
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 4

The Processor

Chapter 4 — The Processor — 2

Introduction

 CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version

 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

 Arithmetic/logical: add, sub, and, or, slt

 Control transfer: beq, j

§
4
.1

 In
tro

d
u
c
tio

n

Chapter 4 — The Processor — 3

Instruction Execution

 PC instruction memory, fetch instruction

 Register numbers register file, read registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC target address or PC + 4

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers

 Can’t just join

wires together

 Use multiplexers

Chapter 4 — The Processor — 6

Control

Chapter 4 — The Processor — 7

Logic Design Basics
§

4
.2

 L
o
g
ic

 D
e
s
ig

n
 C

o
n
v
e

n
tio

n
s

 Information encoded in binary

 Low voltage = 0, High voltage = 1

 One wire per bit

 Multi-bit data encoded on multi-wire buses

 Combinational element

 Operate on data

 Output is a function of input

 State (Sequential) elements

 Store information

Chapter 4 — The Processor — 8

Combinational Elements

 AND-gate

 Y = A & B

A

B
Y

I0
I1

Y
M

u

x

S

 Multiplexer

 Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

 Adder

 Y = A + B

 Arithmetic/Logic Unit

 Y = F(A, B)

Chapter 4 — The Processor — 9

Multiplexors(1)

A two-input multiplexor has two data inputs (A and B)

labeled 0 and 1, one selector input (S), and an output C.

Chapter 4 — The Processor — 10

Multiplexors(2)

 A multiplexor is

arrayed 32

times to

perform a

selection

between two

32-bit inputs.

 One data

selection signal

used for all 32

1-bit

multiplexors.

Chapter 4 — The Processor — 11

Sequential Elements

 Register: stores data in a circuit

 Uses a clock signal to determine when to

update the stored value

 Edge-triggered: update when Clk changes

from 0 to 1

D

Clk

Q

Clk

D

Q

Chapter 4 — The Processor — 12

Sequential Elements

 Register with write control

 Only updates on clock edge when write

control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

Chapter 4 — The Processor — 13

Clocking Methodology

 Combinational logic transforms data during
clock cycles

 Between clock edges

 Input from state elements, output to state
element

 Longest delay determines clock period

Chapter 4 — The Processor — 14

Building a Datapath

 Datapath

 Elements that process data and addresses

in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath

incrementally

 Refining the overview design

§
4
.3

 B
u
ild

in
g
 a

 D
a
ta

p
a
th

Chapter 4 — The Processor — 15

Instruction Fetch

32-bit

register

Increment by

4 for next

instruction

A portion of the datapath used for fetching instructions and

incrementing the program counter. The fetched instruction is

used by other parts of the datapath.

Chapter 4 — The Processor — 16

R-Format Instructions

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

Chapter 4 — The Processor — 17

Load/Store Instructions

 Read register operands

 Calculate address using 16-bit offset
 Use ALU, but sign-extend offset

 Load: Read memory and update register

 Store: Write register value to memory

Chapter 4 — The Processor — 18

Branch Instructions

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 19

Branch Instructions

Just

re-routes

wires

Sign-bit wire

replicated

Chapter 4 — The Processor — 20

Composing the Elements

 Simple data path does one instruction in

one clock cycle

 Each datapath element can only do one

function at a time

 Hence, we need separate instruction and data

memories

 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 21

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 22

Full Datapath

Chapter 4 — The Processor — 23

ALU Control

 ALU used for

 Load/Store: F = add

 Branch: F = subtract

 R-type: F depends on funct field

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n

ta
tio

n
 S

c
h
e
m

e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Chapter 4 — The Processor — 24

ALU Control (2)

 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 25

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

read,

except

for load

write for

R-type

and load

sign-extend

and add

Chapter 4 — The Processor — 26

The Main Control Unit (2)

Chapter 4 — The Processor — 27

The Main Control Unit (3)

Chapter 4 — The Processor — 28

Datapath With Control

Chapter 4 — The Processor — 29

Datapath With Control (2)

• The setting of the control lines is completely determined by the opcode fields

of the instruction.

• The first row of the table corresponds to the R-format instructions (add, sub,

AND, OR, and slt). For all these instructions, the source register fields are rs

and rt, and the destination register field is rd; this defines how the signals

ALUSrc and RegDst are set. R-type instruction writes a register (Reg Write =

1), but neither reads nor writes data memory.

• When the Branch control signal is 0, the PC is unconditionally replaced with

PC + 4; otherwise, the PC is replaced by the branch target if the Zero output

of the ALU is also high.

• The ALUOp field for R-type instructions is set to 10 to indicate that the ALU

control should be generated from the funct field.

Chapter 4 — The Processor — 30

R-Type Instruction

Chapter 4 — The Processor — 31

R-Type Instruction (2)

For example, add $t1,$t2,$t3

Four steps to execute the instruction in one clock cycle

1. The instruction is fetched, and the PC is incremented

2. Registers $t2 and $t3 are read from the register file.

Also, the main control unit computes the setting of the

control lines during this step

3. The ALU operates on the data read from the register file,

using the function code (bits 5:0, funct field) to generate

the ALU function

4. The result from the ALU is written into the register file

using bits 15:11 of the instruction to select the

destination register ($t1)

Chapter 4 — The Processor — 32

Load Instruction

Chapter 4 — The Processor — 33

Load Instruction (2)
For example, lw $t1, offset($t2)

Five steps to execute the instruction in one clock cycle

1. Instruction is fetched from the instruction memory and

PC is Incremented

2. Register ($t2) value is read from the register file

3. ALU computes the sum of the value read from register

file and sign-extended offset

4. Sum from ALU is used as the address for the data

memory

5. Data from the memory unit is written into register file.

Register destination is given by bits 20:16 of the

instruction ($t1)

Chapter 4 — The Processor — 34

Branch-on-Equal Instruction

Chapter 4 — The Processor — 35

Branch-on-Equal Instruction (2)

For example, beq $t1, $t2, offset

Four steps to execute the instruction in one clock cycle

1. An instruction is fetched from instruction memory

and PC is incremented

2. Register ($t2) value is read from the register file

3. ALU performs a subtract on the data values read

from the register file. PC + 4 is added to sign-

extended offset shifted left by two; result is branch

target address

4. Zero result from ALU is used to decide which adder

result to store into PC

Chapter 4 — The Processor — 36

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of

 Top 4 bits of old PC

 26-bit jump address

 And 00 at the right

 Need an extra control signal decoded from

opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 37

Datapath With Jumps Added

Chapter 4 — The Processor — 38

Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory register file ALU

data memory register file

 Not feasible to vary period for different

instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 39

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/(0.5n+1.5) ≈ 4

= number of stages

Chapter 4 — The Processor — 40

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 41

Pipeline Performance

 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 42

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 43

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 44

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 45

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 46

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that

cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require

separate instruction/data memories

 Or separate instruction/data caches

Chapter 4 — The Processor — 47

Data Hazards

 An instruction depends on completion of

data access by a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 48

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 49

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 50

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Chapter 4 — The Processor — 51

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute
target early in the pipeline

 Add hardware to do it in ID stage

Chapter 4 — The Processor — 52

Stall on Branch

 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 53

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 54

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

Chapter 4 — The Processor — 55

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 56

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 4 — The Processor — 57

