## L15: Error Detection and Correction

Sebastian Magierowski<br>York University

## Outline

- Basic (channel) coding ideas
- Error detection (Backward error correction)
- single parity
- interleaved parity (2-D parity)
- internet checksum
- polynomial codes
- Effectiveness and Error Models
- (Forward) Error correction
- cyclic codes, block codes, convolutional codes, iterative codes


## Types of Coding

## - Some options

- Line Coding
- spectrum control
- timing
- basic error detection
- Channel Coding
- error detection
- error correction
- error prevention (combined detection \& decoding)



## Channel Coding

- Add in redundancy
- Two basic ideas, used in combination
- error detection: recognizes an error in a frame (request re-send)
- ARQ
- error correction: finds error and corrects it (no need to re-send)
- more desirable, but requires greater overhead (FEC)



## Basic Ideas and Nomenclature

- Data consists of $k$ bits
x = codeword
- $2^{k}$ possible messages
o = noncodewords
- Add $m$ redundant bits to this
- Codeword of $n=m+k$ bits
$-2^{m+k}=2^{n}>2^{k}$ possible strings
- But only $2^{\mathrm{k}}$ are valid!
- $(\mathrm{n}, \mathrm{k})$ codes e.g.: $(2,1)$
- Thus coded messages (codewords)
 are separated in signal space
- Hamming distance, d: \# of bit positions that differ
- Code rate: $r=k / n$
- $1 / 2,3 / 4$

5

## Detection and Correction Basic Example

- To detect d errors: need Hamming distance of d+1

- To correct d errors: need Hamming distance of $2 d+1$

- e.g.
- 0000000000
- 0000011111
- $\mathrm{d}_{\text {min }}=5$
- 1111100000
- correct up to 2 errors
- 1111111111


6


## Simple Detection: Single Parity Code

- Information (7 bits): ( $0,1,0,1,1,0,0$ )
- Parity Bit: $b_{8}=0+1+0+1+1+0=1$
- Codeword (8 bits): ( $0,1,0,1,1,0,0,1$ )
- If single error in bit $3:(0,1,1,1,1,0,0,1)$
- \# of 1's =5, odd
- Error detected
- If errors in bits 3 and $5:(0,1,1,1,0,0,0,1)$
- \# of 1's =4, even
- Error not detected


## Single Parity Check: Formally

- Append an overall parity check to $k$ information bits
- Info Bits: $\quad b_{1}, b_{2}, b_{3}, \ldots, b_{k}$
- Check Bit: $b_{k+1}=b_{1}+b_{2}+b_{3}+\ldots+b_{k}$ modulo 2
- Codeword: $\quad\left(b_{1}, b_{2}, b_{3}, \ldots, b_{k}, b_{k+1}\right)$
- All codewords have even \# of 1 s
- Redundancy: Single parity check code adds 1 redundant bit per $k$ information bits: overhead $=1 /(k+1)$
- Coverage
- All error patterns that change an odd \# of bits are detectable
- All even-numbered patterns are undetectable
- Parity bit used in ASCII code


## Effectiveness: Random Error Vector Model

- Effectiveness: Probability system fails to detect error
- Dependent on error model
- Random Error Vector
- Random Bit Error
- Burst
- Random Error Vector
- n-bit vector, e, represents error pattern
$-e_{i}=0$-> no error in position $i$
$-e_{i}=1$-> an error in position $i$
- $2^{n}$ possible combinations
- Assumes all possibilities equally likely
- 50\% chance of even number of errors
- Therefore...????


## What If Bit Errors are Random?

- Many transmission channels introduce bit errors at random, independent of each other, with probability $p$
- Some error patterns are more probable than others:
- For example, if $p=0.1$

$$
\begin{aligned}
& P[10000000]=p(1-p)^{7}=0.0478 \\
& P[11000000]=p^{2}(1-p)^{6}=0.0053
\end{aligned}
$$

- In any worthwhile channel $p<0.5$, and so $p /(1-p)<1$
- It follows (can you show this?) that patterns with 1 error are more likely than patterns with 2 errors and so forth
- What is the probability that an undetectable error pattern occurs?


## Effectiveness: Random Bit Error Model

- Undetectable error pattern if even \# of bit errors:
$P$ [error detection failure] = $P$ [undetectable error pattern] $=P$ [error patterns with even number of 1 s ]
$=\binom{n}{2} p^{2}(1-p)^{n-2}+\binom{n}{4} p^{4}(1-p)^{n-4}+\ldots$
- Example: Evaluate above for $\mathrm{n}=32, \mathrm{p}=10^{-3}$

$$
\begin{aligned}
P[\text { undetectable error }] & =\left[\begin{array}{l}
32 \\
2
\end{array}\right]\left(10^{-3}\right)^{2}\left(1-10^{-3}\right)^{30}+\left[\begin{array}{l}
32 \\
4
\end{array}\right]\left(10^{-3}\right)^{4}\left(1-10^{-3}\right)^{28} \\
& \approx 496\left(10^{-6}\right)+35960\left(10^{-12}\right) \approx 4.96\left(10^{-4}\right)
\end{aligned}
$$

- For this example, roughly 1 in 2000 error patterns is undetectable


## Two-Dimensional Parity Check (Interleaving)

- More parity bits to improve coverage
- Arrange information as rows
- Add single parity bit to each row
- Add a final "parity" row
- Used in early error control systems

| 1 | 0 | 0 | 1 | 0 | 0 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 1 |  |  |
| 1 | 0 | 0 | 1 | 0 | 0 |  | Last column consists of |
| 1 | 1 | 0 | 1 | 1 | 0 |  |  |
| 1 | 0 | 0 | 1 | 1 | 1 |  |  |

Bottom row consists of check bit for each column


## Other Error Detection Codes

- Many applications require very low error rate
- Need codes that detect the vast majority of errors
- Single parity check codes do not detect enough errors
- Two-dimensional codes require too many check bits
- The following error detecting codes used in practice:
- Internet Check Sums
- CRC Polynomial Codes


## Internet Checksum

- Several Internet protocols (e.g. IP, TCP, UDP) use check bits in IP header to detect errors (or in the header and data for TCP/UDP)
- A checksum is calculated for header contents and included in a special field.
- Checksum recalculated at every router, so algorithm selected for ease of implementation in software
- Let header consist of $L$, 16-bit words, $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{L-1}$
- The algorithm appends a 16 -bit checksum $\mathbf{b}_{L}$


## Checksum Calculation

The checksum $\mathbf{b}_{\mathrm{L}}$ is calculated as follows:

- Treating each 16-bit word as an integer, find

$$
\mathbf{x}=\left(\mathbf{b}_{0}+\mathbf{b}_{1}+\mathbf{b}_{2}+\ldots+\mathbf{b}_{L-1}\right) \text { modulo }\left(2^{16}-1\right)
$$

- The checksum is then given by:

$$
\mathbf{b}_{\mathrm{L}}=-\mathbf{x} \text { modulo }\left(2^{16}-1\right)
$$

Thus, the headers must satisfy the following pattern:
$\mathbf{0}=\left(\mathbf{b}_{0}+\mathbf{b}_{1}+\mathbf{b}_{2}+\ldots+\mathbf{b}_{L-1}+\mathbf{b}_{\mathrm{L}}\right)$ modulo( $\left.2^{16}-1\right)$

- The checksum calculation is carried out in software using one's complement arithmetic

| Internet Checksum Example |  |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 0100 | - In the rece |  |
| 5 | 0101 | 4 | 0100 |
| 9 | 1001 | 5 | 0101 |
| 18 | 10010 | 9 | 1001 |
|  |  | -3 | 1100 |
| $18 \bmod \left(2^{4}-1\right)$ | 0010 | 15 | 11110 |
| $=3$ | + 1 |  |  |
|  | 0011 | $15 \bmod \left(2^{4}-1\right)$ | 1110 |
| - Make checksum: -3 |  | $=0$ | + 1 |
| - 1100 |  |  | 1111 |
| CSE 3213, W14 | L15: Channel Coding |  | 18 |

## Polynomial Codes

- Polynomials instead of vectors for codewords
- Polynomial arithmetic instead of checksums
- Implemented using shift-register circuits
- Also called cyclic redundancy check (CRC) codes
- Most data communications standards use polynomial codes for error detection
- Polynomial codes also basis for powerful error-correction methods


## General Idea

- Choose a special code: G (generator code, $n=m+k$ bits)
- Shift information by m bits, $\div G$, and find remainder, R

$$
\frac{2^{m} I}{G}=Q \oplus \frac{R}{G}
$$

- At receiver if no error:

$$
\begin{aligned}
\frac{B}{G} & =\frac{2^{m} I \oplus R}{G} \\
& =Q \oplus \frac{R}{G} \oplus \frac{R}{G}=Q
\end{aligned}
$$

- At receiver if have error:

$$
\begin{aligned}
\frac{B \oplus E}{G} & =\frac{2^{m} I \oplus R \oplus E}{G} \\
& =C \oplus \frac{S}{G} \neq Q
\end{aligned}
$$

## Cyclic Error Correction

- We can do more than just detect...
- If have error:

- But note:

- remainder (syndrome) depends only on the error (not on codeword B)
- Syndrome can be used to identify error
- Rearranging: $\frac{E}{G}=[Q \oplus C] \oplus\left(\frac{S}{G}\right.$


## Cyclic Code Types

- Cyclic codes are a type of block code
- redundant bits are generated by some block of data (contrast with convolutional code)
- BCH codes are a specific example
- (n,k,d)
- $(7,4,3)$ : code rate $=4 / 7=0.571$ ( 2 detect, 1 correct)
$-(15,5,7)$ : code rate $=5 / 15=0.333$ ( 6 detect, 3 correct)
- Reed-Solomon
- operate on k-bit symbols (rather than individual bits)
- and $2^{\mathrm{k}}-1$ symbols at a time (e.g. 8-bit symbol \& 255 symbols total)
- typical: $(255,233,33)$, therefore can correct $(33-1) / 2=16$ symbols
$-8 \times 16=128$ bits in a $8 \times 255=2040$ bit sequence
- very good for burst errors (DSL, cable, satellite, CDs)


## Convolutional Codes

## - Codes continuously

- good for streaming, don't have to pause to collect blocks of bits
- Data is shifted through registers
- output depends on present and past inputs (state-machine)
- this redundancy achieves the necessary coding
- NASA convolutional code (Voyager)
- $(2,1), r=1 / 2$
- constraint length $=7$
- GSM, 802.11
- Trellis decoding
- Viterbi algorithm



## Recent Iterative Codes

- Turbo codes, 1993
- two codes generated and interleaved
- two decoders work iteratively to decode message
- close to Shannon limit
- Low Density Parity Check, 1962 \& 2003
- block code
- each output bit formed from only a fraction of input bits
- iteratively re-assembled
- rapidly being incorporated (no IP issues)
- digital video, 10 Gbps ethernet, power line, latest 802.11

