
1 

CSE 3213, W14 1 

L15: Error Detection and Correction 

Sebastian Magierowski 
York University 

L15: Channel Coding 

SC/CSE 3213 Winter 2014 

CSE 3213, W14 2 

•  Basic (channel) coding ideas 
•  Error detection (Backward error correction) 

–  single parity 
–  interleaved parity (2-D parity) 
–  internet checksum 
–  polynomial codes 

•  Effectiveness and Error Models 
•  (Forward) Error correction 

–  cyclic codes, block codes, convolutional codes, iterative codes 

Outline 

L15: Channel Coding 



2 

CSE 3213, W14 3 

•  Some options 
–  Line Coding 

•  spectrum control 
•  timing 
•  basic error detection 

–  Channel Coding 
•  error detection 
•  error correction 
•  error prevention (combined detection & decoding) 

Types of Coding 

L15: Channel Coding 

channel 
coder line code channel line 

decoder 
channel 
decoder 

CSE 3213, W14 4 

•  Add in redundancy 
•  Two basic ideas, used in combination 

–  error detection: recognizes an error in a frame (request re-send) 
•  ARQ 

–  error correction: finds error and corrects it (no need to re-send) 
•  more desirable, but requires greater overhead (FEC) 

Channel Coding 

L15: Channel Coding 

Application 

Transport 

Network 

Data Link 

Physical 

Application 

Transport 

Network 

Data Link 

Physical 

detection 

correction 

HTTP 

TCP 

IP 

802.11x 



3 

CSE 3213, W14 5 

•  Data consists of k bits 
–  2k possible messages 

•  Add m redundant bits to this 
•  Codeword of n = m + k bits 

–  2m+k = 2n > 2k possible strings 
–  But only 2k are valid! 
–  (n,k) codes e.g.: (2,1) 

•  Thus coded messages (codewords) 
are separated in signal space 

–  Hamming distance, d: # of bit positions that differ 

•  Code rate: r = k/n 
–  ½, ¾ 
 

Basic Ideas and Nomenclature 

L15: Channel Coding 

x  = codeword   
o  = noncodewords 

x 

x x 

x 

x 

x 

x

o 

o 
o 

o 
o 

o 
o 

o 
o o 

o 

o 

CSE 3213, W14 6 

•  To detect d errors: need Hamming distance of d+1 

•  To correct d errors: need Hamming distance of 2d+1 

•  e.g. 
–  0000000000 
–  0000011111 
–  1111100000 
–  1111111111 

Detection and Correction Basic Example 

L15: Channel Coding 

d + 1 

2d + 1 

•  dmin = 5 
•  detect up to 4 errors 
•  correct up to 2 errors 
•  only one at a time 

x 

x x 

x 

x 

x 

x

o 
o 

o o 
o 

o o 
o 

o o 
o 

o 



4 

CSE 3213, W14 7 

System-Level Implementation 

L15: Channel Coding 

Calculate 
check bits 

 

Channel 

 

Recalculate 
check bits 

Compare 

Information bits Received information bits 

Sent 
check 
bits 

Information 
accepted if 
check bits 
match 

Received 
check bits 

k bits 

m = n – k bits 

CSE 3213, W14 8 

•  Information (7 bits):  (0, 1, 0, 1, 1, 0, 0) 

•  Parity Bit: b8 = 0 + 1 +0 + 1 +1 + 0 = 1  

•  Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1) 

•  If single error in bit 3 : (0, 1, 1, 1, 1, 0, 0, 1) 
–  # of 1’s =5, odd 
–  Error detected 

•  If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1) 
–  # of 1’s =4, even 
–  Error not detected 

Simple Detection: Single Parity Code 

L15: Channel Coding 



5 

CSE 3213, W14 9 

•  Append an overall parity check to k information bits 
–  Info Bits:       b1, b2, b3, …, bk  
–  Check Bit:    bk+1= b1+ b2+ b3+ …+ bk   modulo 2 
–  Codeword:       (b1, b2, b3, …, bk,, bk+1) 

•  All codewords have even # of 1s 
•  Redundancy: Single parity check code adds 1 redundant 

bit per k information bits:  overhead = 1/(k + 1) 
•  Coverage   

–  All error patterns that change an odd # of bits are detectable 
–  All even-numbered patterns are undetectable 

•  Parity bit used in ASCII code 

Single Parity Check: Formally 

L15: Channel Coding 

CSE 3213, W14 10 

•  Effectiveness:  Probability system fails to detect error 
•  Dependent on error model 

–  Random Error Vector 
–  Random Bit Error 
–  Burst 

•  Random Error Vector 
–  n-bit vector, e, represents error pattern 
–  ei = 0 -> no error in position i 
–  ei = 1 -> an error in position i 

•  2n possible combinations 
–  Assumes all possibilities equally likely 
–  50% chance of even number of errors 
–  Therefore…???? 

Effectiveness: Random Error Vector Model 

L15: Channel Coding 



6 

CSE 3213, W14 11 

•  Many transmission channels introduce bit errors at 
random, independent of each other, with probability p 

•  Some error patterns are more probable than others: 
–  For example, if p = 0.1 

 
•  In any worthwhile channel p < 0.5, and so p/(1 – p) < 1 
•  It follows (can you show this?) that patterns with 1 error 

are more likely than patterns with 2 errors and so forth 
•  What is the probability that an undetectable error pattern 

occurs? 

What If Bit Errors are Random? 

L15: Channel Coding 

P[10000000] = p(1 – p)7 = 0.0478  
P[11000000] = p2(1 – p)6 = 0.0053 

CSE 3213, W14 12 

•  Undetectable error pattern if even # of bit errors: 

•  Example: Evaluate above for n = 32, p=10-3 

•  For this example, roughly 1 in 2000 error patterns is 
undetectable 

Effectiveness: Random Bit Error Model 

L15: Channel Coding 

P[error detection failure] = P[undetectable error pattern]  
= P[error patterns with even number of 1s] 
 
=         p2(1 – p)n-2 +          p4(1 – p)n-4 + … n 

2 
n 
4 

P[undetectable error] =         (10-3)2 (1 – 10-3)30 +         (10-3)4 (1 – 10-3)28 
 
                     ≈ 496 (10-6) + 35960 (10-12) ≈ 4.96 (10-4)  

32 
2 

32 
4 



7 

CSE 3213, W14 13 

•  More parity bits to improve coverage 
•  Arrange information as rows 
•  Add single parity bit to each row 
•  Add a final “parity” row 
•  Used in early error control systems 

Two-Dimensional Parity Check (Interleaving) 

L15: Channel Coding 

1  0  0  1  0  0 

0  1  0  0  0  1 

1  0  0  1  0  0 

1  1  0  1  1  0 

1  0  0  1  1  1    

Bottom row consists of 
check bit for each column  

Last column consists of 
check bits for each row 

CSE 3213, W14 14 

Error-Detecting Capability 

L15: Channel Coding 

Arrows indicate failed check bits 

Two errors One error 

Three errors 
Four errors 
(undetectable) 

1  0  0  1  0  0 

0  0  0  0  0  1 

1  0  0  1  0  0 

1  0  0  1  1  0 

1  0  0  1  1  1    

1  0  0  1  0  0 

0  0  0  0  0  1 

1  0  0  1  0  0 

1  1  0  1  1  0 

1  0  0  1  1  1    

1  0  0  1  0  0 

0  0  0  1  0  1 

1  0  0  1  0  0 

1  0  0  0  1  0 

1  0  0  1  1  1    

1  0  0  1  0  0 

0  0  0  1  0  1 

1  0  0  1  0  0 

1  0  0  1  1  0 

1  0  0  1  1  1    

•  1, 2, or 3 errors 
can always be 
detected 

•  Not all patterns 
>4  errors can 
be detected 



8 

CSE 3213, W14 15 

•  Many applications require very low error rate 

•  Need codes that detect the vast majority of errors 

•  Single parity check codes do not detect enough errors 

•  Two-dimensional codes require too many check bits 

•  The following error detecting codes used in practice: 
–  Internet Check Sums 
–  CRC Polynomial Codes 

Other Error Detection Codes 

L15: Channel Coding 

CSE 3213, W14 16 

•  Several Internet protocols (e.g. IP, TCP, UDP)  use 
check bits in IP header to detect errors (or in the 
header and data for TCP/UDP) 

•  A checksum is calculated for header contents and 
included in a special field.   

•  Checksum recalculated at every router, so algorithm 
selected for ease of implementation in software  

•  Let header consist of L, 16-bit words, b0, b1, b2, ..., bL-1  

•  The algorithm appends a 16-bit checksum bL 

Internet Checksum 

L15: Channel Coding 



9 

CSE 3213, W14 17 

The checksum bL  is calculated as follows: 
•  Treating each 16-bit word as an integer, find 

  x =(b0 +  b1 +  b2+  ...+  bL-1)modulo(216-1) 

•  The checksum is then given by:  
   bL = - x modulo(216-1) 

Thus, the headers must satisfy the following pattern: 
    0 = (b0 +  b1 +  b2+  ...+  bL-1 +  bL)modulo(216-1)  

•  The  checksum calculation is  carried out in software 
using one’s complement arithmetic 

Checksum Calculation 

L15: Channel Coding 

CSE 3213, W14 18 

Internet Checksum Example 

  4       0100 
  5       0101 
  9      1001 
18    10010 
 
18 mod(24-1)    0010 
= 3     +     1 

     0011 
•  Make checksum: -3 
•  1100 

•  In the receiver 
  4       0100 
  5       0101 
  9      1001 
 -3      1100 
15    11110   
 
15 mod(24-1)    1110 
= 0     +     1 

     1111 

L15: Channel Coding 



10 

CSE 3213, W14 19 

•  Polynomials instead of vectors for codewords 

•  Polynomial arithmetic instead of checksums 

•  Implemented using shift-register circuits 

•  Also called cyclic redundancy check (CRC) codes 

•  Most data communications standards use polynomial 
codes for error detection 

•  Polynomial codes also basis for powerful error-correction 
methods 

Polynomial Codes 

L15: Channel Coding 

CSE 3213, W14 20 

General Idea 

•  Choose a special code: G 
(generator code, n=m+k bits) 

•  Shift information by m bits, 
÷G, and find remainder, R 

•  Make n=m+k bit codeword 

•  At receiver if no error: 

 

•  At receiver if have error: 

L15: Channel Coding 

2mI
G

=Q⊕
R
G

B = 2mI ⊕R

B
G
=
2mI ⊕R
G

=Q⊕
R
G
⊕
R
G
=Q

B⊕E
G

=
2mI ⊕R⊕E

G

=C⊕
S
G
≠Qm-bit redundancy 



11 

CSE 3213, W14 21 

•  We can do more than just detect… 
•  If have error: 

•  But note: 

•  Rearranging: 

Cyclic Error Correction 

L15: Channel Coding 

B⊕E
G

=
2mI ⊕R⊕E

G
=C⊕

S
G

B⊕E
G

=Q⊕
E
G
=C⊕

S
G

E
G
= [Q⊕C]⊕ S

G

•  remainder (syndrome) 
depends only on the error (not 
on codeword B) 

•  Syndrome can be used to 
identify error 

•  As simple as LUT 

CSE 3213, W14 22 

•  Cyclic codes are a type of block code 
–  redundant bits are generated by some block of data (contrast with 

convolutional code) 

•  BCH codes are a specific example 
–  (n,k,d) 
–  (7,4,3): code rate = 4/7 = 0.571 (2 detect, 1 correct) 
–  (15,5,7): code rate = 5/15 = 0.333 (6 detect, 3 correct) 

•  Reed-Solomon 
–  operate on k-bit symbols (rather than individual bits) 
–  and 2k-1 symbols at a time (e.g. 8-bit symbol & 255 symbols total) 
–  typical: (255,233,33), therefore can correct (33 – 1)/2 = 16 symbols 
–  8 x 16 = 128 bits in a 8 x 255 = 2040 bit sequence 
–  very good for burst errors (DSL, cable, satellite, CDs) 

Cyclic Code Types 

L15: Channel Coding 



12 

CSE 3213, W14 23 

•  Codes continuously 
–  good for streaming, don’t have to pause to collect blocks of bits 

•  Data is shifted through registers 
–  output depends on present and past inputs (state-machine) 
–  this redundancy achieves the necessary coding 

•  NASA convolutional code (Voyager) 
–  (2,1), r = ½ 
–  constraint length = 7 
–  GSM, 802.11 

•  Trellis decoding 
–  Viterbi algorithm 

Convolutional Codes 

L15: Channel Coding 

SEC. 3.2 ERROR DETECTION AND CORRECTION 207

process. When a codeword arrives, the receiver redoes the check bit computa-
tions including the values of the received check bits. We call these the check re-
sults. If the check bits are correct then, for even parity sums, each check result
should be zero. In this case the codeword is accepted as valid.

If the check results are not all zero, however, an error has been detected. The
set of check results forms the error syndrome that is used to pinpoint and correct
the error. In Fig. 3-6, a single-bit error occurred on the channel so the check re-
sults are 0, 1, 0, and 1 for k = 8, 4, 2, and 1, respectively. This gives a syndrome
of 0101 or 4 + 1=5. By the design of the scheme, this means that the fifth bit is in
error. Flipping the incorrect bit (which might be a check bit or a data bit) and dis-
carding the check bits gives the correct message of an ASCII ‘‘A.’’

Hamming distances are valuable for understanding block codes, and Ham-
ming codes are used in error-correcting memory. However, most networks use
stronger codes. The second code we will look at is a convolutional code. This
code is the only one we will cover that is not a block code. In a convolutional
code, an encoder processes a sequence of input bits and generates a sequence of
output bits. There is no natural message size or encoding boundary as in a block
code. The output depends on the current and previous input bits. That is, the
encoder has memory. The number of previous bits on which the output depends is
called the constraint length of the code. Convolutional codes are specified in
terms of their rate and constraint length.

Convolutional codes are widely used in deployed networks, for example, as
part of the GSM mobile phone system, in satellite communications, and in 802.11.
As an example, a popular convolutional code is shown in Fig. 3-7. This code is
known as the NASA convolutional code of r = 1/2 and k = 7, since it was first
used for the Voyager space missions starting in 1977. Since then it has been
liberally reused, for example, as part of 802.11.

Input
bit

Output
bit 1

S1 S2 S3 S4 S5 S6

Output
bit 2

Figure 3-7. The NASA binary convolutional code used in 802.11.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the
right-hand side that are XOR sums of the input and internal state. Since it deals
with bits and performs linear operations, this is a binary, linear convolutional
code. Since 1 input bit produces 2 output bits, the code rate is 1/2. It is not sys-
tematic since none of the output bits is simply the input bit.

[Tanenbaum11] 

CSE 3213, W14 24 

•  Turbo codes, 1993 
–  two codes generated and interleaved 
–  two decoders work iteratively to decode message 
–  close to Shannon limit 

•  Low Density Parity Check, 1962 & 2003 
–  block code 
–  each output bit formed from only a fraction of input bits 
–  iteratively re-assembled 
–  rapidly being incorporated (no IP issues) 

•  digital video, 10 Gbps ethernet, power line, latest 802.11 

Recent Iterative Codes 

L15: Channel Coding 


