Four Important Number Systems		
System	Why?	Remarks
Decimal	Base 10: (10 fingers)	Most used system
Binary	$\begin{array}{l}\text { Base 2: On/Off } \\ \text { systems }\end{array}$	$\begin{array}{l}3-4 \text { times more digits than } \\ \text { decimal }\end{array}$
Octal	$\begin{array}{l}\text { Base 8: Shorthand } \\ \text { notation for working } \\ \text { with binary }\end{array}$	$\begin{array}{l}\text { 3 times less digits than } \\ \text { binary }\end{array}$
Hex Chapter 2 - Instructions: Language of the computer - 34		

	Positional Number Systenns
	Have a radix r (base) associated with them.
	- In the decimal system, $r=10$:
	- Ten symbols: $0,1,2, \ldots, 8$, and 9
	More than 9 move to next position, so each position is power of 10
	- Nothing special about base 10 (used because we
	What does 642.391 1_{10} mean?
	$6 \times 10^{2}+4 \times 10^{1}+2 \times 10^{0} .3 \times 10^{-1}+9 \times 10^{-2}+1 \times 10^{-3}$
	\uparrow \longrightarrow
	Increasingly +ve Radix point powers of radix Increasingly -ve powers of radix
3	M< Chapter 2 - Instructions: Language of the Computer - 35

Binary Number System

Decimal	Binary	Decimal	Binary
$\mathbf{0}$	0000	$\mathbf{8}$	1000
$\mathbf{1}$	0001	$\mathbf{9}$	1001
$\mathbf{2}$	0010	$\mathbf{1 0}$	1010
$\mathbf{3}$	0011	$\mathbf{1 1}$	1011
$\mathbf{4}$	0100	$\mathbf{1 2}$	1100
$\mathbf{5}$	0101	$\mathbf{1 3}$	1101
$\mathbf{6}$	0110	$\mathbf{1 4}$	1110
$\mathbf{7}$	0111	$\mathbf{1 5}$	1111

Four Number Systems

Conversion: Octal to Binary	
	$\begin{aligned} & \begin{array}{l} \text { Octal } \\ 345.5602_{8} \\ \longrightarrow(? ? ?)_{2} \\ \underbrace{3}_{011} \underbrace{4}_{100} \underbrace{5}_{101} \cdot \underbrace{5}_{101} \underbrace{6}_{110} \underbrace{0}_{000} \underbrace{2}_{010} \\ 345.5602_{8}=11100101.10111000001_{2} \end{array} \end{aligned}$
3	M1 Chapter 2 - Instructions: Language of the Computer - 45

	Conversion: Hex to Binary
	$\underset{\text { Bex }}{\substack{\text { B9A.E6C } \\ 16}} \longrightarrow \begin{aligned} & \longrightarrow \\ & (? ?)_{2} \end{aligned}$
	$\begin{aligned} & \underbrace{1011}_{B} 10011010 \underbrace{100}_{A} \mid \underbrace{1110}_{E} 01101100 \\ & 1011100110100100.1110011011_{C} \end{aligned}$
	M< Chaperer 2 - nstructions: Language of the computer - -48

Conversion: Activity 1

Convert the hexadecimal number A59.FCE to binary Convert the decimal number 166.34 into binary

Binary Numbers

- How many distinct numbers can be represented by n bits?

No. of bits	Distinct nos.
1	$2\{0,1\}$
2	$4\{00,01,10,11\}$
3	$8\{000,001,010,011,100,101,110,111\}$
n	2^{n}
$=$	Number of permutations double with every extra bit
$=$	2^{n} unique numbers can be represented by n bits

2^{n} unique numbers can be represented by n bits

	Number System and Computers		
	Some tips		
	Binary numbers often grouped in fours for easy reading		
	$1 \text { byte=8-bit, } 1 \text { word = 4-byte (} 32 \text { bits) }$		
	In computer programs (e.g. Verilog, C) by default decimal is assumed To represent other number bases use		
	System	Representation	Example for 20
	Hexadecimal	0x...	0×14
	Binary	0b...	Ob10100
	Octal	Oo... (zero and 'O')	0o24
3	M	Chapter 2 - Instructions: Language of the Computer - 53	

Negative Number Representation

Three kinds of representations are common:
Signed Magnitude (SM)
2. One's Complement
3. Two's Complement

MK
Chapter 2 - Instructions: Language of the Computer - 55

1' s Complement Notation

Let N be an n-bit number and $\tilde{N}(1)$ be the 1's Complement of the number. Then,

$$
\tilde{N}(1)=2^{n}-1-|N|
$$

The idea is to leave positive numbers as is, but to represent negative numbers by the 1's Complement of their magnitude.
Example: Let $n=4$. What is the 1 's
Complement representation for +6 and -6 ?

- +6 is represented as 0110 (as usual in binary)
- -6 is represented by 1 's complement of its magnitude (6)

1's Complement Notation (2)

1's C representation can be computed in 2 ways:

- Method 1: 1's C representation of -6 is: $2^{4}-1-|N|=(16-1-6)_{10}=(9)_{10}=$ $(1001)_{2}$
- Method 2: For -6 , the magnitude $=6$
$=(0110)_{2}$
The 1's C representation is obtained by complementing the bits of the magnitude: (1001) ${ }_{2}$

MK
Chapter 2 - Instructions: Language of the Computer - 58

2' s Complement Notation

Let N be an n bit number and $\tilde{\mathrm{N}}(2)$ be the 2 ' s Complement of the number. Then,

$$
\tilde{N}(2)=2^{n}-|N|
$$

Again, the idea is to leave positive numbers as is, but to represent negative numbers by the 2's C of their magnitude.
Example: Let $n=5$. What is 2 's C representation for +11 and -13 ?

- +11 is represented as 01011 (as usual in binary) $\square-13$ is represented by 2 's complement of its magnitude (13)

In all 3 representations, a -ve number has a 1 in MSB location
To handle -ve numbers using n bits,

- $=2^{n-1}$ symbols can be used
for positive numbers - $=2^{n-1}$ symbols can be used for negative umbers In 2's C notation, only 1 combination used for 0

2’ s Complement Notation (2)

2's C representation can be computed in 2 ways:
Method 1: 2's C representation of -13 is
$2^{5}-|N|=(32-13)_{10}=(19)_{10}=(10011)_{2}$

Method 2: For -13, the magnitude is $13=(01101)_{2}$

- The 2's C representation is obtained by adding 1 to the 1 's C of the magnitude
- $2^{5}-|\mathrm{N}|=\left(2^{5}-1-|\mathrm{N}|\right)+1=1$'s C + 1 $01101 \underset{1 \text { 's } \mathrm{C}}{\longrightarrow} 10010 \underset{\text { add } 1}{\longrightarrow} 10011$

Unsigned Binary Integers

Given an n-bit number

$$
x=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

Range: 0 to $+2^{n}-1$
Example

- $00000000000000000000000000001011_{2}$ $=0+\ldots+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ $=0+\ldots+8+0+2+1=11_{10}$
Using 32 bits
- 0 to +4,294,967,295

M<
Chapter 2 - Instructions: Language of the Computer - 62

2's-Complement Signed Integers

Given an n-bit number

$$
x=-x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

Range: -2^{n-1} to $+2^{n-1}-1$
Example

- $11111111111111111111111111111100_{2}$
$=-1 \times 2^{31}+1 \times 2^{30}+\ldots+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$
$=-2,147,483,648+2,147,483,644=-4_{10}$
Using 32 bits
- $-2,147,483,648$ to $+2,147,483,647$

MK
Chapter 2 - Instructions: Language of the Computer - 63

2's-Complement Signed Integers(2)

Bit 31 is sign bit

- 1 for negative numbers
- 0 for non-negative numbers

Non-negative numbers have the same unsigned and 2's-complement representation
Some specific numbers

- 0: 00000000 ... 0000
- -1: 11111111 ... 1111
- Most-negative: 10000000 ... 0000
- Most-positive: 01111111 ... 1111

M<
Chapter 2 - Instructions: Language of the Computer - 64

Signed Negation

Complement and add 1

- Complement means $1 \rightarrow 0,0 \rightarrow 1$

$$
\begin{aligned}
& x+\bar{x}=1111 \ldots 111_{2}=-1 \\
& \bar{x}+1=-x
\end{aligned}
$$

Example: negate +2

$$
\begin{aligned}
& \text { - }+2=00000000 \ldots 0010_{2} \\
& \text { - }-2=11111111 \ldots 1101_{2}+1 \\
& =11111111 \ldots 1110_{2}
\end{aligned}
$$

Sign Extension

Representing a number using more bits

- Preserve the numeric value

In MIPS instruction set

- addi: extend immediate value
- 1b, 1h: extend loaded byte/halfword
- beq, bne: extend the displacement

Replicate the sign bit to the left

- c.f. unsigned values: extend with 0s

Examples: 8-bit to 16-bit

- +2: 00000010 => 0000000000000010
- $-2: 11111110$ => 1111111111111110

