
Chapter 2 — Instructions: Language of the Computer — 67

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 68

MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 69

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 70

Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 71

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 72

MIPS I-format Example

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

35 19 8 32

6 bits 5 bits 5 bits 16 bits

lw $s3 $t0 address

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

100011 10011 01000 0000000000100000

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 73

Stored Program Computers

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 74

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 75

Shift Operations

 shamt: how many positions to shift

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 76

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 77

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 78

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always

read as zero

Chapter 2 — Instructions: Language of the Computer — 79

Conditional Operations

 Branch to a labeled instruction if a
condition is true

 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 80

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g,h in $s0, $s1, $s2

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 81

Compiling Loop Statements

 C code:

while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 82

Basic Blocks

 A basic block is a sequence of instructions

with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic

blocks for optimization

 An advanced processor

can accelerate execution

of basic blocks

Chapter 2 — Instructions: Language of the Computer — 83

More Conditional Operations

 Set result to 1 if a condition is true

 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 84

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 85

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

Procedure Calling

 Procedure (function) performs a specific
task and returns results to caller.

Chapter 2 — Instructions: Language of the Computer — 86

Procedure Calling

 Calling program

 Place parameters in registers $a0 - $a3

 Transfer control to procedure

 Called procedure

 Acquire storage for procedure, save values of
required register(s) on stack $sp

 Perform procedure’s operations, restore the
values of registers that it used

 Place result in register for caller $v0 - $v1

 Return to place of call by returning to
instruction whose address is saved in $ra

Chapter 2 — Instructions: Language of the Computer — 87

Chapter 2 — Instructions: Language of the Computer — 88

Register Usage

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries
 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer for dynamic data (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 89

Procedure Call Instructions

 Procedure call: jump and link

jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 90

Leaf Procedure Example

 C code:

int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 91

Leaf Procedure Example (2)

 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

 MIPS code for calling function:

main:

…

jal leaf_example

…

Chapter 2 — Instructions: Language of the Computer — 92

Leaf Procedure Example (3)

Chapter 2 — Instructions: Language of the Computer — 93

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the

stack:

 Its return address

 Any arguments and temporaries needed after

the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 94

Non-Leaf Procedure Example (2)

 C code:

int fact (int n)
{
if (n < 1) return 1;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 95

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Non-Leaf Procedure Example (3)

Chapter 2 — Instructions: Language of the Computer — 96

Non-Leaf Procedure Example (4)

Chapter 2 — Instructions: Language of the Computer — 97

Non-Leaf Procedure Example (5)

Chapter 2 — Instructions: Language of the Computer — 98

Non-Leaf Procedure Example (6)

Chapter 2 — Instructions: Language of the Computer — 99

Non-Leaf Procedure Example (7)

Chapter 2 — Instructions: Language of the Computer — 100

Non-Leaf Procedure Example (8)

6

Chapter 2 — Instructions: Language of the Computer — 101

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 102

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

Register Summary

 The following registers are preserved on call

 $s0 - $s7, $gp, $sp, $fp, and $ra

Chapter 2 — Instructions: Language of the Computer — 103

Chapter 2 — Instructions: Language of the Computer — 104

Character Data

 Byte-encoded character sets

 ASCII: (7-bit) 128 characters

 95 graphic, 33 control

 Latin-1: (8-bit) 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

ASCII Representation of Characters

Chapter 2 — Instructions: Language of the Computer — 105

ASCII Characters

 American Standard Code for Information

Interchange (ASCII).

 Most computers use 8-bit to represent each

character. (Java uses Unicode, which is 16-

bit).

 Signs are combination of characters.

 How to load a byte?

 lb, lbu, sb for byte (ASCII)

 lh, lhu, sh for half-word instruction
(Unicode)

Chapter 2 — Instructions: Language of the Computer — 106

Chapter 2 — Instructions: Language of the Computer — 107

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 108

String Copy Example

 C code:

 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0

Chapter 2 — Instructions: Language of the Computer — 109

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 110

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0,61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0,$s0,2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 111

Branch Addressing

 Branch instructions specify

 Opcode, two registers, target address

 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 112

Jump Addressing

 Jump (j and jal) targets could be

anywhere in text segment

 Encode full address in instruction

op address

6 bits 26 bits

 PseudoDirect jump addressing

 Target address = PC31…28 : (address × 4)
32 bits = 4 bits 28 bits

Chapter 2 — Instructions: Language of the Computer — 113

Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 114

Branching Far Away

 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example

beq $s0,$s1, L1

written as

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 115

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 116

Synchronization (Parallelism)

 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize

 Result depends on order of accesses

 Hardware support required

 Atomic read/write memory operation

 No other access to the location allowed between the

read and write

 Could be a single instruction

 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

Chapter 2 — Instructions: Language of the Computer — 117

Synchronization in MIPS

 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 118

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
void swap(int v[], int k)
{
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 119

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 120

Example
.data

STR: .asciiz "a1b2c3d4e5f6g7h8i9" # STR[0,1,..,17]=a,1,b,..,9 (8 bits)

MAX: .word 0x44556677; # MAX = 0x44556677 (32 bits)

SIZE: .byte 33,22,11; # SIZE[0,1,2] = 33,22,11 (8 bits)

count: .word 0,1,2; # count[0,1,2] = 0,1,2 (32 bits)

#---

.text

main:

la $t0, STR # $t0 = address(STR)

lb $t1, 0($t0) # $t1 = 97 (ascii code for 'a' in decimal)

addi $t2, $t1, -4 # $t2 = 93

lb $t3, 3($t0) # $t3 = 50 (ascii code for '2' in decimal)

lb $t4, 23($t0) # $t4 = 68 = 44 hex

lb $t5, 24($t0) # $t5 = 33

lb $t6, 32($t0) # $t6 = 1

lb $t7, 33($t0) # $t7 = 0

lh $t8, 26($t0) # $t8 = 11 = b hex

lw $t9, 36($t0) # $t9 = 2

#---

jr $ra # return

Chapter 2 — Instructions: Language of the Computer — 121

Concluding Remarks

 Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

 Layers of software/hardware

 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs

 c.f. x86

§
2
.2

0
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 2 — Instructions: Language of the Computer — 121

