Four Important Number Systems

System	Why?	Remarks
Decimal	Base 10: (10 fingers)	Most used system
Binary	Base 2: On/Off	3-4 times more digits than
	systems	decimal
Octal	Base 8: Shorthand	3 times less digits than
	notation for working	binary
	with binary	
Hex	Base 16	4 times less digits than
		binary

Positional Number Systems

- Have a radix r (base) associated with them.
 - In the decimal system, r = 10:
 - Ten symbols: 0, 1, 2, ..., 8, and 9
 - More than 9 move to next position, so each position is power of 10
 - Nothing special about base 10 (used because we have 10 fingers)

What does 642.391₁₀ mean?

 $6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$. $3 \times 10^{-1} + 9 \times 10^{-2} + 1 \times 10^{-3}$

Increasingly +ve powers of radix

Radix point

Increasingly -ve powers of radix

Positional Number Systems(2)

What does 642.391₁₀ mean?

- Multiply each digit by appropriate power of 10 and add them together
- In general:

$$\sum_{i=n-1}^{-m} a_i \times r^i$$

Positional Number Systems(3)

Number	Radix	Symbols
system		
Binary	2	{0,1}
Octal	8	{0,1,2,3,4,5,6,7}
Decimal	10	{0,1,2,3,4,5,6,7,8,9}
Hexadecimal	16	{0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Binary Number System

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Octal Number System

Decimal	Octal	Decimal	Octal
0	0	8	10
1	1	9	11
2	2	10	12
3	3	11	13
4	4	12	14
5	5	13	15
6	6	14	16
7	7	15	17

Hexadecimal Number System

Decimal	Hex	Decimal	Hex
0	0	8	8
1	1	9	9
2	2	10	Α
3	3	11	B
4	4	12	С
5	5	13	D
6	6	14	E
7	7	15	F

Four Number Systems

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	Α
3	0011	3	3	11	1011	13	B
4	0100	4	4	12	1100	14	С
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	E
7	0111	7	7	15	1111	17	F

Conversion: Binary to Decimal

Binary ____ Decimal

1101.011₂ ____ (??)₁₀

r	2 ³ (8)	2 ² (4)	2 ¹ (2)	2º(1)	2 ⁻¹ (0.5)	2-2(0.25)	2-3(0.125)
l a _j	1	1	0	1	0	1	1
<i>a_i*r</i>	8	4	0	1	0	0.25	0.125
,							
	$(1101.011)_2 = 8 + 4 + 1 + 0.25 + 0.125 = 13.375$						
		•	/ _				

 $1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} \quad 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = 13.375_{10}$

Binary point

Conversion: Decimal to Binary

A decimal number can be converted to binary by repeated division by 2 if it is an integer

number	÷2	Remainder		
155	77	1	Least Significant Bit (LSB)	
77	/38	1		remainders
38	/ 19	0		in reverse
19	× ,9	1		order
9	¥,4	1		
4	× 12	0		
2	× 1	0		
1	۷ ۲	1	Most Significant Bit (MSB)	→ 155 ₁₀ = 10011011 ₂

Conversion: Decimal to Binary

 If the number includes a radix point, it is necessary to separate the number into an integer part and a fraction part, each part must be converted differently.

Decimal \longrightarrow Binary (27.375)₁₀ \longrightarrow (??)₂

number	÷2	Remainder		
27	_13		1	
13	6		1	
6	₹,3		0	
3	~ _1		1	
1	∠ 0		1	

 number
 x2
 Integer

 0.375
 0.75
 0

 0.75
 1.50
 1

 0.50
 1.0
 1

 Arrange in order: 011
 0

Arrange remainders in reverse order: 11011

$$\Rightarrow$$
 27.375₁₀=11011.011₂

Conversion: Octal to Binary

3_4_5. 5_6_0_2 011 100 101 101 110 000 010

 $345.5602_8 = 11100101.10111000001_2$

Conversion: Binary to Octal

 $11001110.0101101_2 = 316.264_8$

Conversion: Binary to Hex

= 72D.F5C₁₆

Conversion: Hex to Binary

Hex \longrightarrow Binary B9A4.E6C₁₆ \longrightarrow (??)₂

1011100110100100.1110011011₂

Conversion: Hex to Decimal

Hex — Decimal

 $B63.4C_{16} \longrightarrow (??)_{10}$

16 ²	16 ¹	16 ⁰	16 -1	16 -2
B (=11)	6	3	4	C (=12)
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875				

 $11 \times 16^{2} + 6 \times 16^{1} + 3 \times 16^{0} \cdot 4 \times 16^{-1} + 12 \times 16^{-2} = 2915.296875_{10}$

Conversion: Activity 1

- Convert the hexadecimal number A59.FCE to binary
- Convert the decimal number 166.34 into binary

Binary Numbers

How many distinct numbers can be represented by n bits?

No. of	Distinct nos.
bits	
1	2 {0,1}
2	4 {00, 01, 10, 11}
3	8 {000, 001, 010, 011, 100, 101, 110, 111}
n	2 ⁿ

- Number of permutations double with every extra bit
- 2ⁿ unique numbers can be represented by n bits

Number System and Computers

Some tips

- Binary numbers often grouped in fours for easy reading
- 1 byte=8-bit, 1 word = 4-byte (32 bits)
- In computer programs (e.g. Verilog, C) by default decimal is assumed
 - To represent other number bases use

System	Representation	Example for 20
Hexadecimal	0x	0x14
Binary	0b	0b10100
Octal	0o (zero and 'O')	0o24

Number System and Computers(2)

- Addresses often written in Hex
 - Most compact representation
 - Easy to understand given their hardware structure
 - For a range 0x000 0xFFF, we can immediately see that 12 bits are needed, 4K locations
 - Tip: 10 bits = 1K

Negative Number Representation

- Three kinds of representations are common:
 - Signed Magnitude (SM)
- 2. One's Complement
- 3. Two's Complement

Signed Magnitude Representation

1's Complement Notation

Let *N* be an *n*-bit number and $\tilde{N}(1)$ be the 1's Complement of the number. Then,

$$\tilde{N}(1) = 2^n - 1 - |N|$$

- The idea is to leave positive numbers as is, but to represent negative numbers by the 1's Complement of their magnitude.
- Example: Let n = 4. What is the 1's Complement representation for +6 and -6?
 - +6 is represented as 0110 (as usual in binary)
 - -6 is represented by 1's complement of its magnitude (6)

1's Complement Notation (2)

- 1's C representation can be computed in 2 ways:
 - Method 1: 1's C representation of -6 is:

$$2^{4} - 1 - |N| = (16 - 1 - 6)_{10} = (9)_{10} = (1001)_{2}$$

- <u>Method 2</u>: For -6, the magnitude = $6 = (0110)_2$
 - The 1's C representation is obtained by complementing the bits of the magnitude: (1001)₂

2's Complement Notation

Let N be an *n* bit number and $\tilde{N}(2)$ be the 2's Complement of the number. Then,

$$\tilde{\mathsf{N}}(2) = 2^n - |\mathsf{N}|$$

Again, the idea is to leave positive numbers as is, but to represent negative numbers by the 2' s C of their magnitude.

Example: Let *n* = 5. What is 2' s C representation for +11 and -13?

+11 is represented as 01011 (as usual in binary)

-13 is represented by 2's complement of its magnitude (13)

2's Complement Notation (2)

- 2's C representation can be computed in 2 ways:
 - Method 1: 2's C representation of -13 is $2^{5} - |N| = (32 - 13)_{10} = (19)_{10} = (10011)_{2}$
 - Method 2: For -13, the magnitude is $13 = (01101)_2$

The 2's C representation is obtained by adding 1 to the 1's C of the magnitude

$$2^{5} \cdot |\mathsf{N}| = (2^{5} - 1 - |\mathsf{N}|) + 1 = 1$$
's C + 1
01101 $\xrightarrow{1$'s C 10010 $\xrightarrow{\text{add } 1}$ 10011

Comparing All Signed Notations

4-bit No.	SM	1' s C	2' s C
0000	+0	+0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

- In all 3 representations, a -ve number has a 1 in MSB location
- To handle –ve numbers using n bits,
 - = 2ⁿ⁻¹ symbols can be used for positive numbers
 - = 2ⁿ⁻¹ symbols can be used for negative umbers
- In 2's C notation, only 1 combination used for 0

Unsigned Binary Integers

Given an n-bit number

$$x = x_{n-1}^{} 2^{n-1} + x_{n-2}^{} 2^{n-2} + \dots + x_1^{} 2^1 + x_0^{} 2^0$$

- Range: 0 to $+2^{n} 1$
- Example
 - $= 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1011_2$ $= 0 + ... + 1\times2^3 + 0\times2^2 + 1\times2^1 + 1\times2^0$
 - $= 0 + \dots + 8 + 0 + 2 + 1 = 11_{10}$
- Using 32 bits
 - 0 to +4,294,967,295

2's-Complement Signed Integers

Given an n-bit number

$$x = -x_{n-1}^{-1}2^{n-1} + x_{n-2}^{-2}2^{n-2} + \dots + x_1^{-2}2^{-1} + x_0^{-2}2^{-1}$$

Range:
$$-2^{n-1}$$
 to $+2^{n-1} - 1$

Example

Using 32 bits

■ -2,147,483,648 to +2,147,483,647

2's-Complement Signed Integers(2)

- Bit 31 is sign bit
 - 1 for negative numbers
 - O for non-negative numbers
- Non-negative numbers have the same unsigned and 2's-complement representation
- Some specific numbers
 - 0: 0000 0000 ... 0000
 - **—**1: 1111 1111 ... 1111
 - Most-negative: 1000 0000 ... 0000
 - Most-positive: 0111 1111 ... 1111

Signed Negation

Complement and add 1
 Complement means 1 → 0, 0 → 1

$$x + \overline{x} = 1111...111_2 = -1$$

 $\overline{x} + 1 = -x$

Example: negate +2
• +2 = 0000 0000 ...
$$0010_2$$

• -2 = 1111 1111 ... $1101_2 + 1$
= 1111 1111 ... 1110_2

Sign Extension

- Representing a number using more bits
 - Preserve the numeric value
- In MIPS instruction set
 - addi: extend immediate value
 - Ib, Ih: extend loaded byte/halfword
 - beq, bne: extend the displacement
- Replicate the sign bit to the left
 - c.f. unsigned values: extend with 0s
- Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

