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Abstract This chapter gives an overview and refinement of recent works on binary granu- 
lar computing. For comparison and contrasting, granulation and partition are ex- 
amined in parallel from the prospect of rough Set theory (RST).The key strength 
of RST is its capability in representing and processing knowledge in table for- 
mats. Even though such capabilities, for general granulation, are not available, 
this chapter illustrates and refines some such capability for binary granulation. 
In rough set theory, quotient sets, table representations, and concept hierarchy 
trees are all set theoretical, while in binary granulation, they are special kind 
of pretopological spaces, which is equivalent to a binary relation Here a pre- 
topological space means a space that is equipped with a neighborhood system 
(NS). A NS is similar to the classical NS of a topological space, but without any 
axioms attached to it1. 
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1 Introduction 
Though the label, granular computing is relatively recent, the notion of 

granulation has in fact been appeared, under different names, in many related 
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fields, such as programming, divide and conquer, fuzzy and rough set theo- 
ries, pretopological spaces, interval computing, quantization, data compres- 
sion, chunking, cluster analysis, belief functions, machine learning, databases, 
and many others. In the past few years, we have seen a renewed and fast 
growing interest in Granular Computing (GrC). Many applications of granular 
computing have appeared in fields, such as medicine, economics, finance, busi- 
ness, environment, electrical and computer engineering, a number of sciences, 
software engineering, and information science. 

Granulation seems to be a natural problem-solving methodology deeply 
rooted in human thinking. Many daily "things" have been routinely granu- 
lated into sub"things;" human body has been granulated into head, neck, and 
so forth; geographic features into mountains, planes, and others. The notion 
is intrinsically fuzzy, vague and imprecise. Mathematicians idealized it into 
the notion of partitions, and developed it into a fundamental problem-solving 
methodology; it has played major roles throughout the entire history of math- 
ematics. 

Nevertheless, the notion of partitions, which absolutely does not permit any 
overlapping among its granules, seems to be too restrictive for real world prob- 
lems. Even in natural science, classification does permit small degree of over- 
lapping; there are beings that are both appropriate subjects of zoology and 
botany. A more general theory is needed. 

Based on Zadeh's grand project on granular mathematics, during his sabbat- 
ical leave (1996A997) at Berkeley, Lin focused on a subset of granular math- 
ematics, which he called granular computing (Zadeh, 1998). To stimulate re- 
search on granular computing, a special interest group, with T. Y. Lin as its 
Chair, was formed within BISC (Berkeley Initiative in Soft Computing). Since 
then, granular computing has evolved into an active research area, generating 
many articles, books and presentations at conferences, workshops and special 
sessions. This chapter is devoted to present some of such development over 
the past few years. 

There are two possible approaches: (1) One is starting from fuzzy side and 
moving down, and (2) the other one is from extreme crisp side and moving 
up. In this chapter, we take the second approach incrementally. Recall that 
algebraically a partition is an equivalence relation, so a natural next step is the 
binary granulation defined by a binary relation. For contrasting, we may call a 
partition A-granulation and the more general granulation B-granulation. 

2. Naive Model for Problem Solving 
An obvious approach to a large-scaled computing problem is: (1) To divide 

the problem into subtasks, might be point by point and level by level. (2) 
To elevate or abstract the problem into concept/knowledge spaces, could be 
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in multilevels. (3) To integrate the solutions of subtasks and quotient tasks 
(knowledge spaces) of several levels 

2.1 Information Granulations/Partitions 
In the first step, we select an appropriate system of granulationlpartition 

so that only the summaries of granules/equivalence classes may enter into the 
higher level computing. The information in data space is transformed to a con- 
cept space, possibly in levels, which may be locally at each point or globally 
at eh whole universe (Lin, 2003b). Classically, we granulate by partitioning 
(no overlapping on granules). Such examples are plentiful: in mathematics 
(quotient groups, quotient rings and etc. (Birkhoff and MacLane, 1977)), in 
theoretical computer science (divide-and-conquer (Aho et  al., 1974)), in soft- 
ware engineering (the structural, object oriented, and component based de- 
sign and programming (Szyperski, 2002)), in artificial intelligence (Hobbs, 
1985; Zhang and Zhang, 1992), in rough set theory (Pawlak, 1991) among 
others. However, these are all partition based, where no overlapping of gran- 
ules is permitted. As we have observed, even in biology, classification does al- 
low some overlapping. The focus of this presentation will be on non-partition 
theory, but only in an epsilon step away from partitioning method. 

2.2 Knowledge Level Processing and Computing with 
Words 

The information in each granule is summarized and the original problem 
is re-expressed in terms of symbols, words, predicates or linguistic variables. 
Such re-expressing is often referred to as knowledge representations. Its pro- 
cessing has been termed computing with symbols (table processing, computing 
with words, knowledge level processing, even precisiated natural language, de- 
pending on the complexity of the representations. 

In this chapter, we are computing on the space of granules or "quotient 
space." in which each granule is represented by a word that carries different 
degree of semantics. For partition theory, the knowledge representation is in 
table format (Pawlak, 1991) and its computation is syntactic in nature. For 
binary granulation, that we have focused here, is semantic oriented. We ex- 
pand and streamline the previous works (Lin, 1998a; Lin, 1998b; Lin, 2000); 
the main idea is to transfer the computing with words into computing with 
symbols. 

Loosely speaking computing with symbols or symbolic computing is an 
"axiomatic" Computing: all rules of computing symbols are determined by 
the axioms. The computation follows the formal specifications. Such com- 
puting occurs only in an ideal situation. In many real world applications, un- 
fortunately, such as non-linear computing, the formal specifications are often 
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unavailable. So computing with words are needed; it can be processed infor- 
mally. Semantics of words often may not be completely or precisely formal- 
ized. Their semantic computing is often carried out in the systems with human 
helps (the semantics of symbols are not implemented). Human enforced se- 
mantic computing are common in data processing environment. 

2.3 Information Integration and Approximation Theory 
Most applications require the solutions be presented in the same level as 

input data. So the solutions often need to be integrated from subtasks (solu- 
tions in granules) and quotient tasks (solutions in the spaces of granules). For 
some applications, such as Data Mining and some rough set theory, are aimed 
at high level information; in such cases this step can be skipped. In general, 
the integration is not easy. In partition world, many theories have been devel- 
oped in mathematics; e. g., extension functors. The approximation theory of 
pretopological spaces and rough set theory can be regarded as in this step. 

3. A Geometric Models of Information Granulations 
For understanding the general idea, in this section, we recall and refine a 

previous formalization in (Lin, 1998a). The goal is to formalize Zadeh's infor- 
mal notion of granulation mathematically. 

As original thesis is informal, the best we could do is to present, hopefully, 
convincing arguments. We believe our formal theory is very close to the infor- 
mal one. According to Zadeh (1996): 

Information granulation involves partitioning a class of objects(points) into gran- 
ules, with a granule being a clump of objects (points) which are drawn together 
by indistinguishability, similarity or funhionality. 

We will literally take Zadeh's informal words as a formal definition of gran- 
ulation. We observe that: 

1. A granule is a group of objects that are draw together (by indistinguisha- 
bility, similarity or functionality). 

The phrase "drawn together" implicitly implies certain level of symme- 
try among the objects in a granule. Namely, if p is drawn towards q, then 
q is also drawn towards p. 

Such symmetry, we believe, is imposed by imprecise-ness of natural 
language. To avoid such an implications, we will rephrase it to "drawn 
towards an object p," so that it is clear the reverse may or may not be 
true. So we have first revision: 

2. A granule is a group B(p) of objects that are draw toward an object p. 
Here p varies through every object in the universe. 
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3. Such an association between object p and a granule B(p) induces a map 
from the object space to power set of object space. This map has been 
called a binary granulation (BG). 

4. Geometric View: 

We may use geometric terminology and refer to the granule as a neigh- 
borhood of p, and the collection {B(p) )  a binary neighborhood system 
(BNS). It is possible that B(p) is an empty set. In this case we will sim- 
ply say p has no neighborhood (abuse of language; to be very correct, we 
should say p has an empty neighborhood). Also it is possible that differ- 
ent points may have the same neighborhood (granule) B(p) = B(q). 
The set of all q, where B(q) is equal to B(p), is called the centers C(p) 
of B(p). 

5. Algebraic View: 

Consider the set R = {(p, u)) ,  where u in B(p) and p in U. It is clear 
that R is a subset of U x U, hence defines a binary relation (BR), and 
vice versa. 

PROPOSITION 1 A binary neighborhood system (BNS), A binary granulation 
(BG), and a binary relation (BR) are equivalent. 

From the analysis given above, we propose the following mathematical 
model for information granulation. 

DEFINITION 1 By a (single level) information granulation dejined on a set U 
we mean a binary granulation (binary neighborhood system, binary relation) 
dejined on U. 

Let us goes a little bit further. Note that the binary relation is a mathemati- 
cal expression of Zadeh's "indistinguishability, similarity or functionality." We 
abstract the three properties into a list of abstract binary relations {B j  I j run 
through some index set ), where each Bj is a binary relation. 

Note that at each point p, each Bj induces a neighborhood Bj(p). Some may 
be empty, or identical. By removing empty set and duplications, the family 
have been we re-indexed Ni(p). As in the single level case, we will define 
directly the granulation 

N : U -, 22U;p H { B i b )  I i run through some index set ). 

The collection { B i b ) )  is called a neighborhood system(NS)or (LNS); the 
latter one is used to distinguish itself from the neighborhood system (TNS) of 
a topological space (Lin, 1989a; Lin, 1992). 
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DEFINITION 2 By a local multi-level information granulation dejined on U, 
we mean a neighborhood system (NS) is dejined on U. By a global multi-level 
information granulation dejined on U, we mean a set of BG is dejined on U. 

All notions can be fuzzified. The right way to look at this section is to as- 
sume implicitly there is a modifier '%risp/fuzzy" to all notions presented above. 

4. Information Granulations/Partitions 
Technically, granular computing is actually computing with constraints. Es- 

pecially in "infinite world", granulation is often given in terms of constraints. 
In this chapter, we concerns primarily with constraints that are mathematically 
represented as binary relations 

4.1 Equivalence Relations(Partitions) 
Partition is a decomposition of the universe into a family of disjoint subsets. 

They are called equivalence classes, because a partition induces an equivalence 
relation and vice versa. In this chapter, we will view the equivalence class in a 
special way. Let A G U x U be an equivalence relation (a reflexive, symmetric 
and transitive binary relation). For each p, let 

A, is the equivalence class containing p, and will be called A-granule for the 
purpose of contrasting with general cases. Elements in Ap are equivalent to 
each other. Let us summarize the discussions in: 

PROPOSITION 2 An equivalence relation on U * a partition on U 

In RST, the pair (U, A) is called an approximation space and its topological 
properties are studied. 

4.2 Binary Relation (Granulation) - Topological Partitions 
In &in, 1998b), we observe that there is a derived partition for each BNS, 

that is, the map B : V -, 2U;p I+ B(p) induces a partition on V; the equiv- 
alence class C(p) = B-l(B(p)) is the center of B(p). In the case V = U, 
the B(p) is the neighborhood of C(p), and C(p) consists of all the points 
that have the same neighborhood. So B(p) = B((C(p)). We observe that 
{C(p)) is a partition. Since each B(p) is a neighborhood of the set C(p). 
The quotient set is a BNS (Lin, 1989a). We will call the collection of C(p) 
topological partition with the understanding that there is a neighborhood B(p) 
for each equivalence class C(p). The neighborhoods capture the interaction 
among equivalence classes (Lin, 2000). 
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4.3 Fuzzy Binary Granulations (Fuzzy Binary Relations) 
In (Lin, 1996), we have discussed various fuzzy sets. In this chapter, a fuzzy 

set is uniquely defined by its membership function. So a fuzzy set is a w-sofset, 
if we use the language of the cited paper. 

A fuzzy binary relation is a fuzzification of a binary relation. Let I be the 
unit interval [0, 11. Let F B R  be a fuzzy binary relation, that is, there is a 
membership function: F B R  : V x U + I : (p,u)  I+ r .  For each p E V, 
there is a fuzzy set whose membership function FM, : U + I is defined by 
FM,(u) = FBR(p, u ) ,  we call FM, a fuzzy binary neighborhoocUset. 

Again, we can view the idea geometrically. We assume a fuzzy binary 
neighborhood system (FBNS) is imposed for V on U. For each object p E V, 
we associate a fuzzy subset, denoted by FB(p)  c U. In other words, we have 
a map F B  : V -t FZ(U)  : p H FB(p) ,  where F Z ( U )  means all fuzzy 
subsets on U. FB(p)  is called a fuzzy binary neighborhood and F B  a fuzzy 
binary granulation (FBG) and the collection {FB(p)lp E V) a fuzzy binary 
neighborhood system (FBNS). 

It is clear that given a map F B ,  there is a binary relation F B R  such that 
FM, = FB(p). So as in crisp cases, from now on we will use algebraic and 
geometric terms interchangeably. FB, FBNS, FBG, and FBR are synonyms. 

5. Non-partition Application - Chinese Wall Security 
Policy Model 

In 1989 IEEE Symposium on Security and Privacy, Brewer and Nash (BN) 
proposed a very intriguing security model, called Chinese Wall Security Policy 
(CWSP) model. Intuitively BN's idea was to build a family of impenetrable 
walls, called Chinese Walls, among the datasets of competing companies so 
that no datasets that are in conflict can be stored in the same side of Chinese 
Walls; this is BN's requirements and will be called Aggressive (Strong) Chinese 
Wall Security Policy (ACWSP) Model. 

The methods are based on the formal analysis of the binary relations (CIR) 
of conflict of interests. Roughly, BN granulated the data sets by CIR and as- 
sumed the granulation was a partition. CIR is rarely an equivalence relation, 
for example, a company cannot be self conflicting; so reflexivity can never met 
by CIR. So a modified model, called an aggressive Chinese Wall Security Pol- 
icy model (ACWSP) is proposed (Lin, 1989b). However, in that paper, the 
essential strength of ACWSP model had not brought out. With recent devel- 
opment in GrC, ACWSP model was refined (Lin, 2003a), and successfully 
captured the intuitive intention of BN "theory." 

CWSP Model is essentially a Discretionary Access Control Model (DAC). 
The central notion of DAC is that owner of an object has discretionary authority 
on the access rights of that objects. The owner X of the dataset x may grant 
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the read access of x to a user Y who owns a dataset y. The use Y may make 
a copy, Copy-of-x, in y. Even in the strict DAC model, this is permissible 
(Osbornet al., 2000)). We have summarized the above grant access procedure, 
including making a copy, as a direct information flow (DIF) from X or x to Y 
or y respectively. 

Let 0 be the set of all objects (corporate data),X and Y are typical objects 
in 0. CIR 0 x 0 represents the binary relation of conflict of interests. We 
will consider the following properties: 

rn CIR-1: CIR is symmetric. 

rn CIR-2: CIR is anti-reflexive. 

rn CIR-3: CIR is anti-transitive. 

5.1 Simple Chinese Wall Security Policy 
In (Brewer and Nash, 1988), Section "Simple Security", p. 207, BN as- 

serted that "people are only allowed access to information which is not held to 
conjlict with any other information that they already possess." So if ( X ,  Y) $ 
CIR, then X and Y could be assigned to one single agent. So we assume that 
information in X and Y have been disclosed to each other (since one agent 
knows both). So outside of CIR-class, there are direct information flows be- 
tween any two objects. 

DEFINITION 3 Simple CWSP : Direct Information Flow (DIF) mayjlow be- 
tween X and Y ifand only i f ( X ,  Y) $ CIR, 

Simple CWSP is a requirement on DIF, it does not prevent information flow 
between X and Y indirectly. So we need composite information flow (CIF). 
By a CIF, we mean information. flow between X and Y via a sequence of 
DIFs. An information flow from X to Y is called a malicious Trojan horse, if 
Simple CWSP is imposed on X and Y. 

DEFINITION 4 (Strong) ACWSP: CIF mayjlow between X and Y ifand only 
i f @ ,  Y) $ CIR, 

Next, let us quote a theorem from (Lin, 2003a). 

THEOREM 1 Chinese Wall Security Theorem, If CIR is symmetric, anti- 
rejlexive and anti-transitive, then Simple CWSP implies (Strong) ACSWP. 
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6. Knowledge Representations 
At the current states, knowledge representations are mainly in table or tree 

formats. So the knowledge level processing is basically table processing. The 
main works, we will present here is the extension of the representation theory 
of equivalence relations to binary relations. 

6.1 Relational Tables and Partitions 
(Pawlak, 1982) and (Lee, 1983) observed that: A relational table is a knowl- 

edge representation of a universe of entities. Each column induces a partition 
on the universe; n columns induce n partitions. Here, we will explore the 
converse. How could we represent a finite set of partitions? The central idea 
is to assign meaningful name ( a summary ) to each equivalence class (Lin, 
1998a; Lin, 1998b; Lin, 1999b). 

We will illustrate the idea by example: Let U = {idl, id2,. . . , idg) be a set 
of 9 balls with two partitions: 

We name the first partition COLOR, (because it is the best summarization 
of the given partition from physical inspection). 

COLOR = Name({{idl, ida, ids), {id4, ids), {ids, id7, ids, ids))) 

Next, we will name each equivalence class to reflect its characteristic. We 
name the first equivalence class 

Red = Name({idl, id2, id3)), 

because each ball of this group has red color (appears to human). Note that this 
name reflects human's observation and meaningful to human only; its meaning 
(such as light spectrum) is not implemented or stored in the system. In AI, 
the term COLOR or Red are called semantic primitive (Barr and Feigenbaum, 
1981). The same intent leads to the following names 

Orange = Name({id4, id5)) 

Yellow = Name({id6, id7, id8, idg)) 

Next, we give names to the second partition, again by its characteristics 
(appear to human): 

WEIGHT = Name({{id~ , idz), {id3), {id4, ids), {ids, id7, ids, ids))) 
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W3 = Name((id4, id5}) 

W4 = Name((id6, id7, ids, ids)) 

Base on these names, we have Table 24.1: 

Table 24.1. Constructing an Information table by naming each partition and equivalence class 

U COLOR WEIGHT 

id1 
id2 

id3 

id4 

id5 

ids 
id7 

ids 
id9 - 

Red 
Red 
Red 
Orange 
Orange 
Yellow 
Yellow 
Yellow 
Yellow 

The first tuple can be interpreted as follows: the first ball belongs to the 
group that is labeled Red, and another group whose weight is labeled W1. We 
can do the same for rest of the tuples. This table is a classical bag relation. 

The goal of this chapter is to generalize this naming methodology to general 
granulations. The word-representation of partitions is a very clean represen- 
tation; each name (word) represents an equivalence class uniquely and inde- 
pendently. In next section, we will investigate the representations of binary 
relations, in which names have overlapping semantics. 

6.2 Table Representations of Binary Relations 
Real world granulation often cannot be expressed by equivalence relations. 

For example, the notions of "near","similar", and "conflict" are not equiva- 
lence relations. So there are intrinsic needs to generalize the theory of partition 
(RST) to the theory of more general granulation (granular computing). In this 
section, we will explain how to represent a finite set of binary granulations (bi- 
nary relations) into a table format. So we can extend the relational theory from 
partitions to binary granulations. Most of the results are recall and refinements 
of the results observed in (Lin, 1998a; Lin, 1998b; Lin, 1999b; Lin, 2000). 

The representation of a partition is rested on two properties: 

(a) Each object p belongs to an equivalence class (the union of equivalence 
class covers the whole universe) 
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(b) No object belongs to two equivalence classes (equivalence class are pair- 
wise disjoint) 

The important question is: Does the family of binary granules have the same 
properties as equivalence classes? Obviously, a granulation does satisfy (a), but 
not (b), because granules may overlap each other. We need a different way to 
look at the problem: we restate the two properties into the following form: 

Each object belongs to one and only one equivalence class 

If we assign each equivalence class a meaningful name, then each object 
is associated with a unique name (attribute value). Such an assignment con- 
struct one column of the table representation. Each equivalence relation get a 
column. So n equivalence relations construct a table of n columns. 

With these observations, we can state a similar property for the binary gran- 
ulation. Let B be a binary granulation 

rn Each object, p E V, is assigned to one and only one B-granule Bp E 2U; 
B : p -  Bp. 

If we assign each B-granule a meaningful name, then each object is associ- 
ated with a unique name (attribute value). 

Such an association allows us to represent 

rn a finite set of binary granulations by a "relational table", called granular 
table. 

Note that we did not use the relationships "E". Instead, we use the assign- 
ment of neighborhoods (binary granules). 

We will illustrate the idea by modifying the last example. In binary granula- 
tion each p is associated with a unique binary neighborhood Bp. The following 
neighborhoods are given. 

By examining the characteristic of each binary neighborhood, we assign 
their names as follows: 
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For illustration, let us trace the journey of idl: It is an object of V, and is 
moved to a subset, Bidl, then stop at the name, Having-RED, in notation, 

By tracing every object of V, we get the second column of Table 24.2. For 
the third column, we use the same partition and naming scheme as in the previ- 
ous section; so the third column is exactly the same as that in Table 24.1. The 
results are shown in Table 24.2. 

Table 24.2. Granular table: Construct granular table by naming each binary granulations and 
binary granules 

BALLS Granulation 1 Granulation 2 

Having-RED 
Having-RED 
Having-RED 
Having-RED+YELLOW 
Having-RED+Y ELLOW 
Having-YELLOW 
Having-Y ELLOW 
Having-YELLOW 
Having-YELLOW 

Perhaps, we should stress again that attribute values have overlapping se- 
mantics. The constraints among these words have to be properly handled. 
So, let us examine the "interactions" among attribute values of COLOR. Two 
attribute values, Having-RED and Having-RED+YELLOW, obviously have 
overlapping semantics. We need some preparations. We need one more con- 
cept, namely, the center 

C, = B-~(B,), (24.5) 

where w=Name(Bp). Verbally, Cw consists of all objects that have the same 
B-granule B,. We use the granule's names to index the centers: 

CHavingmWD = Center of Bidl = Center of Bid2 

= Center of Bid3 = {idl, id2, id3} 

CHaving-RED+YELLOW = Center of Bid4 = Center of Bids 
= {id4,id5} 
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CHaving-rnLLOW Center of Bids = Center of BidT 

= Center of Bid, = Center of Bids 
= {id6, id7, id8, id9) 

Now, we will define the binary relation BCoLoR in terms of BNS. First we 
observe that BCoLoR is reflexive, so we define the "other" points only. With 
a slight abuse of notation, we also denote BCoLoR by B. Let w, u €{Having- 
FED, Having-RED+YELLOW, Having-YELLOW), then: 

Thus, for example, we have: Having-RED+YELLOW E BHaving-RED 

since: Bidl n C H ~ ~ ~ ~ ~ - F E D + Y E L L O W  # 0 and: idi CHaving-RED- 
Analogously, we have: Having-RED E BHaving-RED+YELLOW etc. 

Thus we have defined all B-granules. These B-granules defines a binary 
relation on the COLOR column, which is displayed in Table 24.3 

Table 24.3. A Binary Relation on COLOR 

Having-RED Having-RED 
Having-RED Having-RED+YELLOW 
Having-RED+YELLOW Having-RED 
Having-RED+YELLOW Having-RED+YELLOW 
Having-RED+YELLOW Having-YELLOW 
Having-Y ELLOW Having-RED+Y ELLOW 
Having-YELLOW Having-YELLOW 

Note that such a binary structure cannot be deduced from the table structure. 
We are ready to introduce the notion of semantic property. 

DEFINITION 5 A property is said to be semantics if and only if it is not im- 
plied by the table structure. A property is said to be syntactic ifand only if it is 
implied by the table structure. 

The binary relation (Table 24.3) is not derived from the table structure (of 
Table 24.2) so it is a semantic property. This type of tables has been studied 
in (Lin, 1988; Lin, 1989a) for approximate retrievals; and is called topological 
relations or tables. Formally, 

DEFINITION 6 A table (e.g. Table 24.2) whose attributes are equipped with 
binary relations (e.g. Table 24.3 for COLOR attribute) is called a topological 
relation. 
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Table 24.4. Topological Table 

BALLS Granulation 1 Granulation 2 

Table 24.5. A Binary Relation on the Centers of COLOR 

C ~ a v i n g - R E ~  C ~ a v i n g - R E ~  
c ~ a v i n g - R E ~  C ~ a v i n g - R E ~ + Y E ~ ~ ~ ~  
C ~ a v i n g - R E ~ + ~ ~ ~ ~ ~ ~  C ~ a v i n g - R E ~  
C ~ a v i n g - R E ~ + Y F i ~ ~ ~ ~  C ~ a v i n g - R E ~ + Y E ~ ~ ~ ~  
C ~ a v i n g - R E ~ + Y E l ~ ~ ~ ~  C ~ a v i n g - ~ ~ ~ ~ ~ ~  
C ~ a v i n g - ~ ~ ~ ~ ~ ~  C ~ a v i n g - R E ~ + Y E ~ ~ ~ ~  
C ~ a v i n g - Y J 3 ~ ~ ~ ~  C ~ a v i n g - ~ ~ ~ ~ ~ ~  

6.3 New representations of topological relations 
In (Lin, 2000), the granular table is transformed into topological information 

table. Here we will give a hew view and a refinement. By replacing the name of 
binary granule with centers in Table 24.2 and 24.3, we have Table 24.4 and Ta- 
ble 24.5; they are isomorphic. Table 24.5 provides the topology of Table 24.4. 
Table 24.4 and 24.5 provide a better interpretation than that of Table 24.2 and 
24.3. 

THEOREM 2 Given a$nite binary relation B, a$nite equivalence relation A 
can be induced. The knowledge representation of B is a topological represen- 
tation of A. 
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7. Topological Concept Hierarchy Latticesmees 
We will examine a nested sequence of binary granulations; the essential 

ideas is in (Lin, 1998b; Lin, 2000). Each inner layer is strongly dependent on 
the immediate next outer layer (Section 8.2). 

7.1 Granular Lattice 
Let us continue on the same example: Each ball in U has a B-granule. Balls 

1,2,3 have the same B-granule; it is labeled H-Red (abbreviation of Having- 
Red). Similarly, Balls 4 ,5  have H-Red+Yellow, and Balls 6,7 have H-Yellow. 

The nested sequence (length) is display in Figure 24.1 as a tree: 

Figure 24.1. In 2nd layer the bold print letters are in the centers. 

The first generation children: 

1. U is granulated into three distinct children; they are named Having-Red 
Having-Red+Yellow, Having-Yellow; they are abbreviated to H-Red, H- 
Red+Yellow, and H-Yellow. 

2. The three children are distinct, but not independent; their meanings have 
overlapping. Namely (1) there are interaction between H-Red+Yellow 
and H-Red+Yellow; (2) between H-Red+Yellow and H-Yellow; (3) there 
are NO interactions between H-Red and H-Yellow; The interactions are 
recorded in Table 24.3. This explains how the first level children are 
produced. 
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3. Every child has a center: the centers are CH-rnD (abbreviation of 
C ~ a v i n g - r n ~ ) .  C ~ - r n ~ + ~ e l l o w 9  Centers are pairwise 
disjoint; they forms a partition. 

The second generation children: Since COLOR-granulation strongly de- 
pends on WEIGHT-granulation, each COLOR-granule is a union of WEIGHT- 
granules. Thus one can regard that these WEIGHT-granules forms a granula- 
tion of this COLOR granule, so 

1. H-Red (a COLOR-granule) is granulated into WEIGHT-granules, W1, 
W2, W3. Note that within each COLOR-granule the WEIGHT-granules 
are disjoint, so "granulated" is "partitioned." 

2. H-Red+Yellow is granulated into W1, W2, W3, W4, 

3. H-Yellow is granulated into W3, W4. This explains how the second level 
children are produced. We need information about the centers. 

4. Since WEIGHT-granulation is a partition, the center is the same as gran- 
ule. 

7.1.1 Some Lattice Paths. 

4. U + H-Red+YELLOW + W1 + idl. This path has the same begin- 
ning and ending with Item 1; but the two paths are distinct. 

5. U + H-Red+YELLOW -t W1 + id2;compare with Item 2. 

6. U --t H-Red+YELLOW + W2 + id3; compare with Item 3. 

8. etc 

7.2 GranulatedfQuotient Sets 
1. The children consists of three (overlapping) subsets, H-Red, H- 

Red+Yellow, H-Yellow. This collection is more than a classical set; there 
are interactions among them; It forms a BNS-space; see Table 24.3. 

2. The grand children: 

(a) Children of the first child { W l ,  W2, W3) forms a classical set. 
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(b) Children of the second child {Wl, W2, W3, W4) forms a classi- 
cal set. 

(c) Children of the third child: {W3, W4) forms a classical set. 

3. Three distinct classical sets do have non-empty intersections. 

Note that since WEIGHT-granulation is a partition, so the grand children 
under each individual child are disjoint. However, the grand children do over- 
lap. The quotient set (of quotient set) 

7.3 Tree of centers 
In a granular lattice, children of every generation may overlap. Could we 

improve the situation? In deed, if we consider the centers only, then lattice 
becomes a tree (Figure 24. la; observe the bold prints nodes). 

I I I 

1 CH RED 1 I CH Red+Yellow 1 I CH yellow I 
11,2,3,4,5 111,2,3,4,5,6,7,8,9 1 14,5,6,7,8,91 

I I I 

Figure 24.1 (continued). A. Bold print letters are the centers (Wi is its own center). 

1. The children consists of three (non-overlapping) subsets: 

(a) C H - R ~ ~  = {idl, id2, id3), 

(b) CH-Red+~el low = {id47 id519 
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(c) CH-y,n, = {id6, id7, id8.idg). 

They froms a classical set. 

2. The grand children: 

(a) Children of the first child: W1 = {idlidz), W2 = {ids). 

(b) Children of the second child W3 = {id4, id5). 

(c) Children of the third child: W4 = {ids, id7, id8.id9). 

3. The centers of each layers are disjoints; they forms a honest tree. 

7.4 Topological tree 
We will combine two trees in Figure 24.1 into one (with no information 

lost). We will take the tree of centers as the topological tree. Each node of 
the tree of centers is equipped with a B-granule (neighborhood), which is the 
corresponding node of the granular tree. 

Here are the COLOR-neighborhoods of the centers of the first generation 
children: 

The neighborhood of CH-Red(= {1,2,3)) is H-Red (= {1,2,3,4,5)) 

The neighborhood of CH-Red+Yellow (= {4,5)) is H-Red+Yellow 
(={1,2,3,4,5,6,7,8,9)) 

The neighborhood of CH-Yellow(= {6,7,8,9)) is H-Yellow 
(={4,5,6,7,8,9)) 

For second generation, the WEIGHT-neighborhoods are: 

The neighborhood of Cwl = W1 = {Wl, W2, W3) 

The neighborhood of = CW2 = W2 = {Wl, W2, W3) 

The neighborhood of = Cw4= {W3, W4) 

7.5 Table Representation of Fuzzy Binary Relations 
We will use a very common example to illustrate the idea. Let the universe 

be V = {0.1,0.2, . . . ,0.8,0.9). It contains 9 ordinary real numbers. Each 
number is associated with a special fuzzy set, called a fuzzy number (Zimmer- 
man, 1991). For example, in Figure 24.2 the numbers, 01,02,03, and 0.4 are 
respectively associated with fuzzy numbers N1, N2, N3  and N4. 
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I I 

1 CH RED I 1 CH Red+Yellow 
I 

I I CH Y~IIOW I 1 l , 2 ,3  1 1 4, 5, 1 6,7,8,9 1 
I I I 

Figure 24.1 (continued). B. The tree of centers. 

Figure 24.2. illustration of Fuzzy Numbers Association. 

8. Knowledge Processing 
Pawlak (Pawlak, 1991) interprets equivalent relations as knowledge and de- 
velop a theory. In this section, we will explain how to extend his view to bi- 
nary relations(Lin, 1996; Lin, 1998a; Lin, 1998b; Lin, 1999a; Lin, 1999b; Lin, 
2000; Lin and Hadjimichael, 1996; Lin et al., 1998). To explain these con- 
cepts, we are tempted to use the same knowledge-oriented terminology. How- 
ever, our results are not completely the same; after all, binary relations are 
not necessarily equivalence relations. We need to distinguish the differences, 
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Table 24.6. Fuzzy Numbers 

Points x FB-granule Name 

0.1 N1 Fuzzy number O.l=Name(Nl) 
0.2 N2 Fuzzy number 0.2=Name(N2) 
0.3 N3 Fuzzy number 0.3=Name(N3) 
0.4 N4 Fuzzy number 0.4=Name(N4) 
... ... ... 
0.9 N9 Fuzzy number 0.9=Name(N9) 

so mathematical terminology is used. Unless the intuitive support is needed, 
knowledge-oriented terms will not be employed. 

8.1 The Notion of Knowledge 
Pawlak views partitions (classification) as knowledge, and calls a finite set 

of equivalence relations on a given universe a knowledge base (Pawlak, 1991). 
He interprets refinements of equivalence relations as knowledge dependencies. 
We will take a stronger view: we regard the interpretations as the integral 
part of the knowledge. Here an interpretation means the naming of the math- 
ematical structures based on real world characterization; the name is a sum- 
marization. Pawlak regards two isomorphic tables possess same knowledge 
(since they have the same knowledge base), however, we regard them as dis- 
tinct knowledge. Let us summarize the discussions in a bullet: 

knowledge includes the knowledge representation (human interpreta- 
tion) of a mathematical structure; it is a semantic notion. 

For convenience, let us recall the notion of binary granular structures (Lin, 
2000; Lin, 1998a; Lin, 1998b). It consists of 4-tuple 

where V is called the object space, U the data space (V and U could be the 
same set), B is a set of finitely many crisplfuzzy binary granulations, and C 
is the concept space which consists of all the names of B-granulations and 
granules. For us a piece of knowledge is a Ctuple, while Pawlak only looks at 
the first three items (his definition of knowledge base). 

8.2 Strong, Weak and Knowledge Dependence 
Let B, P and Q be binary relations (binary granulations) for V on U (e.g. 

B V x U). Then we have the following: 
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I .  A subset X U is B-definable, ifX is a union of B-granules Bp9s. I f  
the granulation is a partition, then a B-definable subset is definable in 
the sense of RST. 

2. Q is strongly dependent on P,  denoted by P =+ Q if and only if every 
Q-granule is P-definable. 

3. Q is weakly depends on P,  denoted by P -, Q if and only if every 
Q-granule contains some P-granule. 

We will adopt the language of partition theory to granulation. For P + Q , 
we will say P is finer than Q or Q is coarser than P.  Write Yp = Name(Qp) 
and Xpi = Name(Ppi). Since Qp = UiPpi for suitable choices of pi E V, we 
write informally 

Yp = XPl v xpz v ' - ' 
Note that Yp and Xpi are words and V is the "logical" disjunction. So, this 

is a "formula" of informal logic. Formally, we have the following proposition. 

PROPOSITION 3 I f  P + Q , then there is a mapfrom the concept space of 
P to that of Q. The map f can be expressed by Yp = f (Xpl, Xpz,. . .) = 
Xpl V Xpz V . - . ; f will be termed knowledge dependence. 

This proposition is significant, since Name(Pp) is semantically interrelated. 
It implies that the semantic constraints among these words Name(Pp)'s are 
carried over to those words, Name(Qp)'s consistently. Such semantic consis- 
tency among columns of granular tables allows us to extend the operations of 
classical information tables to granular tables. 

8.3 Knowledge Views of Binary Granulations 

1. Knowledge P and Q are equivalent, denoted by P = Q, if and only if 
P + Q a n d Q + P  

2. The intersection of P and Q, P A Q, is a binary relation deJned by 

(v, u) E P A Q if and only if (v, u) E P and (v, u) E Q 

3. Let C = {Ci,C2,. . . , C,) and D = {Dl, D2,. . . , D,) be two 
collections of binary relations. We write C + D, if and only if 
Cl A C2 A . . - A C, + D l  V Dz V - .  . V D,. By mimicking ((Pawlak, 
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1991), chapter 3), we write I N D ( C )  = Cl A C2 A . - .  A C,; note that, 
all of them are binary relations, not necessarily equivalence relations. 

4. C j  is dispensable in C if I N D ( C )  = IND(C - { C j ) ) ;  otherwise C j  
is indispensable. 

5. C is independent if each C j  E C is indispensable; otherwise C is de- 
pendent. 

6. S is a reduct of C i f  S is an independent subset of C such that 
I N D ( S )  = IND(C) .  

7. The set of all indispensable relations in C is called a core, and denoted 
by CORE(C) .  

8. CORE(C)  = nRED(C),  where RED is the set of all reducts in C .  

COROLLARY 1 P A Q =+ P and P A Q + Q. 

The fundamental procedures in table processing are to find cores and reducts 
of decision table. We hope readers are convinced that we have developed 
enough notions to extend these operations to,granular tables. 

9. Information Integration 
Many applications would want the solutions be in the same level as input 

data. So this section is actually quite rich. There are many theories dedicated to 
this portion in mathematics. For example, suppose we know a normal subgroup 
and the quotient group of an unknown group, there is a theory to find this 
unknown group. For Data Mining and part of RST, the interests are on the 
high level information, so this step can be skipped. For RST, approximations 
are the only relevant part. In this section, we focus only on the approximation 
theory of granulations. 

9.1 Extensions 
Let Z4 = {[O], [I], [2], [3]) be the set of integers mod 4 and we will consider 

it as a commutative group (Birkhoff and MacLane, 1977). Next we consider a 
subgroup {[0],[2]) which is equivalent (isomorphic) to integer mod 2, Z2, and 
its quotient group that consists of two elements, {[0],[2]) and {[1],[3]) and is 
also isomorphic to integer mod 2. The question is if we know the subgroup 
(subtasks) and the quotient group (quotient tasks), can we found the original 
universe. The answer is we have two universe, one is Z4 and another is the 
Cartesian product of Z2 by Z2. SO integration is not-trivial and is, outside of 
mathematics, unexplored teritory. 
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9.2 Approximations in Rough Set Theory (RST) 
Let A be an equivalence relation on U. The pair (U, A) is called an approx- 

imation space. 

1. C ( X )  = {x : A, n X # 0) = Closure. 

3. Z(X) = U{Ax : A, n X # 0) = Upper approximation. 

4. A(X) = U{Ax : Ax G X )  = Lower approximation. 

5. U (X) = Z(X) on (U, A) 

6. L(X) = A(X) on (U, A) 

DEFINITION 9 The pair (Z(X), A(x)) is called a rough set. 

We should caution the readers that this is a technical definition of rough 
sets given by Pawlak (Pawlak, 1991). However, rough set theoreticians often 
use "rough set" as any subset X in the approximation space, where &x) and 
A(X) are defined. - 

9.3 Binary Neighborhood System Spaces 
We will be interested in the case V = U. Let B be a granulation. We will 

call (U, B) a NS-space( Section 3), which is a generalization of the RST and 
topological spaces. A subset X of U is open if for every object p E X ,  there 
is a neighborhood B(p) C X. A subset X is closed if its complement is open. 
A BNS is open if every neighborhood is open. A BNS is topological, if BNS 
open and (U, B )  is a usual topological space (Sierpenski and Krieger, 1956). 
So BNS-space is a generalization of topological space. Let X be a subset of 
U. 

I [XI = {p : B(p) G X )  = Interior 

C[X] = {p : X n B(p) # 0) = Closure 

These are common notions in topological space; they were introduced to rough 
set community in (Lin, 1992), Subsequently re-defined and studied by (Yao, 
1998; Grzymala-Busse, 2004). We should point out that C[X] may not be 
closed; the closure in the sense of topology is transfinite C operations; see 
the notion of derived sets below. By porting the rough set style definitions to 
BNS-space, we have: 

L[X] = u{B(p) : B(p) G X )  = Lower approximation 
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H [ X ]  = u{B(p)  : X n B(p) # 0 )  = Upper approximation 

For BNS-space, these two definitions make sense. In fact, H ( X )  is the neigh- 
borhood of a subset, that was used in (Lin, 1992) for defining the quotient set. 
In non-partition cases, upper and lower approximations do not equal to interior 
and closure. For NS-spaces (multilevel granulation), H ( X )  defines a NS of 
subset X .  The topological meaning of L ( X )  is not clear. But we have used 
it in (Lin, 1998b) to compute belief functions, if all granules(neighborhoods) 
have basic probability assignments. 

Note that in BNS, each object p  has a unique neighborhood B(p).  In gen- 
eral neighborhood system (NS), each object is associated with a set of neigh- 
borhoods. In such NS, we have: 

An object p  is a limit point of a set X ,  if every neighborhoods of p  
contains a point of X  other than p. The set of all limit points of X  is call 
derived set D [ X ]  . 
Note that C [ X ]  = X  U D [ X ]  may not be closed. Some authors (e.g. 
(Sierpenski and Krieger, 1956)) define the closure as X  together with 
repeated (transfinite) derived set. For such a closure it is a closed set. 

10. Conclusions 
Information granulation is a natural problem solving strategy since ancient 
time. Partition, the idealized form, has played a central role in the history of 
mathematics. Pawlak rough set theory has shown that the partition is also pow- 
erful notion in computer science; see (Pawlak, 1991) and a more recent survey 
in (Yao, 2004). Granulation, we believe, will play a similar role in real world 
problems. Some of its success has been demonstrated in fuzzy systems (Zadeh, 
1973). Many ideas have been explored (Lin, 1988; Lin, 1989a; Chu and 
Chen, 1992; Raghavan, 1995; Miyamoto, 2004; Liu, 2004; Grzymala-Busse, 
2004; Wang, 2004; Yao, 2004; Yao, 2004). 

There are many strong applications in database, Data Mining, and secu- 
rity (Lin, 2004), (Lin, 2000) (Hu, 2004). The application to security may worth 
mention; it is a non-partition theory. It shares some light on the difficult prob- 
lem of controlling of Trojan horses. 

Notes 
1. This is an expansion of the article (Lin, 2005) in IEEE connections, the news letter of the IEEE 

Computational Intelligence Society 
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