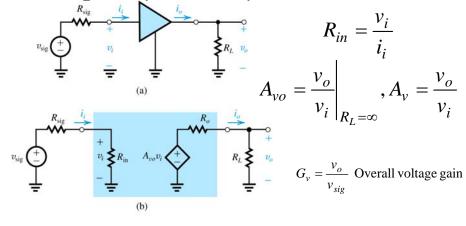

MOSFET Amplifier Configuration

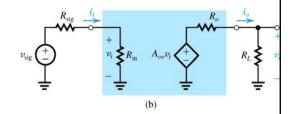
- Single stage
- The signal is fed to the amplifier represented as v_{sig} with an internal resistance R_{sig} .
- MOSFET is represented by its small signal model.
- Generally interested of gain, input and output resistance (overall amplifier circuit not only the small signal model).


MOSFET Amplifier Configuration

• Considering only the small signal not the bias

Characterizing Amplifiers

• Find gain, input and output resistance



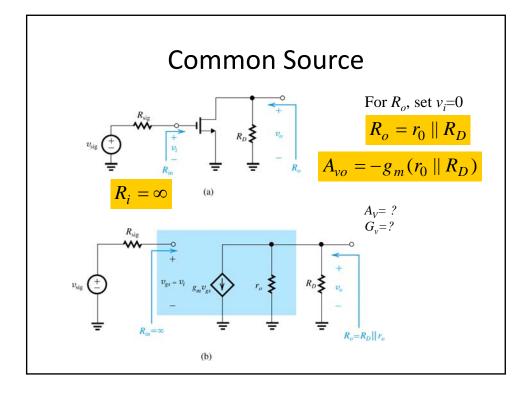
Amplifier Configuration

- Common Source
- Common Source with a source resistance
- Common gate
- Common drain or voltage follower

Amplifiers

$$v_o = A_{vo}v_i \frac{R_L}{R_L + R_o}$$
$$v_i = v_{sig} \frac{R_{in}}{R_{\cdot} + R_{\cdot}}$$

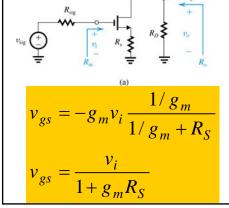
$$v_{o} = A_{vo}v_{i} \frac{R_{L}}{R_{L} + R_{o}}$$

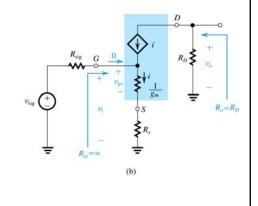

$$v_{i} = v_{sig} \frac{R_{in}}{R_{in} + R_{sig}}$$

$$A_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

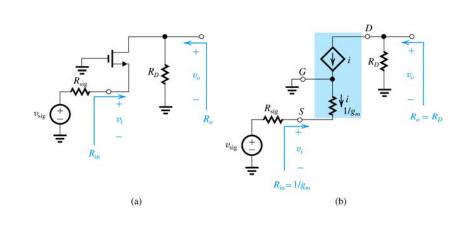
$$G_{v} = \frac{v_{o}}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}} A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

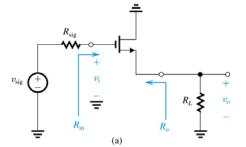
Common Source


- Most widely used configuration
- In multistage amplifiers, the bulk of the gain is from common source.
- The source is grounded, making it common between input and output.
- We can use hybrid π model.

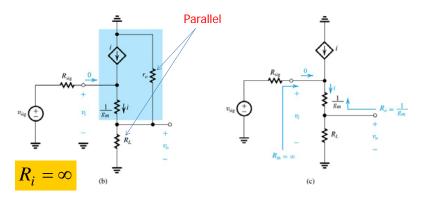


Common Source with Source R

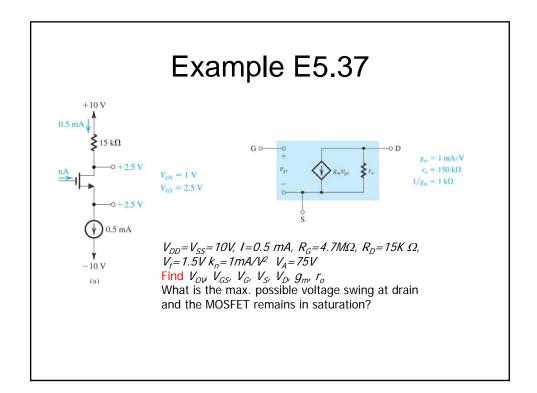

- For simplicity, r_0 is not included.
- No effect on discrete implementation, not so for IC's
- R_s provides a negative feedback to control the magnitude of the signal to prevent nonlinear distortion.
- Also reduces the voltage gain and extends the useful bandwidth.



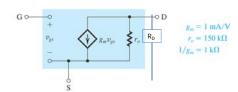
Common Gate Amplifier



Common Drain Amplifier – Source Follower


Since there is a resistance RL connected to the source, it is easier to use the T-model

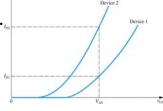
Common Source – Voltage Follower


<u> </u>			
$(: \cap r)$	ททล	rison	
Oli	ιιρα		

	cs	CS+RS	CG	CD
Rin	∞	∞	$\frac{1}{g_m}$	∞
Rout	RD ro	R_D	R_D	$1/g_m$
G	-g _m (R _D R _L r _o)	$A_v = \frac{g_m(R_D R_L)}{1 + g_m R_S}$	$G_v = \frac{(R_D R_L)}{1/g_m + R_{sis}}$	$G_v = A_v$ $= \frac{R_L}{1/g_m + R_L}$

Example 5.38

Find R_{in} , A_{vo} , R_{o} , G_{v} with and without r_{o} , R_{sig} =100K Ω and R_{L} = 15 K Ω

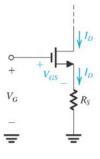


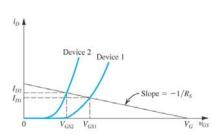
Biasing in MOS Amplifiers

- How to choose the operating point?
- Want a stable Q-point (known I_D and V_{DS}) to ensure operation in the saturation region.

Biasing -- Fixing V_{GS}

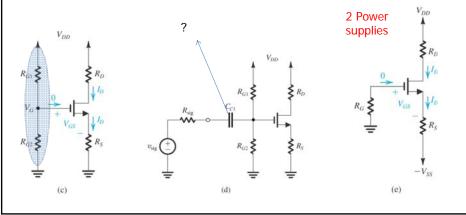
- ullet I_D depends on μ , C_{ox} , $W\!/\!L$ and V_{t} , and V_{GS}
- C_{ox} , V_{GS} (even W/L) can vary across devices of the same type.
- Constant V_{GS} Not a good idea .
- μ , C_{ox} are a f(t)

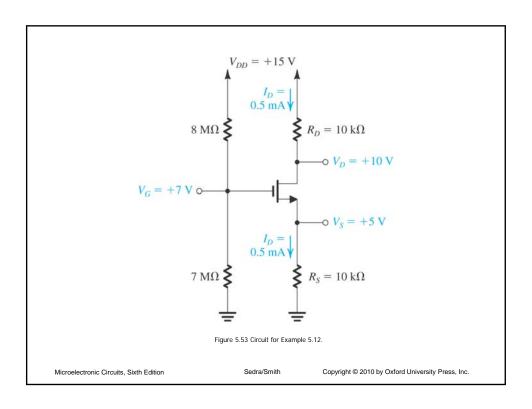

Microelectronic Circuits, Sixth Edition


Sedra/Smith

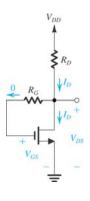
Copyright © 2010 by Oxford University Press, In

Biasing – Fixing V_G and R_S


• R_S provides a negative feedback to stabilize I_D



Biasing – Fixing V_G and R_S


- Uses one power supply
- \bullet What is the effect on input resistance when you add v_{gs} signal

Biasing – D-to-G Resistor

- $\bullet \ \ V_{GS} = V_{DS} = V_{DD} I_D R_D$
- $\bullet \ V_{DD} = V_{GS} + I_D R_D$
- $\bullet\,$ Provides a feedback resistor to Stabilize I_D

Microelectronic Circuits, Sixth Edition

Sedra/Smit

Copyright © 2010 by Oxford University Press, Inc.

Biasing – Constant Current Source

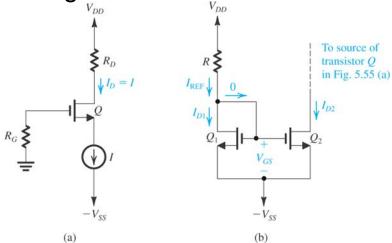
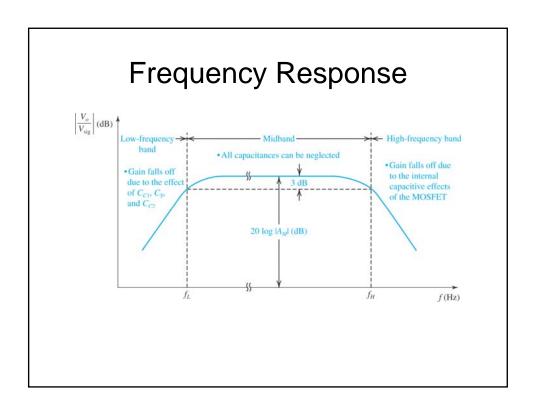



Figure 5.55 (a) Biasing the MOSFET using a constant-current source /. (b) Implementation of the constant-current source / using a current mirror.

Microelectronic Circuits, Sixth Edition

Sedra/Smith

Copyright © 2010 by Oxford University Press, Inc.

