L1: Introduction to Communication Networks

Sebastian Magierowski

York University

Outline

- Course texts, mark breakdown, topics
- Telegraph
- A connectionless message-switching network
- Telephone
- A connection-oriented circuit-switching network
- ARPANET
- A connectionless datagram network
- Internet
- A connectionless/connection-oriented datagram network
- best-effort service
- Local Area Networks
- Ethernet: connectionless protocol, medium access control

Textbook \& Topics

- Textbook: Communication Networks
- Ch. 1 - 8

1. Network Introduction (1.1-1.2)
2. Models, Layers and Applications (2.1-2.5)
3. Digital Information \& Transmission (3.1-3.9)
4. Data Link Protocols (5.1-5.5)
5. Multiple Access \& LANs $(6.1,6.2,6.6,6.7)$

6. Packet Switching (7.1-7.5)
7. TCP/IP Architecture (8.1-8.6)

	Mark Breakdown
Component	Percentage
Assignments	10
Quizzes (3)	15
Midterm (Wed. Feb. 26)	25
Final	50

Overview

- Basic Internet operations and applications
- structure, addressing, routing, DNS, HTTP, etc.
- Basic network principles
- sharing, metrics, scalability
- Physical layer (communications THEORY!!!!)
- signals, modulation, error detection, error correction, wires
- Data Link layer
- Flow control, framing
- Medium Access Control
- Dynamic medium control, ALOHA, Ethernet
- Network Layer
- routing \& IP
- Transport Layer
- TCP

Telegraph

- 1850's text message service
- Tap on machine that sends voltage pulses

- A basic circuit...

> Digital Communications (1850s style)

- Conceptually convert text into sequence of dots and dashes

	Morse Code		Morse Code		Morse Code		Morse Code
A	- -	J	---	S	\ldots	2	\cdots - - -
B	- \cdot.	K	-- -	T	-	3	$\cdots-$
C	-	L	- \cdot	U	$\cdots-$	4	$\cdots \cdots$
D	-.	M	--	v	$\cdots-$	5	\ldots
E		N	-	W	-	6	- $\cdot \cdots$
F	\cdots -	0	---	X	-*-	7	--*.
G	--	P	--.	Y	----	8	---.
H	.	Q	-- -	z	--.	9	----.
1	.	R	-	1	$\cdot-$ - -	0	-----

Physical Signal Characteristics

- Ideal signal as a function of time
- What does it actually look like?
- Intersymbol interfrence (ISI)

A Little Telegraph Quantification

- What was the data rate of this technology? (In bps)
- Operators could send 30 words-per-minute (wpm)
- Think of the dots/dashes as 1s/0s...
- Or approximate the bits per character for constant length code

Multiplexing

- Baudot multiplexer let 5 operators use a line at the same time

Message Switching

- "Vast" network of stations arose
- Operator examines source \& destination address and routes the message to next most reasonable switch
- store-and-forward : examine message in full before sending to next node (as opposed to cut-through)
- Transmission by occasional connections referred to as message-switching

- ~ 30 years after telegraph (1876 Bell's patent)
- Direct conversion of sound pressure to an electrical analog

- No need for digital translation, a direct end-user service - Plug and play
- Rough data rate? Shannon's Theorem

The Telephone "Network"

- Originally sold in pair
- What's the problem with this?

- N users requires ???? connections
- 1000 users $\Rightarrow 499,500$ connections

The Telephone Network

- The birth of the switching office (and Bell Telephone Company, 1877)...a wiring hub

- Run a wire between the customer and the telephone company switching office
- Now only need N connections to central office (CO) (aka end office or local central office)

Switching Station

- New York has 80 for 8,000,000
- About 100,000 lines served by a station

L1: Introduction

Three Phases of a Connection

Digitization of the Telephone Network

- Pulse Code Modulation

- 64 kbps uncompressed voice signal (8-bit sample every $125 \mu \mathrm{~s}$)
- Time Division Multiplexing (TDM)
- Put multiple signals on the trunk
- T1 carrier method sends a signal from one of 24 messages every 125 us
$-(24 * 8+1) / 125$ us $=1.544 \mathrm{Mbps}$

- Digital Switching (no analog conversion)

- No need to go back to analog at switch

- Optical Transmission

- 10^{12} bps!!!

Internet

- An internetwork
- Multi-tiered, decentralized organization
- A network of computers
- Powerful processing at network edge
- Move communication complexity towards the edge
- Develop sophisticated protocols

Telephone vs. Internet

Public Switched Telephone Network
(PSTN) switching
ofici
(U.S. military dependent on PSTN in 50 's

- Easy to cripple by taking out switching centers
- RAND Corp. (Paul Baran) proposes a distributed network
- AT\&T rejected the idea when asked to build prototype
cse 3213, w14

ARPANET

- RAND idea implemented in late 60's as network of computers between research centers

Dec. '69

July '70

Mar. '71

Sept. '72

- Retired in '90 at >100 hosts
- California - Norway

CSE 3213, W14
L1: Introduction
23

ARPANET: Basic Structure

- Nodes consisted of minicomputers connected to hosts
- Interface Message Processors (IMPs)
- Linked by $56-\mathrm{kbps}$ lines leased from telephone company

- Protocols developed for communication
- agreement/rules on how communications are to proceed
- IMP-IMP, S/IMP-D/IMP, Host-IMP, Host-Host

Key ARPANET Characteristics

- Datagram service (just like telegraph)

- connectionless (contrast with connection-oriented)
- unreliable (unacknowledged)
- Packet switched
- messages up to 8063 bits could be sent
- BUT...IMPs broke it up into 1008 bit (max) packets
- Automated routing
- no connection setup prior to packet transmission
- distributed routing algorithm to update routing tables
- Error control
- Congestion control
- Flow control

ARPANET Applications

- ARPANET introduced many new applications
- Email
- remote login
- file transfer...

Internetworking

- ARPANET was a great WAN demonstration

- A robust network
- Capable of supporting a variety of applications
- But...
- Its protocol structure did not support the merging of various networks well
- Not an internet
- E.g. ARPANET + packet radio + satellite performed poorly
- A reorganized design was proposed...

TCP/IP

- New set of rules proposed to enable internetworking
- Kahn \& Cerf argued for common rule layer
- Hide differences between different networks instead of translation
- The layer was eventually separated into 2 protocols
- IP (Internet Protocol)

- A means of getting messages moving over multiple links: connectionless
- TCP (Transmission Control Protocol)
- A means of strengthening delivery guarantees between end-points: connection-oriented

Layers \& Structural Ideas

- With universally understood communication rules hosts in different types of network can talk to each other

- Routers talk IP, hosts talk TCP \& IP
- Encapsulation

IP Addressing and Routing

- Location based addressing
- Hierarchical address: Net ID + Host ID
- IP packets routed according to Net ID
- Routers compute routing tables using distributed

Tier-1 ISPs

1. Level 3
2. Global Crossing
3. NTT
4. Sprint
5. TeliaSonera
6. Tinet
7. Tata
8. Cogent
9. Verizon
10. AT\&T

- Google, Facebook, etc. also setting up private pathways to move data between centers

Local Area Networks

- A major component of the internet are concentrated networks of computers
- university, business
- These simpler networks interface to the internet via routers but what happens inside?
- Basic components
- hubs
- bridges/switches

Popular LANs

- IEEE 802.11 (WiFi) \& IEEE 802.3 (Ethernet)
- Best-effort connectionless service

Medium Access Control (MAC)

- A common challenge: communicating with multiple nodes over a shared medium
- Medium Access Controls for sharing were developed
- Example: Polling protocol on a multidrop line

LAN Addressing

- How do LANs identify themselves?
- If they share a medium some means of identification is necessary
- Globally unique address
- MAC address, MAC-48, physical address
- consists of 48-bits
- burned inside network interface card (NIC)
- How does this work with IP?
- The layering concept

Summary of Some Network Terms

- connectionless
- Send to source before you know that source is accepting
- connection-oriented
- Send to source only after you hear that it is willing to accept
- packet-switching
- Non-dedicated link to source made on fly for each chunk of message
- circuit-switching
- Dedicated link created to source for duration of message
- best-effort service
- not guaranteed
- datagram service
- unacknowledged connectionless service

