

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

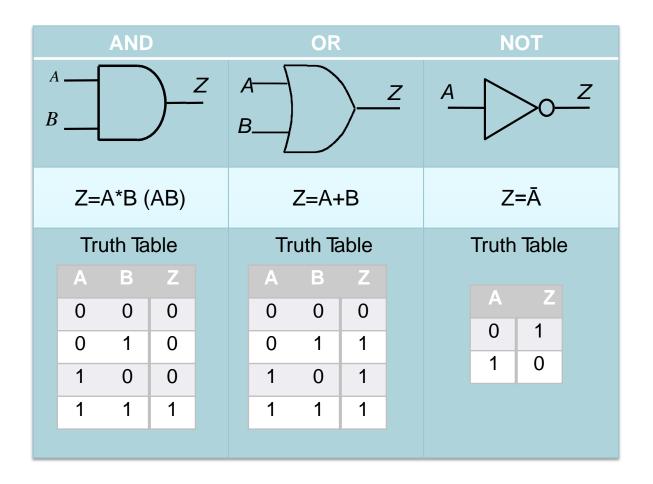
Chapter 3

Arithmetic for Computers

Boolean Algebra

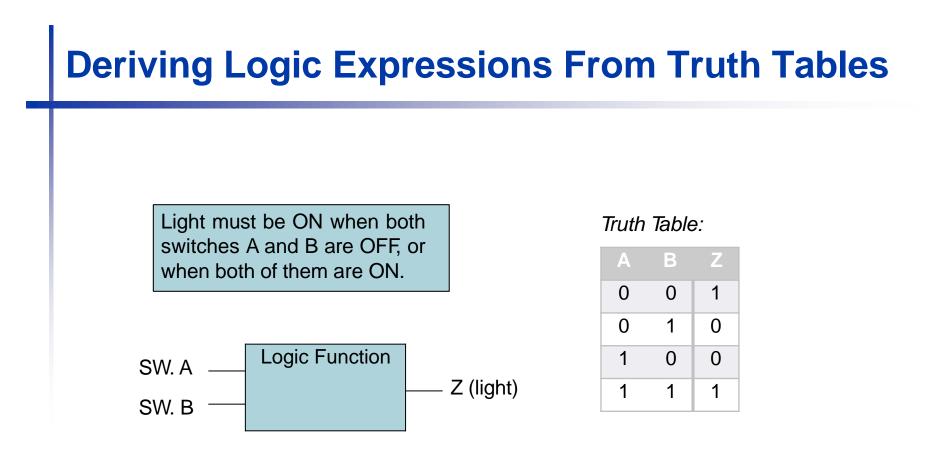
- Boolean algebra is the basic math used in digital circuits and computers.
- A Boolean variable takes on only 2 values: {0,1}, {T,F}, {Yes, No}, etc.
- There are 3 fundamental Boolean operations:
 - AND, OR, NOT

Fundamental Boolean Operations



Boolean Algebra

- A truth table specifies output signal logic values for every possible combination of input signal logic values
- In evaluating Boolean expressions, the Operation Hierarchy is: 1) NOT 2) AND 3)
 OR. Order can be superseded using (...)
- Example: A=T,B=F,C=T,D=T
 - What is the value of $Z = (\overline{A} + B) \cdot (C + \overline{B} \cdot D)$? $Z = (\overline{T} + F) \cdot (C + \overline{B} \cdot D) = (F + F) \cdot (C + \overline{B} \cdot D)$ $= F \cdot (C + \overline{B} \cdot D) = F$



What is the Boolean expression for *Z*?

Z = A.B + A.B

Minterms and Maxterms

- Minterms
 - AND term of all input variables
 - For variables with value 0, apply complements
- Maxterms
 - OR factor with all input variables
 - For variables with value 1, apply complements

Α	В	Ζ	Minterms	Maxterms
0	0	1	$\bar{A.B}$	A + B
0	1	0	$\bar{A.B}$	$A + \overline{B}$
1	0	0	$A.\overline{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Minterms and Maxterms

- A function with *n* variables has 2ⁿ minterms (and Maxterms) exactly equal to the number of rows in truth table
 Each minterm is true for exactly one combination of inputs
- Each Maxterm is false for exactly one combination of inputs

Α	В	Ζ	Minterms	Maxterms
0	0	1	$\bar{A}.\bar{B}$	A + B
0	1	0	Ā. B	$A + \overline{B}$
1	0	0	$A.\overline{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Equivalent Logic Expressions

- Two <u>equivalent</u> logic expressions can be derived from Truth Tables:
- 1. Sum-of-Products (SOP) expressions:
 - Several AND terms OR'd together, e.g.

$AB\overline{C} + \overline{A}B\overline{C} + ABC$

- 2. Product-of-Sum (POS) expressions:
 - Several OR_terms AND'd together, e.g.

(A + B + C)(A + B + C)

Rules for Deriving SOP Expressions

- Find each row in TT for which output is 1 (rows 1 & 4)
- 2. For those rows write a minterm of all input variables.
- OR together all minterms found in (2): Such an expression is called a *Canonical* SOP

Α	В	Ζ	Minterms	Maxterms	
0	0	1	$\bar{A}.\bar{B}$	A + B	
0	1	0	$\bar{A.B}$	$A + \overline{B}$	$Z = \overline{A}B + AB$
1	0	0	$A.\overline{B}$	$\bar{A} + B$	L = A D + A D
1	1	1	AB	$\bar{A} + \bar{B}$	

Rules for Deriving POS Expressions

- Find each row in TT for which output is 0 (rows 2 & 3)
- 2. For those rows write a maxterm
- AND together all maxterm found in (2):
 Such an expression is called a *Canonical* POS.

Α	В	Z	Minterms	Maxterms
0	0	1	$\bar{A}.\bar{B}$	A+B
0	1	0	Ā. B	$A + \overline{B}$
1	0	0	$A.\overline{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Z = (A+B)(A+B)

CSOP and **CPOS**

- Canonical SOP: $Z = \overline{AB} + AB$
- Canonical POS: $Z = (A + \overline{B})(\overline{A} + B)$
- Since they represent the same truth table, they should be identical

Verify that $Z = \overline{A}\overline{B} + AB \equiv (A + \overline{B})(\overline{A} + B)$

CPOS and CSOP expressions for the same TT are logically equivalent. Both represent the same information.

Derive SOP and POS expressions for the following TT.

Α	В	Carry
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Identities

Useful for simplifying logic equations.

	(a)	(b)
1	$\overline{\overline{A}} = A$	$\overline{\overline{A}} = A$
2	A + false = A (A + 0 = A)	$A \cdot true = A (A \cdot 1 = A)$
3	A + true = true (A + 1 = 1)	$\mathbf{A} \cdot \mathbf{false} = \mathbf{false} (\mathbf{A} \cdot 0 = 0)$
4	A + A = A	$A \cdot A = A$
5	$A + \overline{A} = true (A + \overline{A} = 1)$	$A \cdot \overline{A} = \text{false} (A \cdot \overline{A} = 0)$
6	A + B = B + A	$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$
7	A + B + C = (A + B) + C = A + (B + C)	C) $A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C)$
8	$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$	$A + B \cdot C = (A + B)(A + C)$
9	$\overline{A + B} = \overline{A} \cdot \overline{B}$	$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$
10	$A \cdot B + A \cdot \overline{B} = A$	$(A + B)(A + \overline{B}) = A$
11	$A + A \cdot B = A$	A(A + B) = A
12	$A(\overline{A} + B) = A \cdot B$	$A + \overline{A} \cdot B = A + B$
13 A ·	$\mathbf{B} + \overline{\mathbf{A}} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{B} + \overline{\mathbf{A}} \cdot \mathbf{C}$	$(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$
	Dua	ls A

13

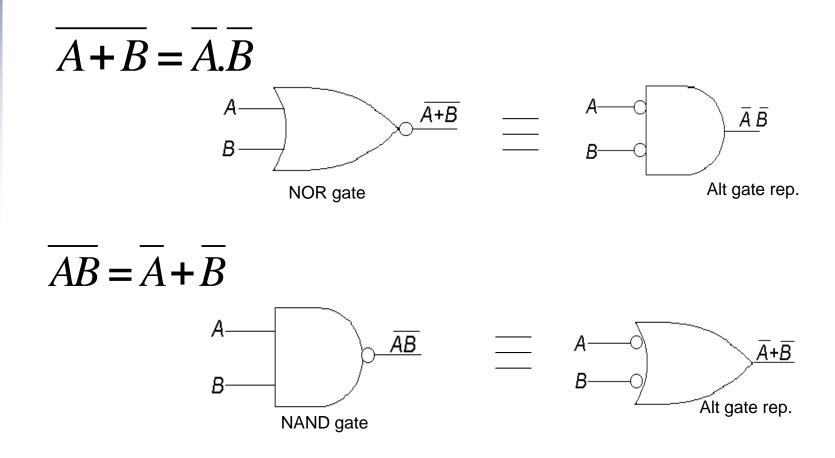
The right side is the dual of the left side
 Duals formed by replacing

$$\begin{array}{rcl} AND \rightarrow & OR \\ OR \rightarrow & AND \\ 0 & \longrightarrow & 1 \\ 1 & \rightarrow & 0 \end{array}$$

2. The dual of any true statement in Boolean algebra is also a true statement.

Boolean Identities

• DeMorgan's laws very useful: 9a and 9b



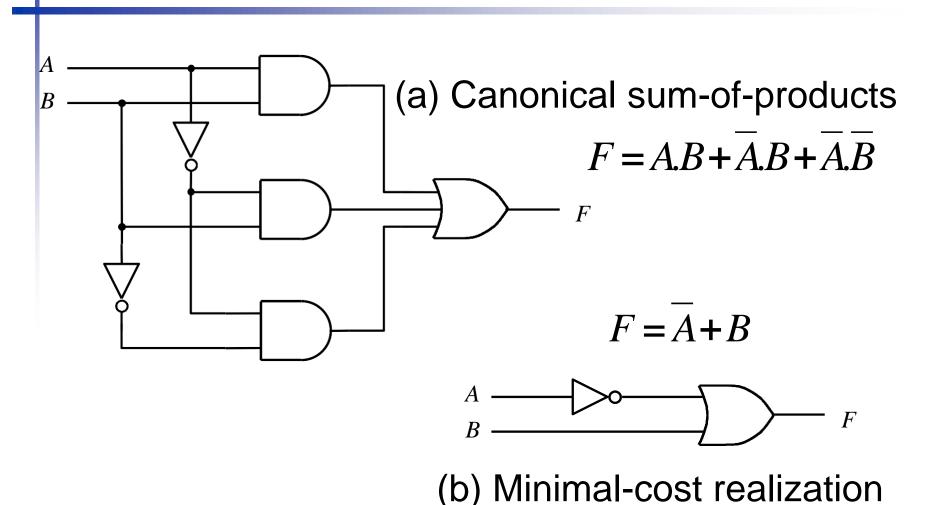
Activity 2

Proofs of some Identities:

12b:
$$A + AB = A + B$$

13a:
$$AB + \overline{AC} + BC = AB + \overline{AC}$$

Simplifying Logic Equations – Why?



Simplifying Logic Equations

- Simplifying logic expressions can lead to using smaller number of gates (parts) to implement the logic expression
- Can be done using
 - Boolean Identities (algebraic)
 - Karnaugh Maps (graphical)
- A minimum SOP (MSOP) expression is one that has no more AND terms or variables than any other equivalent SOP expression.
- A minimum POS (MPOS) expression is one that has no more OR factors or variables than any other equivalent POS expression.
- There may be several MSOPs of an expression

Example of Using Boolean Identities

Find an MSOP for

$$F = \overline{XW} + Y + \overline{Z}(Y + \overline{XW})$$

$$= \overline{X}W + Y + \overline{Z}Y + \overline{Z}\overline{X}W$$
$$= \overline{X}W(1 + \overline{Z}) + Y(1 + \overline{Z})$$
$$= \overline{X}W + Y$$

Find an MSOP for

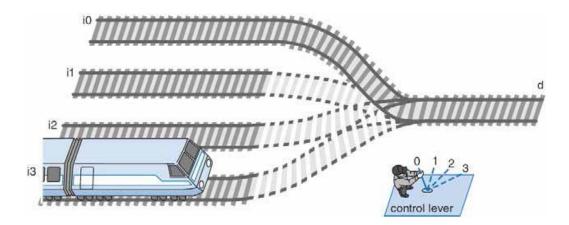
$F = \overline{W}XYZ + WXY\overline{Z} + WXYZ$ = XYZ(W+W) + WXY(Z+Z) = XYZ(1) + WXY(1) = XYZ + WXY = XYZ + WXY

Digital Circuit Classification

- **Combinational circuits**
 - Output depends only solely on the current combination of circuit inputs
 - Same set of input will always produce the same outputs
 - Consists of AND, OR, NOR, NAND, and NOT gates
- Sequential circuits
 - Output depends on the current inputs and state of the circuit (or past sequence of inputs)
 - Memory elements such as flip-flops and registers are required to store the "state"
 - Same set of input can produce completely different outputs

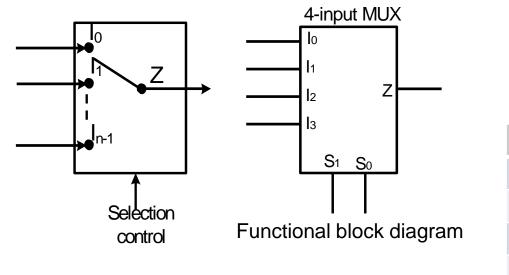
Multiplexer

- A multiplexer (MUX) selects data from one of N inputs and directs it to a single output, just like a railyard switch
 - 4-input Mux needs 2 select lines to indicate which input to route through
 - N-input Mux needs log₂(N) selection lines



Multiplexer (2)

An example of 4-input Mux

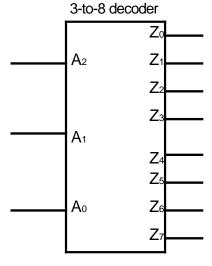


S ₁	S ₀	Z
0	0	I ₀
0	1	I ₁
1	0	I ₂
1	1	l ₃

Truth Table

Decoder

- A decoder is a circuit element that will decode an *N*-bit code.
- It activates an appropriate output line as a function of the applied *N*-bit input code



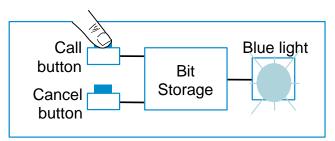


Functional block diagram

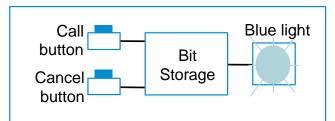
Why Bit Storage ?

- Flight attendant call button
 - Press call: light turns on
 - Stays on after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

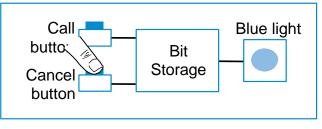
Doesn' t work. Q=1 when Call=1, but doesn' t stay 1 when Call returns to 0 *Need some form of "memory" in the circuit*



1. Call button pressed – light turns on



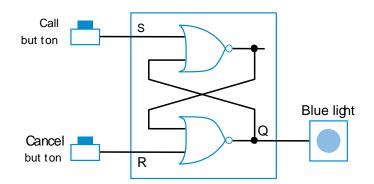
2. Call button released – light stays on



3. Cancel button pressed – light turns off

Bit Storage Using SR Latch

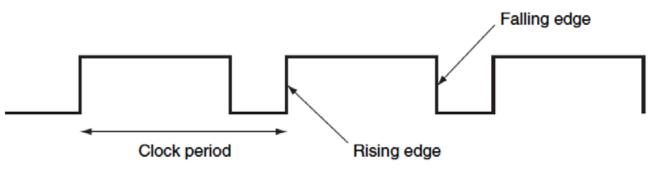
- Simplest memory elements are Latch and Flip-Flops
 - SR (set-reset) latch is an *un-clocked* latch
 - Output Q=1 when S=1, R=0 (set condition)
 - Output Q=0 when S=0, R=1 (reset condition)
 - Problem Q is undefined if S=1 and R=1



Clocks

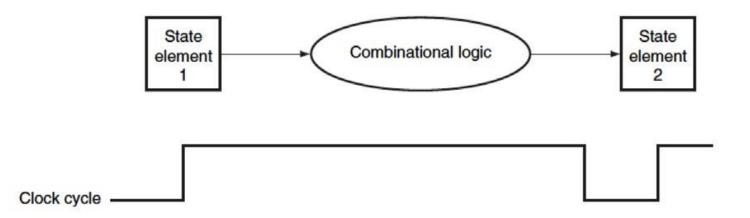
- *Clock period*: time interval between pulses
 - example: period = 20 ns
- Clock frequency: 1/period
 - example: frequency = 1 / 20 ns = 50 MHz
- Edge-triggered clocking: all state changes occur on a clock edge.

Freq	Period		
100 GHz	0.01 ns		
10 GHz	0.1 ns		
1 GHz	1 ns		
100 MHz	10 ns		
10 MHz	100 ns		



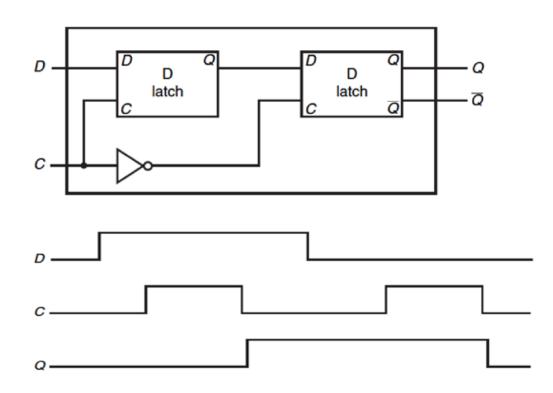
Clock and Change of State

- Clock controls when the state of a memory element changes
- Edge-triggered clocking: all state changes occur on a clock edge.



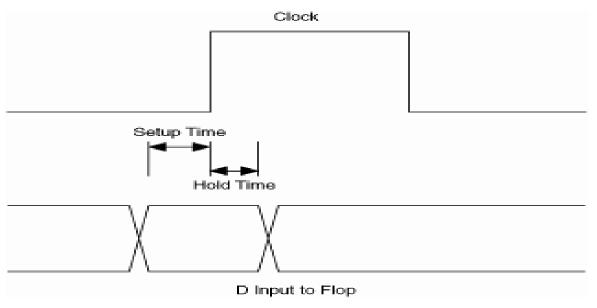
Clock Edge Triggered Bit Storage

- Flip-flop Bit storage that stores on clock edge, not level
- D Flip-flop
 - Two latches, master and slave latches.
 - Output of the first goes to input of second, slave latch has inverted clock signal (falling-edge trigger)



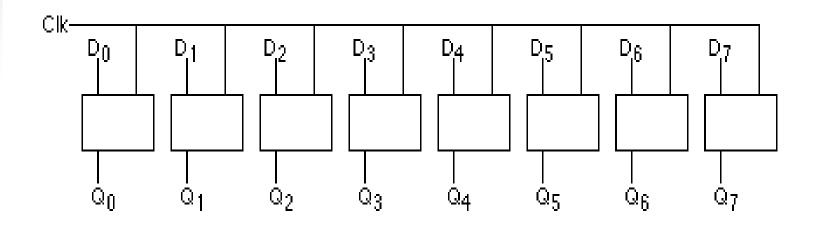
Setup and Hold Time

- Setup time
 - The minimum amount of time the data signal should be held steady before the clock edge arrives.
- Hold time
 - The minimum amount of time the data signal should be held steady after the clock edge.



N-Bit Register

- Cascade N number of D flip-flops to form a N-bit register
- An example of 8-bit register formed by 8 edge-triggered D flip-flops



Half Adders

- Need to add *bits* $\{0,1\}$ of A_i and B_i
- Associate
 - binary bit 0 ↔ logic value F (0) $A: A_{n} \dots A_{i+1} A_{i} \dots A_{i}$
 - binary bit 1 ↔ logic value T (1) $B: B_n \dots B_{i+1} B_i \dots B_0$
 - This leads to the following truth table

A _i	B _i	Sum _i	Carry _{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

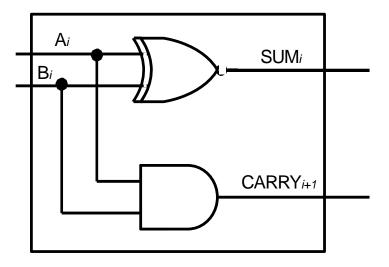
$$SUM_i = \overline{A_iB_i} + \overline{A_iB_i} = A_i \oplus B_i$$

$$CARRY_{i+1} = A_i B_i$$

 C_{i+1}

S,

$$SUM_{i} = \overline{A}_{i}B_{i} + \overline{A}_{i}B_{i} = A_{i} \oplus B_{i}$$
$$CARRY_{i+1} = A_{i}B_{i}$$



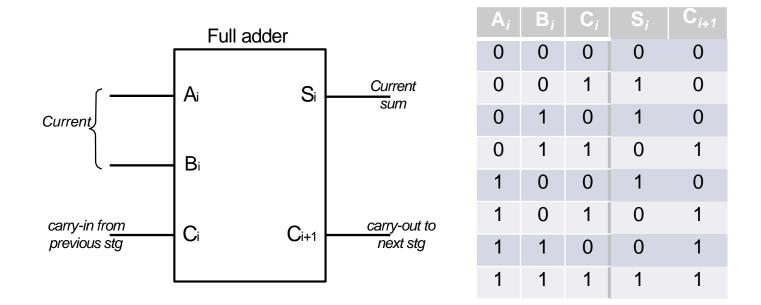
Half Adder Limitations

 Half adder circuits do not suffice for general addition because they do not include the carry bit from the previous stage of addition, e.g.

Carry		0	1	1	0	
A			0	1	1	0
В	+		0	0	1	1
SUM	_		1	0	0	1

Full Adders (1-Bit ALU)

Full adders can use the carry bit from the previous stage of addition



Full Adder Logic Expressions

Sum

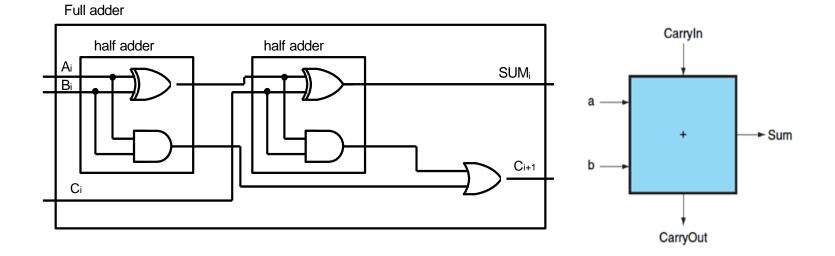
 $SUM = \overline{A_i}\overline{B_i}C_i + \overline{A_i}\overline{B_i}\overline{C_i} + \overline{A_i}\overline{B_i}\overline{C_i} + \overline{A_i}\overline{B_i}C_i + \overline{A_i}\overline{B_i}C_i$ $= \overline{\underline{A_i}}(\overline{B_i}C_i + \overline{B_i}\overline{C_i}) + \overline{A_i}(\overline{B_i}\overline{C_i} + \overline{B_i}C_i)$ $= \overline{A_i}(\overline{B_i} \oplus \overline{C_i}) + \overline{A_i}(\overline{B_i} \oplus \overline{C_i})$ $= \overline{A_i} \oplus \overline{B_i} \oplus \overline{C_i}$

$$C_{i+1} = A_i B_i + A_i \overline{B_i} C_i + \overline{A_i} B_i C_i$$
$$= A_i B_i + C_i (A_i \overline{B_i} + \overline{A_i} B_i)$$
$$= A_i B_i + C_i (A_i \oplus B_i)$$

Full Adder Circuit

$$SUM = (A_i \oplus B_i) \oplus C_i$$

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$



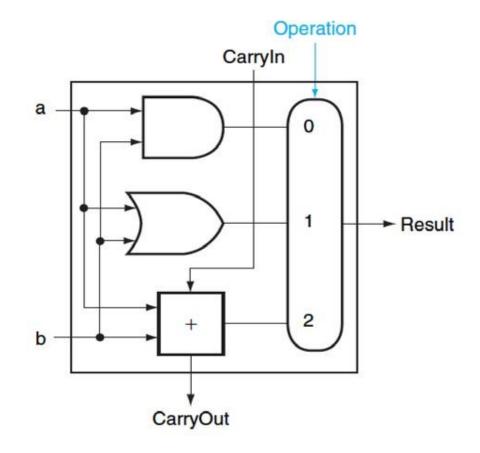
Note: A full adder adds 3 bits. Can also consider as first adding first two and then the result with the carry

Chapter 3 — Arithmetic for Computers — 37

Enhancement to 1-bit Adder(1)

- 1-bit ALU with AND, OR, and addition
 - Supplemented with AND and OR gates
 - A multiplexer controls which gate is connected to the output

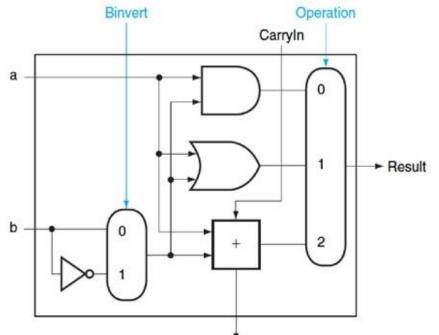
Operation	Result
00	AND
01	OR
10	Addition



Enhancement to 1-bit Adder(2)

- 1-bit ALU for subtraction
 - Subtraction is performed using 2's complement, i.e.

$$a - b = a + \overline{b} + 1$$

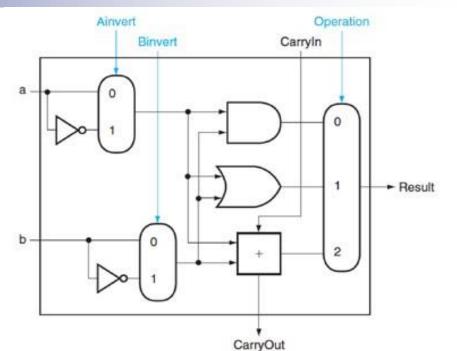


Binvert	CarryIn	Operation	Result
C	0	00	AND
0	0	01	OR
0	0	10	Addition
1	1	10	Subtraction

Enhancement to 1-bit Adder(3)

- 1-bit ALU for NOR operation
- A MIPS ALU also needs a NOR function

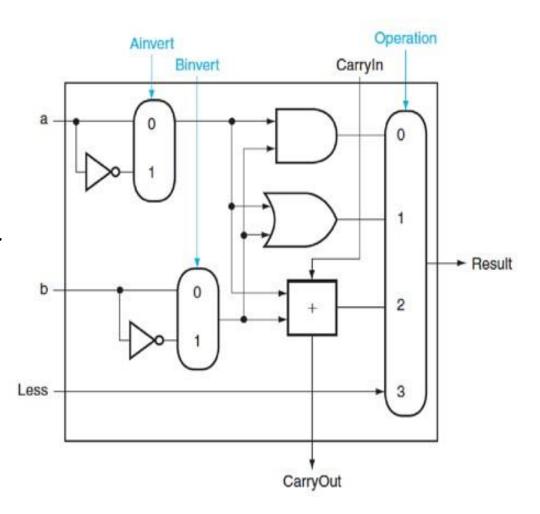
$$(a+b) = a b$$



Ainvert	Binvert	CarryIn	Operation	Result
0	0	0	00	AND
1	1	0	00	NOR
0	0	0	01	OR
0	0	0	10	Addition
0	1	1	10	Subtraction

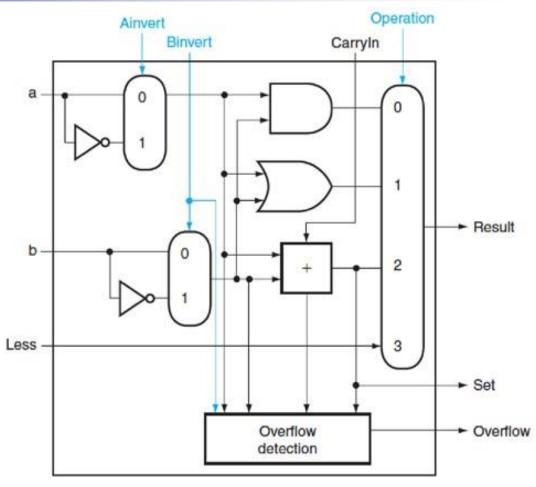
Enhancement to 1-bit Adder(4)

- 1-bit ALU for SLT operations
- slt \$s1, \$s2, \$s3
 - If (\$s2<\$s3), \$s1=1, else \$s1=0
- adding one input less
 - if (a<b), set less to 1 or
 if (a-b)<0, set less to 1
 - If the result of subtraction is negative, set less to 1
- How to determine if the result is negative?

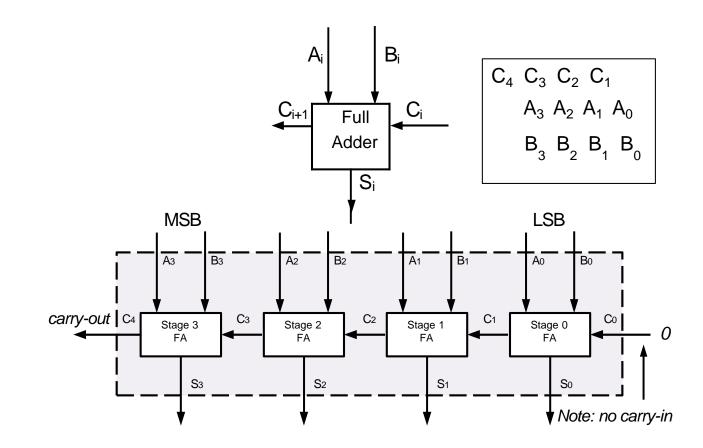


Enhancement to 1-bit Adder(5)

- How to determine if the result is negative?
 - Negative →→ Sign bit value=1
- Create a new output "Set" direct output from the adder and use only for slt
- An overflow detection is included for the most significant bit ALU



N-Bit Adders (Ripple Carry)



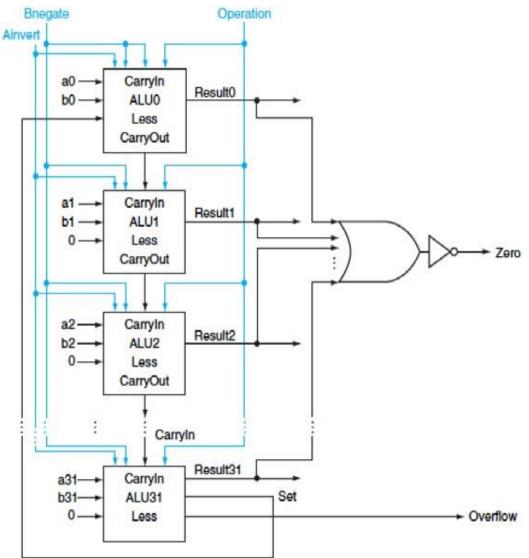
Ripple Carry Adders

- 4 FA's cascaded to form a 4-bit adder
- In general, N-FA's can be used to form a N-bit adder
- Carry bits have to propagate from one stage to the next. Inherent propagation delays associated with this
- Output of each FA is therefore not stable until the carry-in from the previous stage is calculated

32-Bit ALU

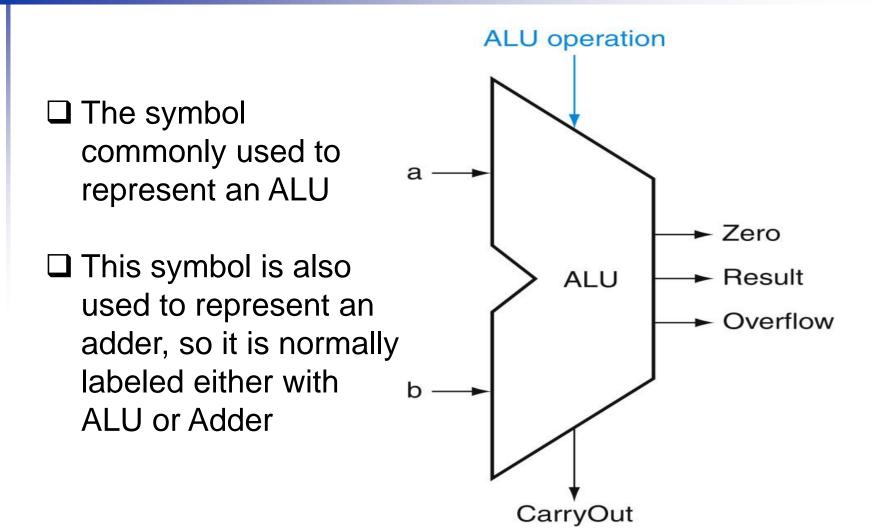
OR and INV gates are added to support conditional branch instruction, i.e. test the result of a-b if the result is 0.

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR



Chapter 3 — Arithmetic for Computers — 45

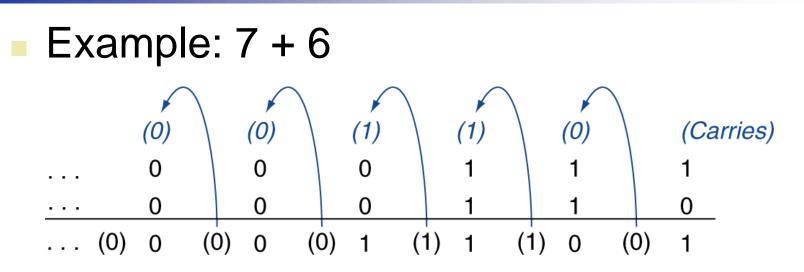
32-Bit ALU



Arithmetic for Computers

- **Operations on integers**
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition



Overflow if result out of range

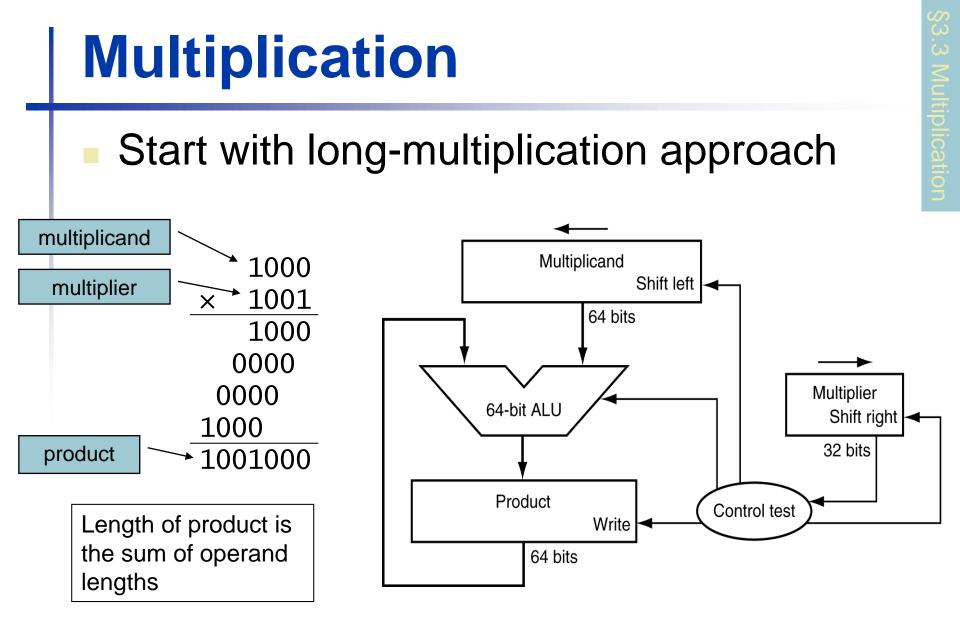
- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
 - Overflow if result sign is 1
- Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

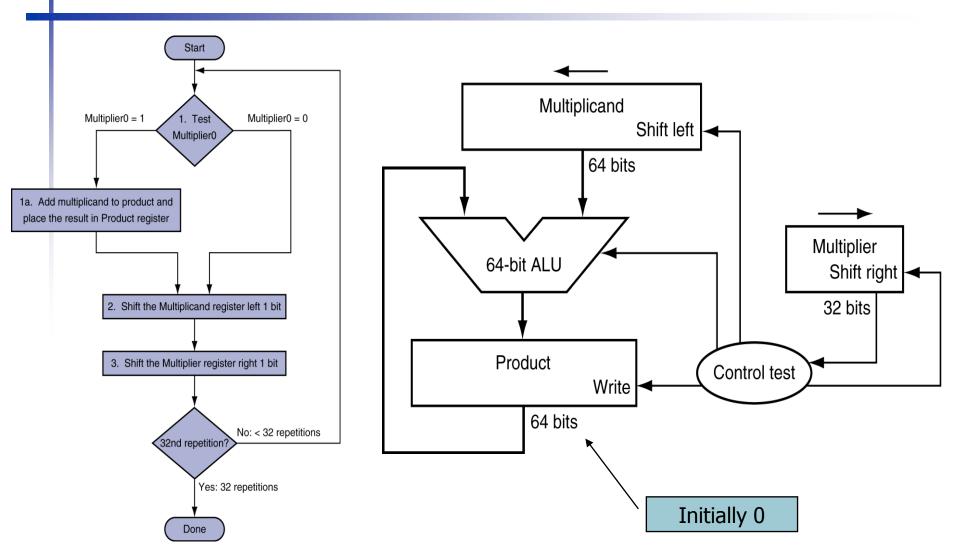
Dealing with Overflow

- Some languages (e.g., C) ignore overflow Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception/interrupt
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception/interrupt handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action



Chapter 3 — Arithmetic for Computers — 51

Multiplication Hardware



Chapter 3 — Arithmetic for Computers — 52

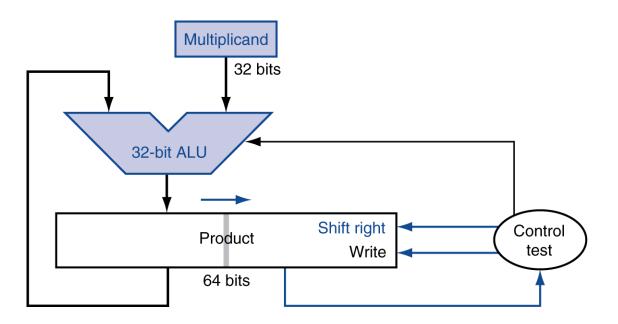
Multiplication Hardware (2)

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 \Rightarrow Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 \implies Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 \Rightarrow No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 \Rightarrow No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

- Multiply example using flow chart algorithm
- The bit examined to determine the next step is circled in color

Optimized Multiplier

Perform steps in parallel: add/shift



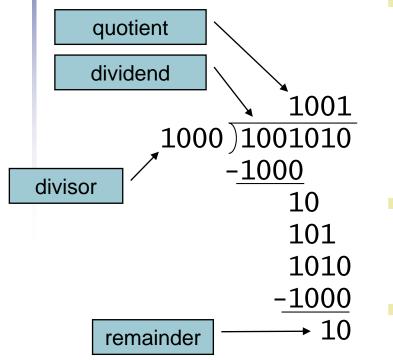
One cycle per partial-product addition
 That's ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 54

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

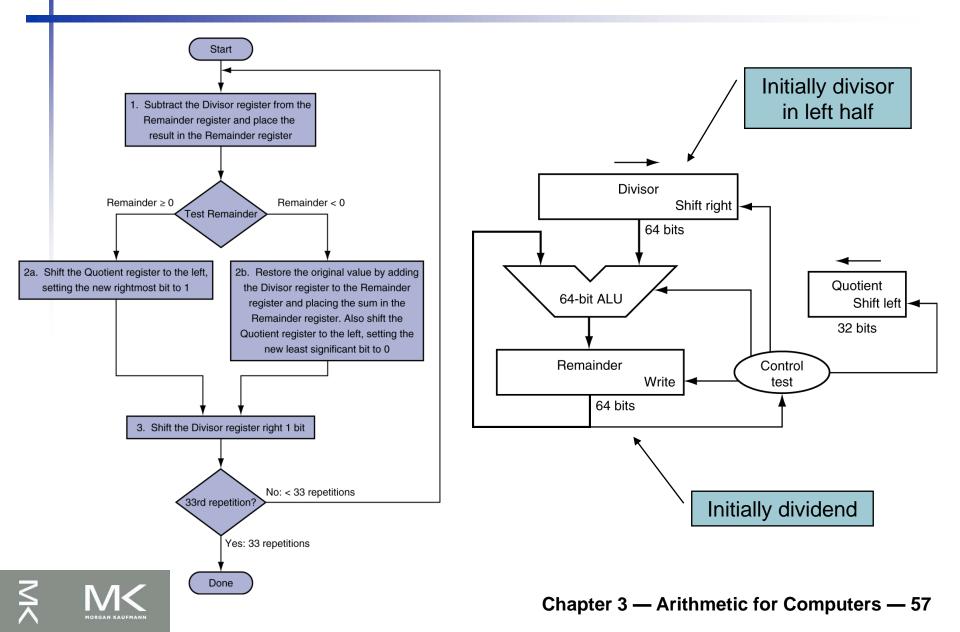
Division



n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
 - Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

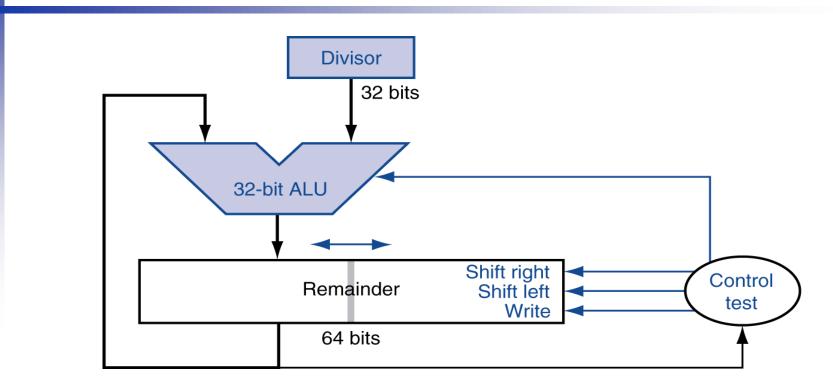


Division Example

Using a 4-bit version of the algorithm divide 7_{10} by 2_{10} , or 0000 0111₂ by 0010₂.

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem – Div	0000	0010 0000	()110 0111
1	2b: Rem < 0 \implies +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem – Div	0000	0001 0000	() 111 0111
2	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem – Div	0000	0000 1000	()111 1111
3	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem – Div	0000	0000 0100	0000 0011
4	2a: Rem $\ge 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem – Div	0001	0000 0010	0000 0001
5	2a: Rem $\ge 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider



- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

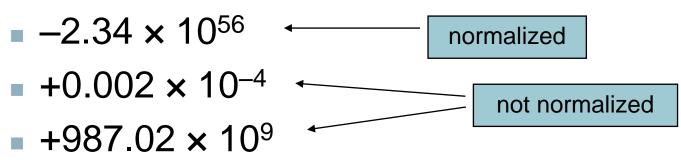
MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 Including very small and very large numbers
- Like scientific notation



In binary

- $\pm 1.xxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits		single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(\text{Exponent-Bias})}$

- S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 - \Rightarrow actual exponent = 1 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 \Rightarrow actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- **Relative precision**
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent -0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111110_2$
- Single: 1011111101000...00
- Double: 10111111110100...00

Floating-Point Example

- What number is represented by the singleprecision float
 - 1100000101000...00
 - S = 1
 - Fraction = 01000...00₂
 - Exponent = $1000001_2 = 129$

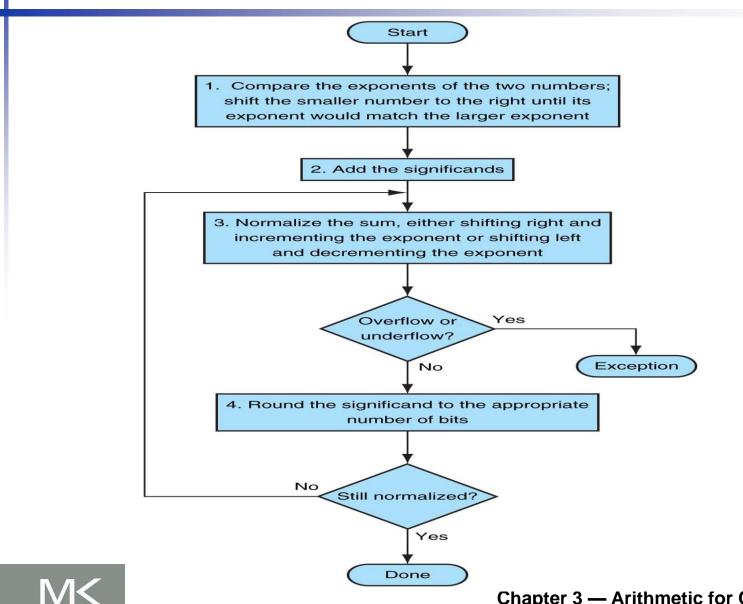
$$X = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

= (-1) \times 1.25 \times 2^{2}
= -5.0

Floating-Point Addition

- Consider a 4-digit decimal example
 - 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition



Chapter 3 — Arithmetic for Computers — 70

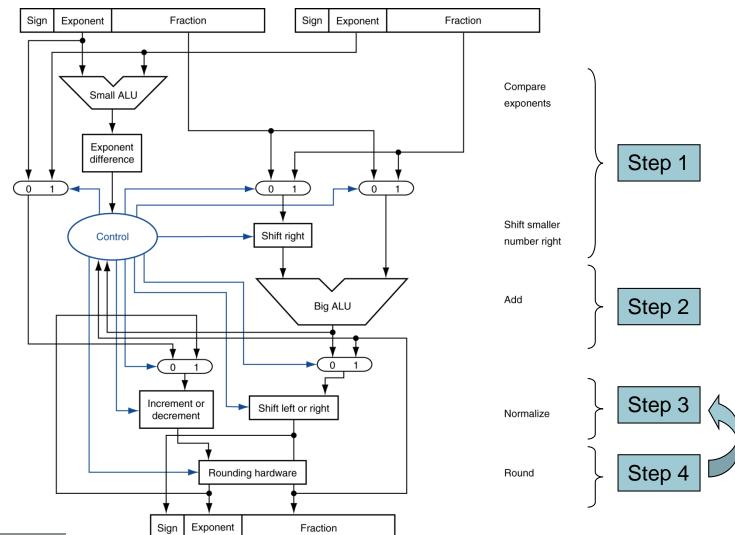
Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
 Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

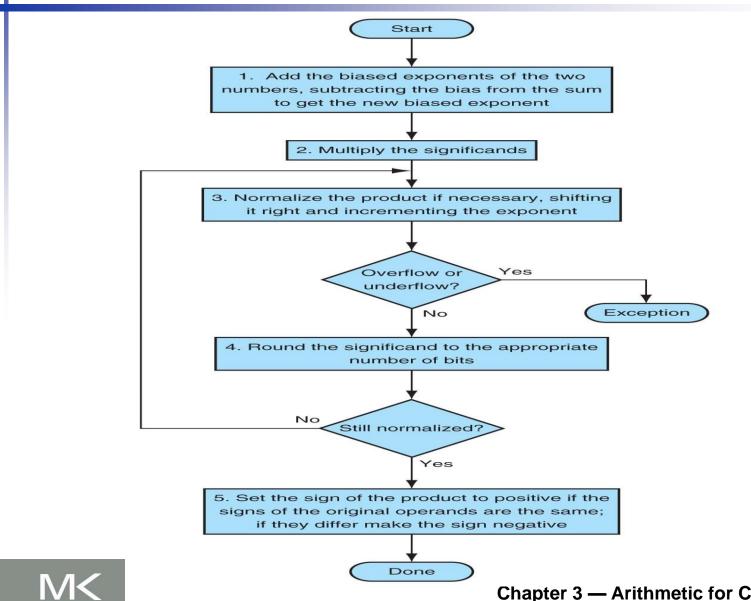
FP Adder Hardware



Floating-Point Multiplication

- Consider a 4-digit decimal example
 - 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication(2)



Chapter 3 — Arithmetic for Computers — 75

Floating-Point Multiplication(3)

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times –ve \Rightarrow –ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP \leftrightarrow integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 -]wc1,]dc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

Single-precision arithmetic add.s, sub.s, mul.s, div.s e.g., add.s \$f0, \$f1, \$f6 Double-precision arithmetic add.d, sub.d, mul.d, div.d e.g., mul.d \$f4, \$f4, \$f6 Single- and double-precision comparison c.xx.s, c.xx.d (xx is eq, lt, le, ...) Sets or clears FP condition-code bit e.g. c.lt.s \$f3, \$f4 Branch on FP condition code true or false bc1t, bc1f e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
  lwc2 $f18, const9($gp)
  div.s $f16, $f16, $f18
  lwc1 $f18, const32($gp)
  sub.s $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr $ra
```


Right Shift and Division

- Left shift by *i* places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 11111110_2 = -2$
 - Rounds toward —∞
 - c.f. 11111011₂ >>> 2 = 00111110₂ = +62

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Acknowledgement

The slides are adopted from Computer Organization and Design, 5th Edition by David A. Patterson and John L. Hennessy 2014, published by MK (Elsevier)

