
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 2

Instructions: Language

of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

 The collection of instructions of a computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set

 Used as the example throughout the course

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendices B and E

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

add a,b,c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer — 6

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 7

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 by 32-bit register file
 Used for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 8

Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operands (1)

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operands (2)

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

 Data is transferred between memory and register
using data transfer instructions: lw and sw

 $s1 is receiving register
 $s2 is base address of memory, 100 is called the

offset, so ($s2+100) is the address of memory
location

Memory Operands (3)

Chapter 2 — Instructions: Language of the Computer — 11

Chapter 2 — Instructions: Language of the Computer — 12

Memory Operand Example(1)

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 13

Memory Operand Example(2)

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 14

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 15

Immediate Operands

 Constant data specified in an instruction

addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 16

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 17

Translation and Startup

Many compilers produce

object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

UNIX: C source files are named x.c, assembly files are x.s, object files are

named x.o, statically linked library routines are x.a, dynamically linked library

routes are x.so, and executable fi les by default are called a.out.

MS-DOS uses the .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect.

Translation

Assembler (or compiler) translates program

into machine instructions

Linker produces an executable image

Loader loads from image file on disk into

memory

Chapter 2 — Instructions: Language of the Computer — 18

SPIM Simulator

SPIM is a software simulator that runs
assembly language programs

SPIM is just MIPS spelled backwards

SPIM can read and immediately execute
assembly language files

Two versions for different machines

 Unix xspim(used in lab), spim

 PC/Mac: QtSpim

Resources and Download

 http://spimsimulator.sourceforge.net

Chapter 2 — Instructions: Language of the Computer — 19

http://spimsimulator.sourceforge.net/

System Calls in SPIM

 SPIM provides a small set of system-like
services through the system call (syscall)
instruction.

 Format for system calls

 Place value of input argument in $a0

 Place value of system-call-code in $v0
 Syscall

Chapter 2 — Instructions: Language of the Computer — 20

System Calls

Example: print a string

.data

str:

.asciiz “answer is:”

.text
addi $v0,$zero,4
la $a0, str
syscall

Chapter 2 — Instructions: Language of the Computer — 21

Chapter 2 — Instructions: Language of the Computer — 22

Assembler Pseudoinstructions

 Most assembler instructions represent

machine instructions one-to-one

 Pseudoinstructions: figments of the

assembler’s imagination

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (Register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 23

Assembler Pseudoinstructions (2)

 Pseudoinstructions give MIPS a richer set

of assembly language instructions than

those implemented by the hardware.

 Register, $at (assembler temporary),

reserved for use by the assembler.

 For productivity, use pseudoinstructions to

write assembly programs.

 For performance, use real MIPS

instructions

Reading

 Read Appendix A.9 for SPIM

 List of Pseudoinstructions can be found on

page 235

Chapter 2 — Instructions: Language of the Computer — 24

Chapter 2 — Instructions: Language of the Computer — 25

Producing an Object Module

 Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete
program from the pieces
 Header: contains size and position of pieces of object

module

 Text segment: translated machine instructions

 Static data segment: data allocated for the life of the
program

 Relocation info: for instructions and data words that
depend on absolute location of loaded program

 Symbol table: global definitions and external refs

 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 26

Linking Object Modules

 Produces an executable file

1. Merges segments

2. Resolves labels (determine their addresses)

3. Patches location-dependent and external refs

 Could leave location dependencies for

fixing by a relocating loader

 But with virtual memory, no need to do this

 Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 27

Linking Object Modules

Chapter 2 — Instructions: Language of the Computer — 28

Linking Object Modules

Chapter 2 — Instructions: Language of the Computer — 29

Loading a Program

 Load from file on disk into memory

1. Read header to determine segment sizes

2. Create address space for text and data

3. Copy text and initialized data into memory

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine

 Copies arguments to $a0, … and calls main

 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 30

Dynamic Linking

 Only link/load library procedure when it is

called

 Requires procedure code to be relocatable

 Avoids image enlarge caused by static linking

of all (transitively) referenced libraries

 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 31

Starting Java Applications

Simple portable

instruction set for

the JVM

Interprets

bytecodes

Compiles

bytecodes of

“hot” methods

into native

code for host

machine

An Example MIPS Program
Program: (descriptive name) Programmer: NAME

Due Date: Course: CSE 2021

Functional Description: Find the sum of the integers from 1 to N where

N is a value input from the keyboard.

###

Register Usage: $t0 is used to accumulate the sum

$v0 the loop counter, counts down to zero

##

Algorithmic Description in Pseudocode:

main: v0 << value read from the keyboard (syscall 4)

if (v0 < = 0) stop

t0 = 0; # t0 is used to accumulate the sum

While (v0 > 0) { t0 = t0 + v0; v0 = v0 - 1}

Output to monitor syscall(1) << t0; goto main

##

.data

prompt: .asciiz "\n\n Please Input a value for N = “

result: .asciiz " The sum of the integers from 1 to N is “

bye: .asciiz "\n **** Have a good day **** "
.globl main

Chapter 2 — Instructions: Language of the Computer — 32

.text
main: li $v0, 4 # system call code for print_str

la $a0, prompt # load address of prompt into a0
syscall # print the prompt message
li $v0, 5 # system call code for read int
syscall # reads a value of N into v0
blez $v0, done # if (v0 < = 0) go to done
li $t0, 0 # clear $t0 to zero

loop: add $t0, $t0, $v0 # sum of integers in register $t0

addi $v0, $v0, -1 # summing in reverse order

bnez $v0, loop # branch to loop if $v0 is != zero

li $v0, 4 # system call code for print_str

la $a0, result # load address of message into $a0

syscall # print the string

li $v0, 1 # system call code for print_int

move $a0, $t0 # a0 = $t0

syscall # prints the value in register $a0

b main

done: li $v0, 4 # system call code for print_str

la $a0, bye # load address of msg. into $a0

syscall # print the string

li $v0, 10 # terminate program

syscall # return control to system

An Example MIPS Program(2)

Chapter 2 — Instructions: Language of the Computer — 33

