
1

CSE 2021 Computer Organization

Appendix B

Verilog Basics

What is an HDL?

 A Hardware Description Language (HDL) is

a software programming language used to

model the intended operation of a piece of

hardware.

 The difference between an HDL and “C”

 Concurrency

 Timing

 A powerful feature of the Verilog HDL is

that we can use the same language for

describing, testing and debugging the

system. 2

An Example
module pound_one;

reg [7:0] a,a$b,b,c; // register declarations

reg clk;

initial

begin

clk=0; // initialize the clock

c = 1;

forever #25 clk = !clk;

end

/* This section of code implements

a pipeline */

always @ (posedge clk)

begin

a = b;

b = c;

end

endmodule

3

Identifiers

4

 Identifiers are names assigned by the user
to Verilog objects such as modules,
variables, tasks etc.

 An identifier may contain any sequence of
letters, digits, a dollar sign '$' , and the
underscore '_' symbol.

 The first character of an identifier must be
a letter or underscore; it cannot be a dollar
sign '$' , for example. We cannot use
characters such as '-' (hyphen), brackets,
or '#' in Verilog names (escaped identifiers
are an exception).

Escaped Identifiers

5

• The use of escaped identifiers allow any character

to be used in an identifier.

 Escaped identifiers start with a backslash (\) and end with

white space (White space characters are space, tabs,

carriage returns).

 Gate level netlists generated by EDA tools (like DC)

often have escaped identifiers

 Examples:

• \/clock = 0;

 \a*b = 0;

 \5-6

 \bus_a[0]

 \bus_a[1]

module identifiers; /* Multiline comments in Verilog
and // is OK in here. */
// Single-line comment in Verilog.

reg legal_identifier, two underscores;

look like C comments

reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
reg \/clock ,\a*b ; // Add white_space after escaped identifier.
//reg $_BAD,123_BAD; // Bad names even if we declare them!
initial begin

legal_identifier = 0; // Embedded underscores are OK,

two underscores = 0; // even two underscores in a row.
_OK = 0; // Identifiers can start with underscore

OK_ = 0; // and end with underscore.
OK$ = 0; // $ sign is OK.
OK_123 =0; // Embedded digits are OK.

CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).

case_sensitive = 1;

\/clock = 0; // An escaped identifier with \ breaks rules
\a*b = 0; // but be careful to watch the spaces!

$display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);

$display("Variable case_sensitive= %d",case_sensitive);
$display("Variable \/clock = %d",\/clock);

$display("Variable \\a*b = %d",\a*b);
end

A
n

 E
x

a
m

p
le

6endmodule

2

Simulation Result of the Example

7

Variable CASE_SENSITIVE= 0

Variable case_sensitive= 1

Variable /clock = 0 Variable

\a*b = 0

Logic values

8

 Verilog has 4 logic Values:

 ‘0’ represents zero, low, false, not asserted.

 ‘1’ represents one, high, true, asserted.

 ‘z’ or ‘Z’ represent a high-impedance
value, which is usually treated as an 'x' value.

 ‘x’ or ‘X’ represent an uninitialized or an

unknown logic value--an unknown value is

either '1' , '0' , 'z' , or a value that is in a state

of change.

Data Types

9

 Three data type classes:

 Nets

 Physical connections between devices

 Example: wire a, b;

 Registers

 Storage devices, variables.

 Example: reg a; reg [7:0] bus;

 Parameters

 Constants

 Example: parameter width=32;

parameter A_string =“hello”;

Design Entities

10

 The module is the basic unit of code in the

Verilog language.

 Example

module holiday_1(sat, sun,weekend);

input sat, sun;

output weekend;

assign weekend = sat | sun;

endmodule

Verilog Module

• Modules contain

• declarations

• functionality

• timing

endmodule

syntax:
module module_name (signal, signal,... signal) ;

11

.

.

..

.

; //content of module

endmodule

module name (port_names);

module port declarations

data type declarations

procedural blocks

continuous assignments

user defined tasks & functions

primitive instances

module instances

specify blocks

Module Port Declarations

 Scalar (1bit) port declarations:

 port_direction port_name, port_name ... ;

 Vector (Multiple bit) port declarations:

 port_direction [port_size] port_name, port_name ... ;

 port_direction : input, inout (bi-directional) or output

 port_name :

 port_size :

legal identifier

is a range from [msb:lsb]

input a, into_here, george;// scalar ports

12

input [7:0] in_bus, data;

output [31:0] out_bus;

//vectored ports

//vectored port

inout [maxsize-1:0] a_bus;//parameterized port

3

Module Instances

• A module may be instantiated within another module.
• There may be multiple instances of the same module.

syntax for instantiation:
module_name instance_name (signal, signal,...);

module example (a,b,c,d);
input a,b;
output c,d;
. . . .
endmodule

example ex_inst_1(in_1, in_2, w, z);
example ex_inst_2(in_1, in_2, , z); // skip a port

13

Gate-level Primitives
 Verilog has pre-defined primitives that implement

basic logic functions.

 Structural modeling with the primitives is

similar to schematic level design.

module

gate_level_ex(in_1,in_2,c);

output c;
input in_1,in_2;

nand (a, in_1, in_2);

not (b, a);
or or_1(c, in_2, b);

endmodule

in_1

in_2

14

c
ba

or_1

and nand or nor xor xnor

buf not bufif0 bufif1 notif0 notif1

Activity 4

Given the circuit below, develop a Verilog

module for the circuit

n1

n2

q

15

qBar

set

clear

User-Defined Primitives

16

 We can define primitive gates (a user-defined
primitive or UDP) using a truth-table specification.
The first port of a UDP must be an output port,
and this must be the only output port (we may not
use vector or inout ports).

 An example
primitive Adder(Sum, InA, InB);

output Sum;

input InA, InB;

table // inputs : output

00 : 0;

01 : 1;

10 : 1;

11 : 0;

endtabe

endprimitive

Operators
 Verilog operators (in increasing order of precedence)

 ?: (conditional)

 || (logical or)
 && (logical and)

 | (bitwise or)
 ~| (bitwise nor)

 ^(bitwise xor)
 ~̂~^ (bitwise xnor, equivalence)

 & (bitwise and)

 ~& (bitwise nand)
 == (logical) != (logical) === (case) !== (case)

 < (lt)
 <= (lt or equal)

 > (gt)

 >= (gt or equal)

 << (shift left)

 >> (shift right)

 + (addition)

 - (subtraction)

 *(multiply)

 / (divide)

 %(modulus)
17

Procedures

18

 A Verilog procedure is an always or

initial statement, a task , or a function .

 The statements within a sequential block

(statements that appear between a begin

and an end) that is part of a procedure

execute sequentially in the order in which

they appear, but the procedure executes

concurrently with other procedures.

4

Procedural Blocks

19

 There are two types of procedural blocks:

 initial blocks - executes only once

 always blocks - executes in a loop

 Multiple Procedural blocks may be used, if so

the multiple blocks are concurrent.

 Procedural blocks may have:

 Timing controls - which delays when a statement may be

executed

 Procedural assignments

 Programming statements

Procedural Statement Groups

20

 When there is more than one statement within a
procedural block the statements must be
grouped.

 Sequential grouping: statements are enclosed
within the keywords begin and end.

 Example

always

begin
a = 5;

c = 4;

// executed 1st

// executed 2nd

wake_up = 1; // executed 3rd

end

Timing Controls (procedural delays)

 #delay - simple delay
 Delays execution for a specific number of time steps.

#5 reg_a = reg_b;

 @ (edge signal) - edge-triggered timing control
 Delays execution until a transition on signal occurs.
 edge is optional and can be specified as either posedge or

negedge.

 Several signal arguments can be specified using the
keyword or.

 An example : always @ (posedge clk) reg_a = reg_b;

 wait (expression) - level-sensitive timing control

 Delays execution until expression evaluates true.

 wait (cond_is_true) reg_a = reg_b;

21

Procedural assignments

 Assignments made within procedural

blocks are called procedural assignments.
 Value of the RHS of the equal sign is

transferred to the LHS

 LHS must be a register data type

(reg, integer, real). NO NETS!

 RHS may be any valid expression or signal

always @ (posedge clk)
begin

a = 5; // procedural assignment
c = 4*32/6; // procedural assignment

wake_up =$time; // procedural assignment
end

22

Continuous Assignment
 Continuous assignment assigns a value to

a wire in a similar way that a real logic gate
drives a real wire.

 The main use for continuous assignments is
to model combinatorial logic.

module continuous (Ain, Aout);

input Ain;

output Aout;

assign Aout = ~Ain //continuous assignment.

endmodule AoutAin

syntax: Explicit continuous assignment:
assign net_name = expression;

where net_name is a net that has been previously declared

23

Illustration of Assignment Statements

module assignments

//... Continuous assignments go here.

always // beginning of a procedure

begin // beginning of sequential block

//... Procedural assignments go here.

end

endmodule

24

5

Control Statements

25

 Two types of programming statements:

 Conditional

 Looping

 Programming statements only used in

procedural blocks

syntax:
if(expression) statement

If the expression evaluates to true then execute the statement

if(expression) statement1
else statement2

If the expression evaluates to true then execute statement1,

if false, then execute statement2.

module if_ex(clk);
input clk;
reg red,blue,pink,yellow,orange,color,green;

always @ (posedge clk)

if (red || (blue && pink))

begin
$display ("color is mixed up");
color <= 0; // reset the color

end

else if (blue && yellow)

$display ("color is greenish");
else if (yellow && (green || orange))

$display ("not sure what color is");
else $display ("color is black");

endmodule

if and if-else

26

for

syntax:
for (assignment_init; expression; assignment)

statement or statement_group

• The assignment_init is executed once at the start of

the loop.

• Loop executes as long as expression is true.
• The assignment is executed at the completion of

each loop.

module for_ex1 (clk);
input clk;

reg [31:0] mem [0:9]; // 10x32 memory

integer i;
always @ (posedge clk)

for (i = 9; i >= 0; i = i-1)
mem[i] = 0; // init the memory to zeros

endmodule
27

Simulating the Verilog Code

 Verilog code of NAND Latch

Module simple_latch (q, qBar, set, clear);

input set, clear;

output q, qBar;

nand #2 n1(q,qBar,set);

nand #2 n2(qBar,q,clear);

endmodule

n1

n2

q

28

qBar

set

clear

Testbench

29

 A testbench generates a sequence of input

values (we call these input vectors) that

test or exercise the verilog code.

 It provides stimulus to the statement that

will monitor the changes in their outputs.

 Testbenchs do not have a port declaration

but must have an instantiation of the circuit

to be tested.

A testbench for NAND Latch

30

Module test_simple_latch;

wire q, qBar;
reg set, clear;

simple_latch SL1(q,qBar,set,clear);

initial

begin

#10 set = 0; clear = 1;

#10 set = 1;

#10 clear = 0;

#10 clear = 1;

#10 $stop;

#10 $finish;

end
initial

begin

$monitor (“%d set= %b clear= %b q=%b qBar=%b”,$time,

set,clear,q,qBar);

end

endmodule

