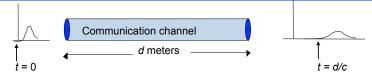
SC/CSE 3213 Winter 2014

L10: Physical Media Properties

Sebastian Magierowski York University

CSE 3213, W14 L10: Physical Media

Outline


- · Key characteristics of physical media
- Wired
- Wireless
- Optical

CSE 3213, W14

L10: Physical Media

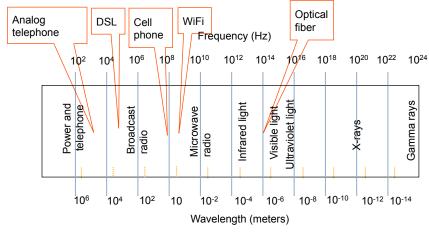
2

Fundamental Issues in Transmission Media

- Information bearing capacity
 - Amplitude response & bandwidth
 - · dependence on distance
 - Susceptibility to noise & interference
 - · Error rates & SNRs
- · Propagation speed of signal
 - $-c = 3 \times 10^8$ meters/second in vacuum
 - v = c/√ε speed of light in medium
 - ϵ >1 is the dielectric constant of the medium
 - $v = 2.3 \times 10^8$ m/sec in copper wire
 - $v = 2.0 \text{ x } 10^8 \text{ m/sec}$ in optical fiber

CSE 3213, W14

CSE 3213, W14


L10: Physical Media

3

4

Communications Systems & EM Spectrum

· Frequency of communications signals

L10: Physical Media

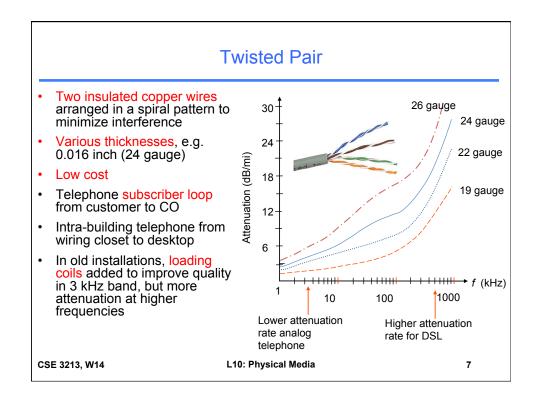
Wireless & Wired Media

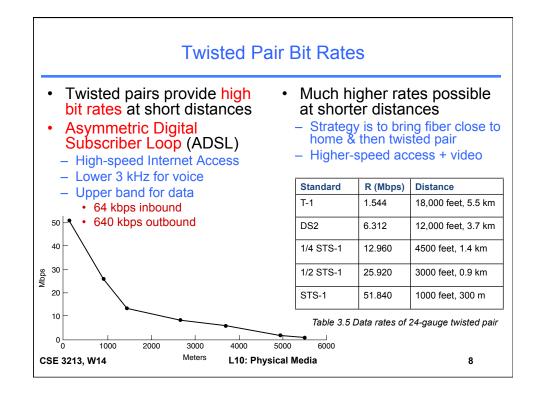
Wireless Media

- Signal energy propagates in Signal energy contained & space, limited directionality
- Interference possible, so spectrum regulated
- Limited bandwidth
- Simple infrastructure: antennas & transmitters
- No physical connection between network & user
- Users can move

Wired Media

- guided within medium
- Spectrum can be re-used in separate wires (more scalable)
- Extremely high bandwidth
- Complex infrastructure: ducts, conduits, poles, right-of-way

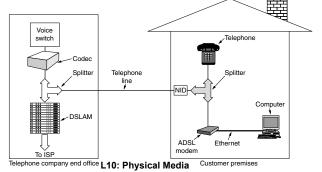

5


CSE 3213, W14 L10: Physical Media

Attenuation

- Attenuation varies with media
 - Dependence on distance of central importance
- Wired media attn. has exponential function of distance
 - Received power at d meters proportional to 10-kd
 - Attenuation in dB is k d, where k is dB/meter
- Wireless media attn. has power function of distance
 - Received power at d meters proportional to d-n
 - Attenuation in dB is n log d, where n is path loss exponent
 - n=2 in free space
 - Signal level maintained for much longer distances
 - Space communications possible

CSE 3213, W14 L10: Physical Media 6

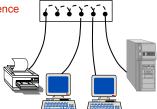

ADSL Signals

- Telephone wire has ~1-MHz reasonable bandwidth
 - 3-kHz voice bandwidth created by load coils
- ADSL divides into channels
 - 256, 4.3125-kHz channels
 OFDM (4G)
 - Typically 32 for upstream and 218 for downstream
 - · ADSL2: 1 Mbps upstream and 12 Mbps downstream
 - 4000 symbols/s per channel
 - 1-15 bits per symbol depending on SNR

CSE 3213, W14 L10: Physical Media

ADSL Arrangement

- Splitter combines voice and data
 - NID: Network Interface Device
 - Applies necessary filtering to isolate them
- At company office voice and data split
 - DSLAM aggregates customer data and sends to ISP
 - Digital Subscriber Line Access Multiplexer



CSE 3213, W14

10

Ethernet LANs

- Office building telephone wires a great candidate for LANs
- Several categories have been defined...
 - <u>Cat3 UTP</u>: ordinary telephone wires
 - <u>Cat5 UTP</u>: tighter twisting to improve signal quality
 - STP: metallic braid around each pair
 - to minimize interference
 - costly
 - Cat7

CSE 3213, W14

L10: Physical Media

10BASE-T Ethernet

· Two Cat3 pairs

Four Cat3 pairs

100BASE-T4 Fast Ethernet

100/3 Mbps per pair;

• 8B10B line code, 100 meters

· Manchester coding, 100 meters

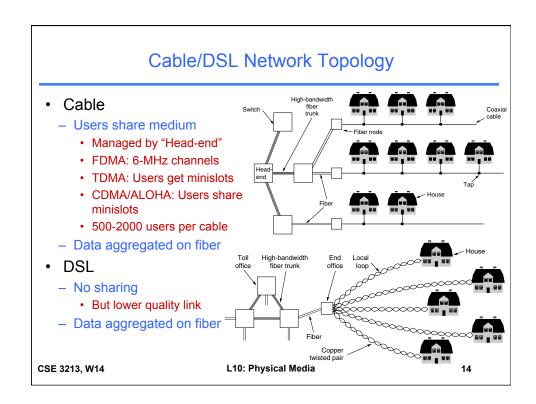
· Three pairs for one direction at-a-time

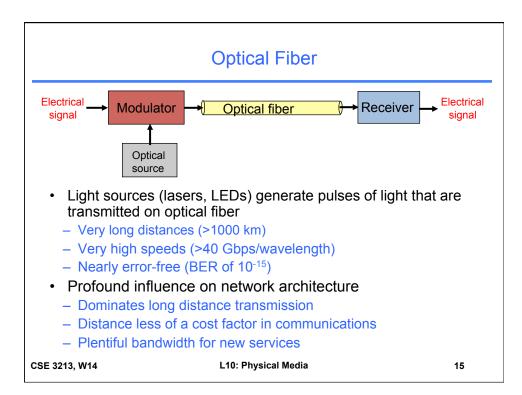
11

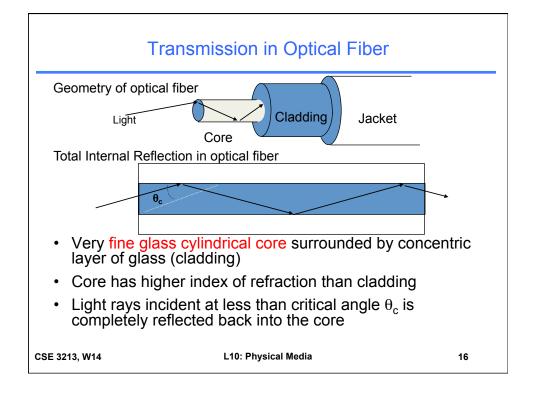
10 Mbps

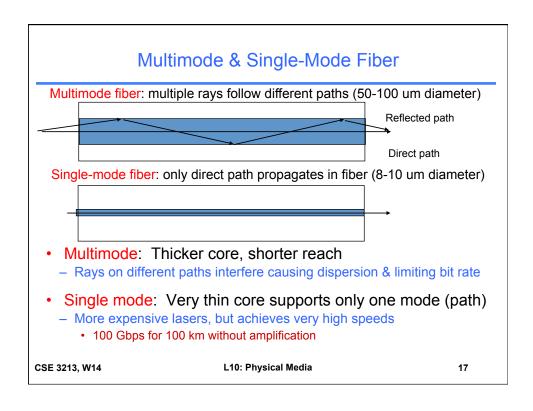
100 Mbps

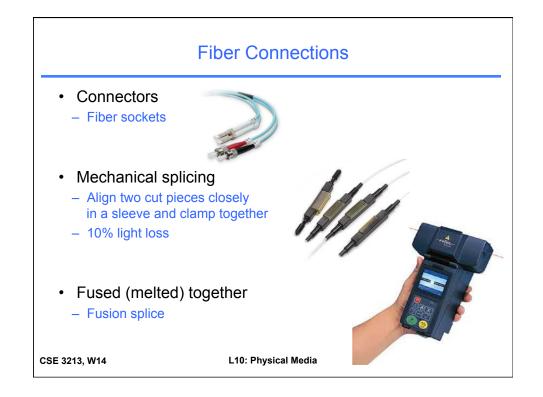
Coaxial Cable Cylindrical braided outer conductor surrounds 35 insulated inner wire 0.7/2.9 mm High interference immunity 30 Attenuation (dB/km) Higher bandwidth than 1.2/4.4 mm 25 twisted pair 20 Hundreds of MHz Cable TV distribution 15 · Long distance telephone 10 transmission 2.6/9.5 mm 5 Original Ethernet LAN medium 1.0 10 100 0.1 f (MHz) CSE 3213, W14 L10: Physical Media 12


Cable Modem & TV Spectrum Downstream TV Downstream Data Upstream Data 42 54 500 550 Cable TV network originally unidirectional 54-500 MHz TV service • 6 MHz = 1 analog TV channel or several digital TV channels Cable Modem: shared upstream & downstream - Open DOCSIS standard - 5 - 42 MHz upstream into network • 2 MHz channels • 500 kbps to 4 Mbps - > 550 MHz downstream from network • 6 MHz channels

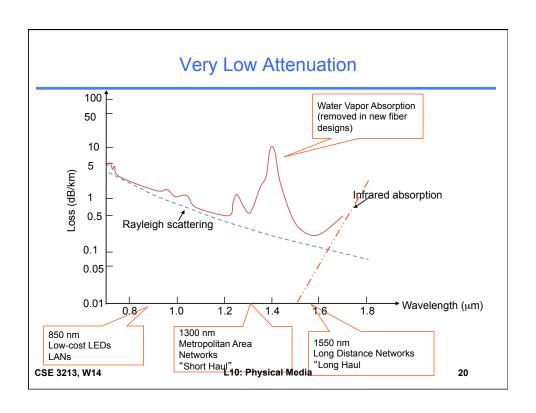

L10: Physical Media


13


36 Mbps


CSE 3213, W14

Optical Fiber Properties

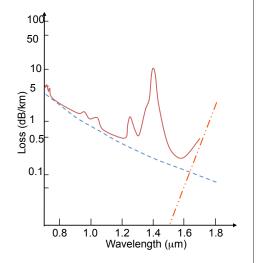

Advantages

- · Very low attenuation
- Noise immunity
- · Extremely high bandwidth
- Security: Very difficult to tap without breaking
- No corrosion
- More compact & lighter than copper wire

Disadvantages

- New types of optical signal impairments & dispersion
 - Polarization dependence
 - Wavelength dependence
- Limited bend radius
 - If physical arc of cable too high, light lost or won't reflect
 - Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

CSE 3213, W14 L10: Physical Media 19

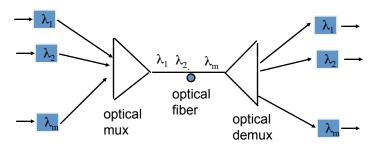

Huge Available Bandwidth

• Optical range from λ_1 to $\lambda_1 + \Delta \lambda$ contains bandwidth

$$B = f_1 - f_2 = \frac{v}{\lambda_1} - \frac{V}{\lambda_1 + \Delta \lambda}$$
$$= \frac{v}{\lambda_1} \left\{ \frac{\Delta \lambda / \lambda_1}{1 + \Delta \lambda / \lambda_1} \right\} \approx \frac{v \Delta \lambda}{\lambda_1^2}$$

• Example: $\lambda_1 = 1450 \text{ nm}$ $\lambda_1 + \Delta \lambda = 1650 \text{ nm}$:

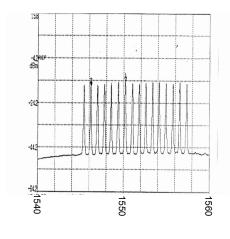
$$B = \frac{2(10^8)\text{m/s } 200\text{nm}}{(1450 \text{ nm})^2} \approx 19 \text{ THz}$$


CSE 3213, W14

L10: Physical Media

21

Wavelength-Division Multiplexing


- · Different wavelengths carry separate signals
- Multiplex into shared optical fiber
- · Each wavelength like a separate circuit
 - 192 channels 10 Gbps = 1.92 Tbps
 - 64 channels 40 Gbps = 2.56 Tbps

CSE 3213, W14

L10: Physical Media

Coarse & Dense WDM

Coarse WDM

- Few wavelengths 4-18 with very wide spacing (~20 nm)
- Low-cost, simple

Dense WDM

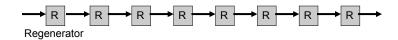
- Many tightly-packed wavelengths
- ITU Grid: 0.8 nm separation for 10 Gbps signals
- 0.4 nm for 2.5 Gbps

CSE 3213, W14

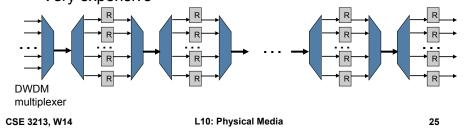
L10: Physical Media

23

Regenerators & Optical Amplifiers

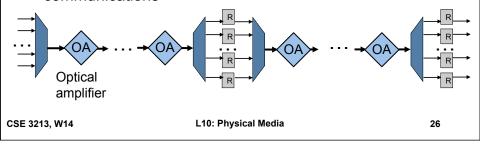

- The maximum span of an optical signal is determined by the available power & the attenuation:
 - Ex. If 30 dB power available,
 - then at 1550 nm, optical signal attenuates at 0.25 dB/km,
 - so max span = 30 dB/0.25 km/dB = 120 km
- Optical amplifiers amplify optical signal (no equalization, no regeneration)
- Impairments in optical amplification limit maximum number of optical amplifiers in a path
- · Optical signal must be regenerated when this limit is reached
 - Requires optical-to-electrical (O-to-E) signal conversion, equalization, detection and retransmission (E-to-O)
 - Expensive
- Severe problem with WDM systems

CSE 3213, W14


L10: Physical Media

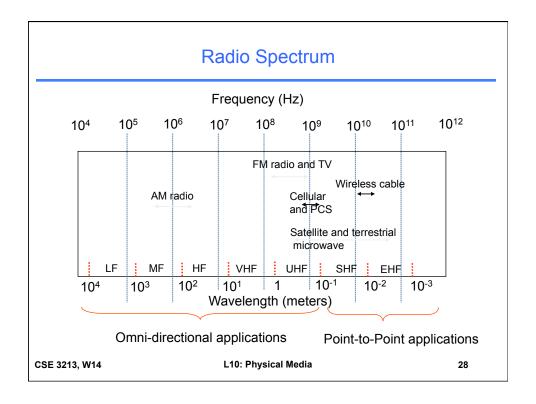
DWDM & Regeneration

• Single signal per fiber requires 1 regenerator per span



- · DWDM system carries many signals in one fiber
- At each span, a separate regenerator required per signal
- Very expensive

Optical Amplifiers


- Optical amplifiers can amplify the composite DWDM signal without demuxing or O-to-E conversion
- Erbium Doped Fiber Amplifiers (EDFAs) boost DWDM signals within 1530 to 1620 range
 - Spans between regeneration points >1000 km
 - Number of regenerators can be reduced dramatically
- Dramatic reduction in cost of long-distance communications

Radio Transmission

- Radio signals: antenna transmits sinusoidal signal ("carrier") that radiates in air/space
- Information embedded in carrier signal using modulation, e.g. QAM
- · Communications without tethering
 - Cellular phones, satellite transmissions, Wireless LANs
- Multipath propagation causes fading
- · Interference from other users
- Spectrum regulated by national & international regulatory organizations

CSE 3213, W14 L10: Physical Media 27

Examples

Cellular Phone

- · Allocated spectrum
- First generation:
 - 800, 900 MHz
 - Initially analog voice
- Second generation:
 - 1800-1900 MHz
 - Digital voice, messaging

Wireless LAN

- Unlicensed ISM spectrum
 - Industrial, Scientific, Medical
 - 902-928 MHz, 2.400-2.4835
 GHz, 5.725-5.850 GHz
- IEEE 802.11 LAN standard
 - 11-54 Mbps

Point-to-Multipoint Systems

- Directional antennas at microwave frequencies
- High-speed digital communications between sites
- High-speed Internet Access Radio backbone links for rural areas

Satellite Communications

- Geostationary satellite @ 36000 km above equator
- Relays microwave signals from uplink frequency to downlink frequency
- · Long distance telephone
- Satellite TV broadcast

CSE 3213, W14 L10: Physical Media 29