
Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 3

Arithmetic for Computers

Boolean Algebra

 Boolean algebra is the basic math used
in digital circuits and computers.

 A Boolean variable takes on only 2

values: {0,1} , {T,F}, {Yes, No}, etc.

 There are 3 fundamental Boolean

operations:
 AND, OR, NOT

Chapter 3 — Arithmetic for Computers — 2

Fundamental Boolean Operations

AND OR NOT

Z=A*B (AB) Z=A+B Z=Ā

Truth Table Truth Table Truth Table

A

B

Z A

B

Z ZA

A B Z

0 0 0

0 1 0

1 0 0

1 1 1

A B Z

0 0 0

0 1 1

1 0 1

1 1 1

A Z

0 1

1 0

Chapter 3 — Arithmetic for Computers — 3

Boolean Algebra

 A truth table specifies output signal logic

values for every possible combination of input

signal logic values

 In evaluating Boolean expressions, the

Operation Hierarchy is: 1) NOT 2) AND 3)

OR. Order can be superseded using (…)

 Example:

 What is the value of Z = (A+B)⋅(C +B⋅D)?

Z = (T +F)⋅(C +B⋅D) = (F +F)⋅(C +B⋅D)

= F ⋅(C+B⋅D) = F

A=T,B = F,C =T,D=T

Chapter 3 — Arithmetic for Computers — 4

Deriving Logic Expressions From Truth Tables

SW. A
Z (light)

SW. B

 What is the Boolean expression for Z?

_ _

Z = A.B + A.B

Light must be ON when both

switches A and B are OFF, or

when both of them are ON.

Truth Table:

Logic Function

A B Z

0 0 1

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 5

Minterms and Maxterms

 Minterms

 AND term of all input variables

 For variables with value 0, apply complements

 Maxterms

 OR factor with all input variables

 For variables with value 1, apply complements

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 6

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 2

Minterms and Maxterms

 A function with n variables has 2n

minterms (and Maxterms) – exactly equal

to the number of rows in truth table
 Each minterm is true for exactly one

combination of inputs

 Each Maxterm is false for exactly one

combination of inputs

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 7

Equivalent Logic Expressions

 Two equivalent logic expressions can

be derived from Truth Tables:

1. Sum-of-Products (SOP) expressions:

 Several AND terms OR’d together, e.g.

ABC + ABC + ABC

2. Product-of-Sum (POS) expressions:

 Several OR terms AND’d together, e.g.

(A + B + C)(A + B + C)

Chapter 3 — Arithmetic for Computers — 8

Rules for Deriving SOP Expressions

1. Find each row in TT for which output is
1 (rows 1 & 4)

2. For those rows write a minterm of
all input variables.

3. OR together all minterms found in (2):

Such an expression is called a
Canonical SOP

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

_ _

Z = A B + AB

Chapter 3 — Arithmetic for Computers — 9

Rules for Deriving POS Expressions

1. Find each row in TT for which output is 0
(rows 2 & 3)

2. For those rows write a maxterm

3. AND together all maxterm found in (2):

Such an expression is called a Canonical

POS.

A A B Z Minterms Maxterms

Z = (A+B)(A+B)

0 0 1

0 1 0

1 0 0

1 1 1

A+ B

Chapter 3 — Arithmetic for Computers — 10

CSOP and CPOS

 CPOS and CSOP expressions for the

same TT are logically equivalent. Both

represent the same information.

Z = AB+AB ≡(A+B)(A+B)
Verify that

 Canonical SOP: Z = A B + AB

 Canonical POS: Z = (A + B)(A + B)

 Since they represent the same truth

table, they should be identical

Chapter 3 — Arithmetic for Computers — 11

Activity 1

Derive SOP and POS expressions for the following TT.

A B Carry

0 0 0

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 12

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 3

Boolean Identities

13

 Useful for simplifying logic equations.

Duals

1

2

3

4

5

6

7

8

9

10

11

12

13

Chapter 3 — Arithmetic for Computers — 13

Boolean Identities

 The right side is the dual of the left side

1. Duals formed by replacing

2. The dual of any true statement in Boolean

algebra is also a true statement.

AND

OR
OR

AND

1

0

0

1

Chapter 3 — Arithmetic for Computers — 14

Boolean Identities

NOR gate Alt gate rep.

Alt gate rep.
NAND gate

• DeMorgan’s laws very useful: 9a and 9b

A+B = A.B

AB = A+B

Chapter 3 — Arithmetic for Computers — 15

Activity 2

12b:

13a:

A+AB= A+B

AB+ AC +BC = AB+ AC

Proofs of some Identities:

Chapter 3 — Arithmetic for Computers — 16

Simplifying Logic Equations – Why?

F

(b) Minimal-cost realization

A

B

(a) Canonical sum-of-products

F = A.B+A.B+A.B

F

F = A+B

A

B

Chapter 3 — Arithmetic for Computers — 17

Simplifying Logic Equations

 Simplifying logic expressions can lead to using
smaller number of gates (parts) to implement the logic
expression

 Can be done using

 Boolean Identities (algebraic)

 Karnaugh Maps (graphical)

 A minimum SOP (MSOP) expression is one that has

no more AND terms or variables than any other

equivalent SOP expression.

 A minimum POS (MPOS) expression is one that has

no more OR factors or variables than any other

equivalent POS expression.

 There may be several MSOPs of an expression

Chapter 3 — Arithmetic for Computers — 18

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 4

Example of Using Boolean Identities

 Find an MSOP for

F =XW +Y +Z(Y + XW)

= XW + Y +ZY + Z XW

= XW (1+Z) + Y (1+Z)

=XW + Y

Chapter 3 — Arithmetic for Computers — 19

Activity 3

 Find an MSOP for

F =W XY Z + W XY Z + W X Y Z

= XYZ (W + W) + W X Y (Z + Z)

= XYZ (1) + W X Y (1)

= XYZ + W X Y

= X Y (Z + W)

Chapter 3 — Arithmetic for Computers — 20

Digital Circuit Classification

 Combinational circuits

 Output depends only solely on the current

combination of circuit inputs

 Same set of input will always produce the same

outputs

 Consists of AND, OR, NOR, NAND, and NOT gates

 Sequential circuits

 Output depends on the current inputs and state of
the circuit (or past sequence of inputs)

 Memory elements such as flip-flops and registers

are required to store the “state”

 Same set of input can produce completely different

outputs

Chapter 3 — Arithmetic for Computers — 21

Multiplexer

 A multiplexer (MUX) selects data from one of N

inputs and directs it to a single output, just like a

railyard switch

 4-input Mux needs 2 select lines to indicate which input to

route through

 N-input Mux needs log2(N) selection lines

Chapter 3 — Arithmetic for Computers — 22

Multiplexer (2)

 An example of 4-input Mux

I0

I1

In-1

Selection

control

Z

4-input MUX

I0

I1

I2

I3

S1 S0

Z

Functional block diagram

1 0

Truth Table

S1 S0 Z

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Chapter 3 — Arithmetic for Computers — 23

Decoder
 A decoder is a circuit element that will decode an

N-bit code.

 It activates an appropriate output line as a
function of the applied N-bit input code

Truth Table

3-to-8 decoder

Functional block diagram

Z0

A2 Z1

Z2

Z3

A1

Z4

Z5

A0 Z6

Z7

A2 A1 A0 Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Chapter 3 — Arithmetic for Computers — 24

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 5

Why Bit Storage ?

 Flight attendant call button

 Press call: light turns on

 Stays on after button
released

 Press cancel: light turns off

 Logic gate circuit to
implement this?

QCall

Cancel

Doesn’t work. Q=1 when Call=1, but

doesn’t stay 1 when Call returns to 0

Need some form of “memory” in the circuit

a

a

Bit
Storage

Blue lightCall
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue lightCall
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue lightCall
button

Cancel
button

3. Cancel button pressed – light turns off

Chapter 3 — Arithmetic for Computers — 25

Bit Storage Using SR Latch

 Simplest memory elements are Latch and

Flip-Flops

 SR (set-reset) latch is an un-clocked latch

 Output Q=1 when S=1, R=0 (set condition)

 Output Q=0 when S=0, R=1 (reset condition)

 Problem - Q is undefined if S=1 and R=1

R

S

Q

Call

but ton

Blue light

Cancel
but ton

Chapter 3 — Arithmetic for Computers — 26

Clocks

 Clock period: time interval between
pulses

 example: period = 20 ns

 Clock frequency: 1/period

 example: frequency = 1 / 20 ns = 50

MHz

 Edge-triggered clocking: all state

changes occur on a clock edge.

Freq Period

100 GHz

10 GHz

1 GHz

100 MHz

10 MHz

0.01 ns

0.1 ns

1 ns

10 ns

100 ns

Chapter 3 — Arithmetic for Computers — 27

Clock and Change of State

 Clock controls when the state of a memory

element changes

 Edge-triggered clocking: all state

changes occur on a clock edge.

Chapter 3 — Arithmetic for Computers — 28

Clock Edge Triggered Bit Storage

 Flip-flop - Bit storage that stores on clock edge, not level

 D Flip-flop

 Two latches, master and slave latches.
 Output of the first goes to input of second, slave latch has

inverted clock signal (falling-edge trigger)

Chapter 3 — Arithmetic for Computers — 29

Setup and Hold Time

 Setup time

 The minimum amount of time the data signal should

be held steady before the clock edge arrives.

 Hold time

 The minimum amount of time the data signal should
be held steady after the clock edge.

Chapter 3 — Arithmetic for Computers — 30

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 6

N-Bit Register

 Cascade N number of D flip-flops to form a
N-bit register

 An example of 8-bit register formed by

8 edge-triggered D flip-flops

Chapter 3 — Arithmetic for Computers — 31

Half Adders

i Need to add bits {0,1} of Ai and B

 Associate

 binary bit 0 ↔ logic value F (0)

 binary bit 1 ↔ logic value T (1)

 This leads to the following truth table

SUM
i
= A

i
B

i
+ A

i
B

i
= A

i
⊕ B

i

CARRYi+1 = Ai Bi

Ai Bi Sumi Carryi+1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Chapter 3 — Arithmetic for Computers — 32

Half Adder Circuit

SUMi

CARRYi+1

Ai

Bi

SUM
i
= A

i
B

i
+ A

i
B

i
= A

i
⊕ B

i

CARRYi+1 = Ai Bi

Chapter 3 — Arithmetic for Computers — 33

Half Adder Limitations

 Half adder circuits do not suffice for

general addition because they do not

include the carry bit from the previous

stage of addition, e.g.

Carry 0 1 1 0

A 0 1 1 0

B + 0 0 1 1

SUM 1 0 0 1

Chapter 3 — Arithmetic for Computers — 34

Full Adders (1-Bit ALU)

 Full adders can use the carry bit from the

previous stage of addition

Full adder

Ai

Current

Bi

Ci

Si

Ci+1
carry-in from

previous stg

carry-out to

next stg

Current

sum

Ai Bi Ci Si
Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Chapter 3 — Arithmetic for Computers — 35

Full Adder Logic Expressions

Sum

SUM=AiBiCi +AiBiCi +AiBiCi +AiBiCi

=Ai(BiCi +BiCi)+Ai(BiCi +BiCi)

=Ai(Bi ⊕Ci)+Ai(Bi ⊕Ci)

=Ai ⊕Bi ⊕Ci

Carry

Ci+1 =AiBi +AiBiCi +AiBiCi

=AiBi +Ci (AiBi +AiBi)

=AiBi +Ci (Ai ⊕Bi)

Chapter 3 — Arithmetic for Computers — 36

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 7

Full Adder Circuit

SUMi

Ci+1

Ci

Ai

Bi

Full adder

half adder half adder

Ci+1 = Ai Bi + Ci (Ai ⊕ Bi)SUM = (Ai ⊕ Bi) ⊕ Ci

Note: A full adder adds 3 bits. Can also consider as first

adding first two and then the result with the carry

Chapter 3 — Arithmetic for Computers — 37

Enhancement to 1-bit Adder(1)

 1-bit ALU with AND,
OR, and addition

 Supplemented with AND

and OR gates

 A multiplexer controls

which gate is connected to

the output

Operation Result

00 AND

01 OR

10 Addition

Chapter 3 — Arithmetic for Computers — 38

Enhancement to 1-bit Adder(2)

 1-bit ALU for

subtraction

 Subtraction is

performed using 2’s

complement, i.e.

a − b = a + b +1

Binvert CarryIn Operation Result

0 0 00 AND

0 0 01 OR

0 0 10 Addition

1 1 10 Subtraction

Chapter 3 — Arithmetic for Computers — 39

Enhancement to 1-bit Adder(3)

 1-bit ALU for NOR

operation

 A MIPS ALU also

needs a NOR

function

(a + b) = a . b

Ainvert Binvert CarryIn Operation Result

0 0 0 00 AND

1 1 0 00 NOR

0 0 0 01 OR

0 0 0 10 Addition

0 1 1 10 Subtraction

Chapter 3 — Arithmetic for Computers — 40

Enhancement to 1-bit Adder(4)

 1-bit ALU for SLT

operations

 slt $s1, $s2, $s3

 If ($s2<$s3), $s1=1,

else $s1=0

 adding one input less

 if (a<b), set less to 1 or

if (a-b)<0, set less to 1

 If the result of

subtraction is negative,

set less to 1

 How to determine if the

result is negative?

Chapter 3 — Arithmetic for Computers — 41

Enhancement to 1-bit Adder(5)

 How to determine if

the result is

negative?

 Negative Sign

bit value=1

 Create a new output

“Set” direct output

from the adder

and use only for slt

 An overflow

detection is included

for the most

significant bit ALU

Chapter 3 — Arithmetic for Computers — 42

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 8

N-Bit Adders (Ripple Carry)

Stage 3

FA

A3 B3

S3

Stage 0

FA

A0 B0

S0

Stage 2

FA

A2 B2

S2

Stage 1

FA

A1 B1

S1

C3 C2 C1 C0

0
C4carry-out

Note: no carry-in

MSB LSB

Ai Bi

Ci+1 CiFull

Adder

Si

Chapter 3 — Arithmetic for Computers — 43

C4 C3 C2 C1

A3 A2 A1 A0

B B B B
3 2 1 0

Ripple Carry Adders

 4 FA’s cascaded to form a 4-bit adder

 In general, N-FA’s can be used to form a

N-bit adder

 Carry bits have to propagate from one stage

to the next. Inherent propagation delays

associated with this

 Output of each FA is therefore not stable until

the carry-in from the previous stage is

calculated

Chapter 3 — Arithmetic for Computers — 44

32-Bit ALU

 OR and INV gates

are added to

support conditional

branch instruction,

i.e. test the result of
a-b if the result is
0.

Chapter 3 — Arithmetic for Computers — 45

32-Bit ALU

 The symbol

commonly used to

represent an ALU

 This symbol is also

used to represent an

adder, so it is normally

labeled either with

ALU or Adder

Chapter 3 — Arithmetic for Computers — 46

Chapter 3 — Arithmetic for Computers — 47

Arithmetic for Computers

 Operations on integers

 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers

 Representation and operations

§
3

.1
 In

tro
d

u
c
tio

n

Chapter 3 — Arithmetic for Computers — 48

Integer Addition

 Example: 7 + 6

§
3

.2
 A

d
d

itio
n

 a
n

d
 S

u
b

tra
c
tio

n

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 9

Chapter 3 — Arithmetic for Computers — 49

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

 Overflow if result out of range

 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 50

Dealing with Overflow

 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran)
require raising an exception/interrupt
 Use MIPS add, addi, sub instructions

 On overflow, invoke exception/interrupt
handler
 Save PC in exception program counter (EPC)

register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 51

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000

0000
1000
1001000

Length of product is

the sum of operand

lengths

multiplicand

multiplier

product

§
3

.3
 M

u
ltip

lic
a

tio
n

Chapter 3 — Arithmetic for Computers — 52

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 53

Multiplication Hardware (2)

 Multiply example using flow chart algorithm

 The bit examined to determine the next step is circled in color

Chapter 3 — Arithmetic for Computers — 54

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 10

Chapter 3 — Arithmetic for Computers — 55

MIPS Multiplication

 Two 32-bit registers for product

 HI: most-significant 32 bits

 LO: least-significant 32-bits

 Instructions

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 56

Division

 Check for 0 divisor

 Long division approach
 If divisor ≤ dividend bits

 1 bit in quotient, subtract

 Otherwise

 0 bit in quotient, bring down next
dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values

 Adjust sign of quotient and remainder
as required

1001
1000 1001010

-1000
10
101
1010

-1000
10

n-bit operands yield n-bit

quotient and remainder

quotient

dividend

remainder

divisor

§
3
.4

 D
iv

is
io

n

Chapter 3 — Arithmetic for Computers — 57

Division Hardware

Initially dividend

Initially divisor

in left half

Chapter 3 — Arithmetic for Computers — 58

Division Example
Using a 4-bit version of the algorithm divide 710 by 210,

or 0000 01112 by 00102.

Chapter 3 — Arithmetic for Computers — 59

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 60

MIPS Division

 Use HI/LO registers for result

 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions

 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking

 Software must perform checks if required

 Use mfhi, mflo to access result

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 11

Chapter 3 — Arithmetic for Computers — 61

Floating Point

 Representation for non-integral numbers

 Including very small and very large numbers

 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§
3

.5
 F

lo
a
tin

g
 P

o
in

t

Chapter 3 — Arithmetic for Computers — 62

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 63

IEEE Floating-Point Format

 S: sign bit (0 non-negative, 1 negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0
 Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x

Chapter 3 — Arithmetic for Computers — 64

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 65

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 66

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 12

Chapter 3 — Arithmetic for Computers — 67

Floating-Point Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 68

Floating-Point Example

 What number is represented by the single-
precision float

11000000101000…00

 S = 1

 Fraction = 01000…002

 Exponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 69

Floating-Point Addition

 Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent

 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 70

Floating-Point Addition

Chapter 3 — Arithmetic for Computers — 71

Floating-Point Addition

 Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 72

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too

long

 Much longer than integer operations

 Slower clock would penalize all instructions

 FP adder usually takes several cycles

 Can be pipelined

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 13

Chapter 3 — Arithmetic for Computers — 73

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 74

Floating-Point Multiplication

 Consider a 4-digit decimal example
 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum

 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

Chapter 3 — Arithmetic for Computers — 75

Floating-Point Multiplication(2)

Chapter 3 — Arithmetic for Computers — 76

Floating-Point Multiplication(3)

 Now consider a 4-digit binary example
 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

 1. Add exponents
 Unbiased: –1 + –2 = –3

 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve –ve
 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 77

FP Arithmetic Hardware

 FP multiplier is of similar complexity to FP
adder

 But uses a multiplier for significands instead of
an adder

 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP integer conversion

 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 78

FP Instructions in MIPS

 FP hardware is coprocessor 1
 Adjunct processor that extends the ISA

 Separate FP registers
 32 single-precision: $f0, $f1, … $f31

 Paired for double-precision: $f0/$f1, $f2/$f3, …
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data,

or vice versa

 More registers with minimal code-size impact

 FP load and store instructions
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Morgan Kaufmann Publishers 23 June, 2014

Chapter 3 —Arithmetic for Computers 14

Chapter 3 — Arithmetic for Computers — 79

FP Instructions in MIPS

 Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)

 Sets or clears FP condition-code bit
 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 80

FP Example: °F to °C

 C code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
f2c: lwc1 $f16, const5($gp)

lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

Chapter 3 — Arithmetic for Computers — 81

Right Shift and Division

 Left shift by i places multiplies an integer
by 2i

 Right shift divides by 2i?

 Only for unsigned integers

 For signed integers

 Arithmetic right shift: replicate the sign bit

 e.g., –5 / 4
 111110112 >> 2 = 111111102 = –2

 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

§
3

.9
 F

a
lla

c
ie

s
 a

n
d

 P
itfa

lls

Chapter 3 — Arithmetic for Computers — 82

Concluding Remarks

 ISAs support arithmetic

 Signed and unsigned integers

 Floating-point approximation to reals

 Bounded range and precision

 Operations can overflow and underflow

 MIPS ISA

 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP

 Other instructions: less frequent

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 3 — Arithmetic for Computers — 83

