
extend the model to view these observations
as a noisy sensor (14). Another orthogonal
extension can incorporate protein-protein in-
teractions. For example, a pair of interacting
proteins are more likely to belong to the same
coregulated cluster (because they might act
together). To capture this, we can assign a
Markov network pairwise potential that prefers
coordinated cluster assignments for pairs of
interacting proteins (19). This model can com-
bine annotation of proteins (e.g., cluster assign-
ment) with protein-protein interaction data.
This pairwise interaction model can be applied
to other types of protein annotations. Deng et
al. (20) recently used a similar model for pre-
dicting functional annotations of proteins.

Reconstruction of Regulatory
Networks
A key challenge in gene expression analysis
is the reconstruction of regulatory networks.
A simple thought experiment suggests the
following formulation. If the expression of
gene A is regulated by proteins B and C, then
A’s expression level is a function of the joint
activity levels of B and C. Because of vari-
ability in underlying biology and measure-
ment noise, we treat the expression of A as a
stochastic function of its regulators. This sug-
gests a Bayesian network where the expres-
sion level of each gene depends on the activ-
ity levels of its regulators. In most current
biological data sets, however, we do not have
access to measurements of protein activity
levels. Hence, we resort to using expression
levels of genes as a proxy for the activity
level of the proteins they encode. This is a
problematic assumption, as there are numer-
ous examples where an activation or silenc-
ing of a regulator is carried out by posttran-
scriptional protein modifications.

With this caveat in mind, we set out to
find a Bayesian network that relates the ex-
pression level of a gene to those of its regu-
lators (21). That is, we search for a Bayesian
network that specifies for each gene g a set of
regulators, so that in each array Xg,a depends
on the expression level of the regulators in
that array. We then use tools for structure
learning in Bayesian networks (22, 23) to
determine the network architecture. This in-
volves considering different network struc-
tures and evaluating the likelihood that they
have generated the observations.

This general outline faces two main chal-
lenges. The first challenge involves statistical
robustness. Building a network that involves
thousands of genes from several dozen exam-
ples of their joint expression levels (arrays) is
extremely problematic. Such a small number
of examples does not suffice to distinguish

between true correlations and spurious ones.
There are several strategies to deal with this
challenge. Methods such as the bootstrap can
identify significant network features that are
robust to perturbations of the observations
(21, 24). Another approach is to use prior
knowledge about biological principles to re-
strict the set of network structures we are
willing to consider (25, 26). This reduces the
number of competing “false” structures and
increases robustness. Alternatively, we can
restrict ourselves to evaluating a much small-
er set of structures on the basis of prior
biological knowledge about specific genes
(27). Finally, we can rely on biological prin-
ciples for restricting the stochastic function of
a gene, given its regulators, to be of a partic-
ular form (26–29).

The second and more difficult challenge
is the biological interpretability of the re-
sults. Can we really distinguish regulation
from coexpression? Do these methods dis-
cover direct or indirect regulation? How do
unobserved posttranscriptional events af-
fect the conclusions? Whereas our ultimate
goal is to identify the direct regulation of
targets by transcription factors, experience
shows that the methods also find many
other indirect relations.

As a specific example, we applied (24)
the bootstrap procedure to a data set of the
expression profiles of 565 genes in 300
knockout variants of yeast (30). This was
done in an ab initio fashion, without any prior
knowledge about which genes might be reg-
ulators and without making strong assump-
tions about the network structure (Fig. 3A).
We used the bootstrap procedure to assign
confidence to different relations in the
learned networks, and compiled subnetworks
of genes that have high-confidence intercon-
nections among them (Fig. 3B). We then
compared the significant regulation relations
to the experimental literature. This analysis
showed that many regulator-target pairs cor-
respond to known regulatory relationships
that involve some intermediate steps—for ex-
ample, components of mitogen-activated pro-
tein kinase signaling cascades and their
downstream transcriptional targets.

Two studies have used this insight as a
justification to focus on regulators that in-
clude components of signal pathways, recep-
tors, and transcription factors. Pe’er et al.
(25) introduced a method that examines only
those networks in which a small number of
regulators explain the expression of all other
genes (Fig. 3C). The restriction to such a
network architecture forces the learning pro-
cedure to identify the most pronounced reg-
ulators in the data set. It also simplifies the
learning procedure, which leads to statistical
and computational advantages. They applied
this method to several yeast gene expression
data sets (16, 17, 30) and then performed a

systematic validation of the regulators in the
learned networks by examining the process
and function annotation of the target set of
each regulator (Fig. 3D). In most cases, the
significant annotations matched the known
literature about the regulators.

Segal et al. (26 ) introduced a method
that examines networks composed of mod-
ules of coregulated genes (Fig. 3E). In
these networks, all the genes within a single
module are controlled by a shared regula-
tory program. The learning procedure si-
multaneously identifies the composition of
the modules and finds regulators for each
module that best predict the expression of
its genes. The module network representa-
tion forces the learning procedure to find
patterns that are shared by many genes.
Such a representation is congruent with
biological principles that suggest that the
cellular regulatory circuits coordinate acti-
vation or repression of groups of genes that
are involved in the same process. This is in
contrast to the two approaches we de-
scribed above, where each gene is associ-
ated with an individual regulatory program.
The benefit of the module network ap-
proach is that shared regulation programs
require far fewer parameters and increase
the robustness of the learned model. The
downside is that we lose flexibility and
might miss fine points in the regulation of
specific genes. Another important aspect of
the module networks is that the representa-
tion leads to an easier interpretation. In-
stead of examining the regulation program
of hundreds of genes, we focus on a much
smaller number of modules.

This approach was applied to the 2450
genes in 173 arrays of yeast under environ-
mental stress conditions (17 ) to learn a
network with 50 modules (26 ). This was
followed by a systematic evaluation against
the literature, which showed that regulators
of 35 modules agree with experimental re-
sults in the literature and with evidence
based on gene annotation and cis-regulatory
motifs (Fig. 3F). Moreover, the model
learned by this method leads to testable
hypotheses of the form “protein X regulates
a module of genes G under condition C.”
Segal et al. confirmed such hypotheses for
three unknown regulators (one transcrip-
tion factor and two kinases) by examining
gene expression of knockout strains in the
specific conditions where the regulator is
predicted to be active.

These results show that regulation can be
learned from expression profiles. Clearly, be-
cause these methods examine expression pro-
files, they detect coordinated changes in tran-
script levels of the target genes and their
regulators. This suggests that to understand
the successes of such methods, we need to
examine how the discovered regulators are
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themselves transcriptionally regulated. These
regulation mechanisms often involve feed-
forward loops and feedback mechanisms
(18, 31) that change the mRNA expression

level of regulators when their protein activ-
ity changes. As a consequence, we can
detect coordinated changes in the expres-
sion levels of regulators and their targets.

This hypothesis is supported by an analysis
of the discovered regulatory relations against
a database of protein-DNA and protein-
protein interactions (26).

Fig. 3. Different regulatory network architectures. (A) An uncon-
strained acyclic network where each gene can have a different regu-
lator set. This is a fragment of a network learned in the experiments
of Pe’er et al. (24 ). (B) A summary of direct neighbor relations among
the genes shown in (A) based on bootstrap estimates. Degrees of
confidence are denoted by edge thickness. We automatically identify
a subnetwork of genes, with high-confidence relations among them,
that are involved in the yeast-mating pathways. The colors highlight
genes with known function in mating, including signal transduction
(yellow), transcription factors (blue), and downstream effectors
(green). (C) A fragment of a two-level network described by Pe’er et
al. (25). The top level contains a small number of regulators; the

bottom level contains all other genes (targets). Each gene has differ-
ent regulators from among the regulator genes. (D) Visualization of
significant Gene Ontology (42) annotations of the targets of different
regulators. Each significant annotation for the targets of a regulator
(or pairs of regulators) is shown with the hypergeometric p-value. (E)
A fragment of the module network described by Segal et al. (26). Each
module contains several genes that share the same set of regulators and
share the same conditional regulation program given these regulators. (F)
Visualization of the expression levels of the 55 genes in Module 1 (b) and
their regulators (a). Significant Gene Ontology annotations (c) and cis-
regulatory motifs in promoter regions of genes in the module (d) are shown.
[See figure 3 of (26); reproduced with permission]
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One of the key challenges is to distin-
guish regulation from coexpression. We
can improve these distinctions by careful
experimental design and by combining ad-
ditional data sources. An important strategy
for dissecting the direction of regulation is
by gene knockout perturbations. The intu-
ition is that by knocking out a gene, we can
pinpoint genes downstream from it. The
Bayesian network semantics can use such
perturbations to also infer the direction of
regulation in genes upstream of the knock-
out (32, 24 ), and modeling such perturba-
tions can lead to stronger conclusions (24 ).
An alternative experimental strategy for
distinguishing correlation from causation is
to examine how the system changes over
time (33–35). For example, Kim et al. (34 )
showed that a learning temporal model of
yeast cell cycle expression data could re-
duce the errors made by a model that did
not take temporal observations into ac-
count. Finally, we can bias the model to
prefer regulator-target pairs that are consis-
tent with additional data sources, such as
transcription factor location data (36 ).

Conclusion
We have discussed several model-based ap-
proaches for learning cellular networks from
data. These approaches represent the state of
the art for this task and were evaluated
through extensive validation against prior bi-
ological knowledge and independent experi-
mental assays. A recurring theme in these
approaches is an exploration of the tradeoff
between two contradictory aims. On one
hand, we aim to reconstruct detailed models;
on the other hand, we must be able to learn
these models from the available data. As a
result of this tradeoff, the methods we dis-
cussed capture only the aspects that were
deemed most crucial to the biological ques-
tion at hand.

There are two main strategies for ob-
taining models that provide deeper biolog-
ical insight. Much current research focuses
on unified models that combine evidence
from different levels of the cellular machin-
ery. A key strength of the graphical models
is the ability to specify models that account
for such heterogeneous observations. These
models can reach conclusions that are not
supported by either data source considered
independently. We discussed a unified
model that finds transcription factor bind-
ing sites and simultaneously characterizes
the behavior of their target genes. Similar-
ly, we expect that modeling promoter se-
quences will lead to more accurate regula-
tory models [e.g., (37 )]. Another direction
is to incorporate data from assays in pro-
teomics. For example, recent works (38,
39) combine protein-DNA and protein-
protein interaction maps to reconstruct reg-

ulatory circuits that explain differential ex-
pression in gene knockout experiments.

Another key ingredient for improving our
models is our current understanding of the
biological regulatory mechanisms. As we
have seen, ab initio exploration can lead to
insights about the nature of the data, such as
the ability to infer indirect regulation. How-
ever, when possible, incorporating biological
principles into the design of the models (e.g.,
constraining regulatory network structure)
can restrict the degrees of freedom during
learning and result in better models. One of
the most intriguing prospects for research is
to develop models that capture aspects of the
actual details of the regulatory machinery.
This includes combining tools from a large
body of research on kinematic equations and
stochastic differential equations for modeling
cellular pathways (40, 41).

In the near future, we expect to see an
explosion in the quantity and diversity of
high-throughput data sets, including new ex-
perimental assays, new experimental designs,
and examinations of systems at the levels of a
single cell, a composite organ, a whole or-
ganism, and a society. Computational analy-
sis methods will be critical for gleaning bio-
logical insight from these data sets. It is clear
that no single tool will meet all the analysis
needs; instead, we need a range of tools
tailored to specific assays and experimental
designs. To cope with these challenges, the
field of computational biology must develop
methodologies and concrete implementations
that empower researchers to explore different
models of varying detail and rapidly apply
them to diverse data sets. The language of
graphical models is well suited for compos-
ing different submodels in a principled and
understandable fashion. The declarative se-
mantics of graphical models provide founda-
tions for building a “modeling toolbox” and
unified learning algorithms that apply well-
understood statistical principles. Such tools
will enable researchers to combine compo-
nents and to tailor learning procedures. The
challenge is to gain an understanding of the
modeling choices for different cellular com-
ponents and their suitability for different
types of assays, and to extend the methods for
inference and learning in such models.
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