
1

CSE 3213, W14 1

L5: Internet Application Topology

Sebastian Magierowski
York University

SC/CSE 3213 Winter 2014

L5: Application Topology

CSE 3213, W14 2

•  Client/Server
•  Server Farms
•  Content Distribution Networks (CDNs)
•  P2P

Outline

L5: Application Topology

2

CSE 3213, W14 3

•  Hosts on the internet have a number of different ways of
exchanging information

•  We focus on systems capable of supporting content
delivery (rather than communication per se)

–  Internet more about content than communication
–  Majority of bandwidth used to deliver stored videos
–  YouTube accounts for ~10% of Internet traffic

•  <1994: FTP & email
•  1994-2003: Web traffic
•  2003-2008: P2P traffic
•  >2008: Video streaming

–  By 2014 90% of Internet traffic predicted to be video

Information Exchange & Content Delivery

L5: Application Topology

CSE 3213, W14 4

•  A connection between two hosts
–  Server a powerful machine storing database info
–  Clients ask servers to access remote data
–  Web browsing

•  Two processes participate
–  Client side makes request
–  Server side gives reply

Client/Server

L5: Application Topology

4 INTRODUCTION CHAP. 1

database in Singapore. Networks called VPNs (Virtual Private Networks) may
be used to join the individual networks at different sites into one extended net-
work. In other words, the mere fact that a user happens to be 15,000 km away
from his data should not prevent him from using the data as though they were
local. This goal may be summarized by saying that it is an attempt to end the
‘‘tyranny of geography.’’

In the simplest of terms, one can imagine a company’s information system as
consisting of one or more databases with company information and some number
of employees who need to access them remotely. In this model, the data are stor-
ed on powerful computers called servers. Often these are centrally housed and
maintained by a system administrator. In contrast, the employees have simpler
machines, called clients, on their desks, with which they access remote data, for
example, to include in spreadsheets they are constructing. (Sometimes we will
refer to the human user of the client machine as the ‘‘client,’’ but it should be
clear from the context whether we mean the computer or its user.) The client and
server machines are connected by a network, as illustrated in Fig. 1-1. Note that
we have shown the network as a simple oval, without any detail. We will use this
form when we mean a network in the most abstract sense. When more detail is
required, it will be provided.

Client

Server

Network

Figure 1-1. A network with two clients and one server.

This whole arrangement is called the client-server model. It is widely used
and forms the basis of much network usage. The most popular realization is that
of a Web application, in which the server generates Web pages based on its data-
base in response to client requests that may update the database. The client-server
model is applicable when the client and server are both in the same building (and
belong to the same company), but also when they are far apart. For example,
when a person at home accesses a page on the World Wide Web, the same model
is employed, with the remote Web server being the server and the user’s personal

SEC. 1.1 USES OF COMPUTER NETWORKS 5

computer being the client. Under most conditions, one server can handle a large
number (hundreds or thousands) of clients simultaneously.

If we look at the client-server model in detail, we see that two processes (i.e.,
running programs) are involved, one on the client machine and one on the server
machine. Communication takes the form of the client process sending a message
over the network to the server process. The client process then waits for a reply
message. When the server process gets the request, it performs the requested
work or looks up the requested data and sends back a reply. These messages are
shown in Fig. 1-2.

Client process Server process

Client machine

Network

Reply

Request
Server machine

Figure 1-2. The client-server model involves requests and replies.

A second goal of setting up a computer network has to do with people rather
than information or even computers. A computer network can provide a powerful
communication medium among employees. Virtually every company that has
two or more computers now has email (electronic mail), which employees gener-
ally use for a great deal of daily communication. In fact, a common gripe around
the water cooler is how much email everyone has to deal with, much of it quite
meaningless because bosses have discovered that they can send the same (often
content-free) message to all their subordinates at the push of a button.

Telephone calls between employees may be carried by the computer network
instead of by the phone company. This technology is called IP telephony or
Voice over IP (VoIP) when Internet technology is used. The microphone and
speaker at each end may belong to a VoIP-enabled phone or the employee’s com-
puter. Companies find this a wonderful way to save on their telephone bills.

Other, richer forms of communication are made possible by computer net-
works. Video can be added to audio so that employees at distant locations can see
and hear each other as they hold a meeting. This technique is a powerful tool for
eliminating the cost and time previously devoted to travel. Desktop sharing lets
remote workers see and interact with a graphical computer screen. This makes it
easy for two or more people who work far apart to read and write a shared black-
board or write a report together. When one worker makes a change to an online
document, the others can see the change immediately, instead of waiting several
days for a letter. Such a speedup makes cooperation among far-flung groups of
people easy where it previously had been impossible. More ambitious forms of
remote coordination such as telemedicine are only now starting to be used (e.g.,

[©Pearson, Tanenbaum]

3

CSE 3213, W14 5

•  Multithreaded machines capable of distributing multiple
requests

•  To minimize slow disk reads web pages are cached and
accessed by each thread

Servers

L5: Application Topology

656 THE APPLICATION LAYER CHAP. 7

often the bottleneck. Disk reads are very slow compared to program execution,
and the same files may be read repeatedly from disk using operating system calls.
Another problem is that only one request is processed at a time. The file may be
large, and other requests will be blocked while it is transferred.

One obvious improvement (used by all Web servers) is to maintain a cache in
memory of the n most recently read files or a certain number of gigabytes of con-
tent. Before going to disk to get a file, the server checks the cache. If the file is
there, it can be served directly from memory, thus eliminating the disk access.
Although effective caching requires a large amount of main memory and some
extra processing time to check the cache and manage its contents, the savings in
time are nearly always worth the overhead and expense.

To tackle the problem of serving a single request at a time, one strategy is to
make the server multithreaded . In one design, the server consists of a front-end
module that accepts all incoming requests and k processing modules, as shown in
Fig. 7-21. The k + 1 threads all belong to the same process, so the processing
modules all have access to the cache within the process’ address space. When a
request comes in, the front end accepts it and builds a short record describing it.
It then hands the record to one of the processing modules.

Processing
module
(thread)

CacheFront end

Disk
Request

ResponseClient

Server

Figure 7-21. A multithreaded Web server with a front end and processing modules.

The processing module first checks the cache to see if the file needed is there.
If so, it updates the record to include a pointer to the file in the record. If it is not
there, the processing module starts a disk operation to read it into the cache (pos-
sibly discarding some other cached file(s) to make room for it). When the file
comes in from the disk, it is put in the cache and also sent back to the client.

The advantage of this scheme is that while one or more processing modules
are blocked waiting for a disk or network operation to complete (and thus con-
suming no CPU time), other modules can be actively working on other requests.
With k processing modules, the throughput can be as much as k times higher than
with a single-threaded server. Of course, when the disk or network is the limiting

[©Pearson, Tanenbaum]

CSE 3213, W14 6

•  For popular requests need more than one server
–  Link them all to a common database backend to make them all

serve the same files

–  How do you distribute queries among the servers?

Server Farms

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 739

be achieved with better caching techniques. In particular, proxy caches provide a
large shared cache for a group of clients.

We will describe each of these techniques in turn. However, note that neither
technique is sufficient to build the largest Web sites. Those popular sites require
the content distribution methods that we describe in the following sections, which
combine computers at many different locations.

Server Farms

No matter how much bandwidth one machine has, it can only serve so many
Web requests before the load is too great. The solution in this case is to use more
than one computer to make a Web server. This leads to the server farm model of
Fig. 7-65.

Front end

Backend
database

Internet
access

Clients

ServersServer farm

Balances load
across servers

Figure 7-65. A server farm.

The difficulty with this seemingly simple model is that the set of computers
that make up the server farm must look like a single logical Web site to clients. If
they do not, we have just set up different Web sites that run in parallel.

There are several possible solutions to make the set of servers appear to be
one Web site. All of the solutions assume that any of the servers can handle a re-
quest from any client. To do this, each server must have a copy of the Web site.
The servers are shown as connected to a common back-end database by a dashed
line for this purpose.

One solution is to use DNS to spread the requests across the servers in the ser-
ver farm. When a DNS request is made for the Web URL, the DNS server returns
a rotating list of the IP addresses of the servers. Each client tries one IP address,
typically the first on the list. The effect is that different clients contact different
servers to access the same Web site, just as intended. The DNS method is at the
heart of CDNs, and we will revisit it later in this section.

The other solutions are based on a front end that sprays incoming requests
over the pool of servers in the server farm. This happens even when the client

[©Pearson, Tanenbaum]

4

CSE 3213, W14 7

•  Have a front end router distribute requests to servers
–  All packets of request must be directed to the one correct server

•  A Simple Approach:
–  Front end broadcasts packets and servers respond to only a

fraction of requests by prior agreement
•  E.g.: 16 servers respond to request based on last 4-bits of source IP
•  Broadcast is wasteful of bandwidth (but not horrible)

•  Load Balancing (violating layer isolation):
–  Front end (middlebox) snoops higher layer headers (TCP/HTTP)

and maps to a server of its choice
•  TCP helps identify individual users
•  HTTP contains cookies which can be used to extract cached data from

a previously used server
•  Dangerous to look at higher layers

Request Distribution

L5: Application Topology

CSE 3213, W14 8

•  Individual user browsers can cache
–  Relatively small storage

•  To reduce traffic large organizations and ISPs can cache
as well: web proxy shares a cache among users

–  Typically set up for
an organization
•  Company
•  ISP

•  Share cache among multiple users

–  One request stores in cache, ensuing requests just query cache
–  Not effective for dynamic pages

Caching & Web Proxies

L5: Application Topology

742 THE APPLICATION LAYER CHAP. 7

When a proxy is used, the typical setup is for an organization to operate one
Web proxy for all of its users. The organization might be a company or an ISP.
Both stand to benefit by speeding up Web requests for its users and reducing its
bandwidth needs. While flat pricing, independent of usage, is common for end
users, most companies and ISPs are charged according to the bandwidth that they
use.

This setup is shown in Fig. 7-66. To use the proxy, each browser is configu-
red to make page requests to the proxy instead of to the page’s real server. If the
proxy has the page, it returns the page immediately. If not, it fetches the page
from the server, adds it to the cache for future use, and returns it to the client that
requested it.

Clients

Servers

Browser cache

Organization

Proxy cache

Internet

Figure 7-66. A proxy cache between Web browsers and Web servers.

As well as sending Web requests to the proxy instead of the real server, cli-
ents perform their own caching using its browser cache. The proxy is only con-
sulted after the browser has tried to satisfy the request from its own cache. That is,
the proxy provides a second level of caching.

Further proxies may be added to provide additional levels of caching. Each
proxy (or browser) makes requests via its upstream proxy. Each upstream proxy
caches for the downstream proxies (or browsers). Thus, it is possible for brow-
sers in a company to use a company proxy, which uses an ISP proxy, which con-
tacts Web servers directly. However, the single level of proxy caching we have
shown in Fig. 7-66 is often sufficient to gain most of the potential benefits, in
practice. The problem again is the long tail of popularity. Studies of Web traffic
have shown that shared caching is especially beneficial until the number of users
reaches about the size of a small company (say, 100 people). As the number of
people grows larger, the benefits of sharing a cache become marginal because of
the unpopular requests that cannot be cached due to lack of storage space (Wol-
man et al., 1999).

Web proxies provide additional benefits that are often a factor in the decision
to deploy them. One benefit is to filter content. The administrator may configure

[©Pearson, Tanenbaum]

5

CSE 3213, W14 9

•  For giant websites serving on global scale, outsource
content to a CDN

–  Akamai the pioneer in this since 1998

•  Provider places copy of page in a set of nodes and
directs client to nearest node

–  Clients fetch from local server
–  Not origin server

Content Delivery Networks (CDNs)

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 743

the proxy to blacklist sites or otherwise filter the requests that it makes. For ex-
ample, many administrators frown on employees watching YouTube videos (or
worse yet, pornography) on company time and set their filters accordingly. An-
other benefit of having proxies is privacy or anonymity, when the proxy shields
the identity of the user from the server.

7.5.3 Content Delivery Networks

Server farms and Web proxies help to build large sites and to improve Web
performance, but they are not sufficient for truly popular Web sites that must
serve content on a global scale. For these sites, a different approach is needed.

CDNs (Content Delivery Networks) turn the idea of traditional Web caching
on its head. Instead, of having clients look for a copy of the requested page in a
nearby cache, it is the provider who places a copy of the page in a set of nodes at
different locations and directs the client to use a nearby node as the server.

An example of the path that data follows when it is distributed by a CDN is
shown in Fig. 7-67. It is a tree. The origin server in the CDN distributes a copy of
the content to other nodes in the CDN, in Sydney, Boston, and Amsterdam, in this
example. This is shown with dashed lines. Clients then fetch pages from the
nearest node in the CDN. This is shown with solid lines. In this way, the clients
in Sydney both fetch the page copy that is stored in Sydney; they do not both fetch
the page from the origin server, which may be in Europe.

CDN origin
server

CDN node

Sydney Boston Amsterdam

Distribution to
CDN nodes

Page
fetch

Worldwide clients

Figure 7-67. CDN distribution tree.

Using a tree structure has three virtues. First, the content distribution can be
scaled up to as many clients as needed by using more nodes in the CDN, and more
levels in the tree when the distribution among CDN nodes becomes the
bottleneck. No matter how many clients there are, the tree structure is efficient.
The origin server is not overloaded because it talks to the many clients via the tree

CSE 3213, W14 10

•  Origin is not overloaded by multitude of client requests
•  Each client gets good performance by fetching from local

server
•  Total load decreased

–  Despite multiple queries information is brought to a leaf node only
once

Benefits of CDN Tree

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 743

the proxy to blacklist sites or otherwise filter the requests that it makes. For ex-
ample, many administrators frown on employees watching YouTube videos (or
worse yet, pornography) on company time and set their filters accordingly. An-
other benefit of having proxies is privacy or anonymity, when the proxy shields
the identity of the user from the server.

7.5.3 Content Delivery Networks

Server farms and Web proxies help to build large sites and to improve Web
performance, but they are not sufficient for truly popular Web sites that must
serve content on a global scale. For these sites, a different approach is needed.

CDNs (Content Delivery Networks) turn the idea of traditional Web caching
on its head. Instead, of having clients look for a copy of the requested page in a
nearby cache, it is the provider who places a copy of the page in a set of nodes at
different locations and directs the client to use a nearby node as the server.

An example of the path that data follows when it is distributed by a CDN is
shown in Fig. 7-67. It is a tree. The origin server in the CDN distributes a copy of
the content to other nodes in the CDN, in Sydney, Boston, and Amsterdam, in this
example. This is shown with dashed lines. Clients then fetch pages from the
nearest node in the CDN. This is shown with solid lines. In this way, the clients
in Sydney both fetch the page copy that is stored in Sydney; they do not both fetch
the page from the origin server, which may be in Europe.

CDN origin
server

CDN node

Sydney Boston Amsterdam

Distribution to
CDN nodes

Page
fetch

Worldwide clients

Figure 7-67. CDN distribution tree.

Using a tree structure has three virtues. First, the content distribution can be
scaled up to as many clients as needed by using more nodes in the CDN, and more
levels in the tree when the distribution among CDN nodes becomes the
bottleneck. No matter how many clients there are, the tree structure is efficient.
The origin server is not overloaded because it talks to the many clients via the tree

6

CSE 3213, W14 11

•  How do you implement this?
•  Can the leafs be caching web proxies?

–  Caching has poor performance when serving more than ~100
clients
•  Statistical nature of web searches has long tail (Zipf distribution)

–  Proxies are configured by clients…
•  …their activity controls caching

•  Mirrors?
–  Replicate content over nodes in different regions
–  Structurally ok, but a static approach that depends on users to do

the distribution as they are different websites

•  The third approach…

CDN Implementation

L5: Application Topology

CSE 3213, W14 12

•  CDN runs the name servers
–  When a client’s web page is looking for an IP address…
–  …they are directed by the CDN name server based on their own IP

address

•  For example…
–  Sydney request gets prompted to Sydney CDN node by CDN DNS
–  Future requests return to Sydney CDN by virtue of DNS caching

…DNS Redirection

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 745

different answers. The answer will be the IP address of the CDN node that is
nearest the client. That is, if a client in Sydney asks the CDN name server to
resolve www.cdn.com, the name server will return the IP address of the Sydney
CDN node, but if a client in Amsterdam makes the same request, the name server
will return the IP address of the Amsterdam CDN node instead.

This strategy is perfectly legal according to the semantics of DNS. We have
previously seen that name servers may return changing lists of IP addresses. After
the name resolution, the Sydney client will fetch the page directly from the Syd-
ney CDN node. Further pages on the same ‘‘server’’ will be fetched directly from
the Sydney CDN node as well because of DNS caching. The overall sequence of
steps is shown in Fig. 7-68.

CDN origin
server

2: Query DNS
CDN DNS

server

Amsterdam
CDN node

Sydney
CDN node

3: “Contact Sydney” “Contact Amsterdam”

4: Fetch
page

1: Distribute content

Sydney clients Amsterdam clients

Figure 7-68. Directing clients to nearby CDN nodes using DNS.

A complex question in the above process is what it means to find the nearest
CDN node, and how to go about it. To define nearest, it is not really geography
that matters. There are at least two factors to consider in mapping a client to a
CDN node. One factor is the network distance. The client should have a short and
high-capacity network path to the CDN node. This situation will produce quick
downloads. CDNs use a map they have previously computed to translate between
the IP address of a client and its network location. The CDN node that is selected
might be the one at the shortest distance as the crow flies, or it might not. What
matters is some combination of the length of the network path and any capacity
limits along it. The second factor is the load that is already being carried by the
CDN node. If the CDN nodes are overloaded, they will deliver slow responses,
just like the overloaded Web server that we sought to avoid in the first place.
Thus, it may be necessary to balance the load across the CDN nodes, mapping
some clients to nodes that are slightly further away but more lightly loaded.

The techniques for using DNS for content distribution were pioneered by
Akamai starting in 1998, when the Web was groaning under the load of its early

7

CSE 3213, W14 13

•  The CDN DNS redirection is based on sophisticated
algorithms

–  mapping client IP to CDN node
•  distance, capacity, CDN load balance, etc.

•  Each node consists of many servers
–  DNS redirection not only takes clients to a certain location
–  Another level of the algorithm also distributes them to the

appropriate servers

CDN Redirection

L5: Application Topology

CSE 3213, W14 14

•  Companies pay CDN to deliver responsive websites
•  CDN nodes placed inside locations with good

connectivity
–  ISPs

•  ISP benefits because CDN cuts down on their upstream bandwidth
(e.g. through Tier-1) and hence saves $$$

•  Improves ISP responsiveness (makes ISP look good)

•  Owner gives CDN website content and re-writes code to
link through CDN

–  Owner retains control, CDN moves bulk of data
•  Trailer

•  Trailer

•  Akamai: 137,000 servers, 87 countries, in 1150 networks

CDN Implementation

L5: Application Topology

8

CSE 3213, W14 15

•  Napster, 1999
•  BitTorrent, 2001
•  Many computers pool resources to form content

distribution system
•  Peers

–  Computers can alternately act as clients and servers to their peers

•  No dedicated infrastructure like CDN
•  Often no central point of control

Peer-to-Peer (P2P) Networks

L5: Application Topology

CSE 3213, W14 16

•  N distributed users with M rate duplex lines can form N•M
rate duplex throughput through network

•  Consider a basic organization
–  N users in a binary connected tree
–  A file is fed from the top node and uploaded to all remaining nodes

in a pipelined fashion
–  Total upload bandwidth is?
–  Swap role of leaf and non-leaf nodes

•  Self-scaling
–  Usable throughput grows with download demand (i.e. number of

users)

•  Other structure throughputs are fixed
–  Consider 100, 10-Gbps nodes

P2P Throughput

L5: Application Topology

9

CSE 3213, W14 17

•  3 Main problems to solve:
–  How to find other peers with desired content

•  Not all peers will have all content initially
–  How to replicate content to provide high-speed download for all

•  How to best diffuse content through the network
–  How to encourage both upload for others while downloading for

self
•  Maintain cooperation

BitTorrent Protocol

L5: Application Topology

CSE 3213, W14 18

–  Torrent
•  Get torrent from a web page advertising the content
•  ~1000X smaller than content

–  Specifies 2 kinds of information
•  Tracker: Server maintaining list of all peers involved in network (swarm)
•  Chunk name list: equal sized pieces making up the content

–  Swarm regularly updates tracker on their presence

Finding Peers

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 751

content, and is used by a peer to verify the integrity of the data that it downloads
from other peers. Other users who want to download the content must first obtain
the torrent, say, by finding it on a Web page advertising the content.

The torrent is just a file in a specified format that contains two key kinds of
information. One kind is the name of a tracker, which is a server that leads peers
to the content of the torrent. The other kind of information is a list of equal-sized
pieces, or chunks, that make up the content. Different chunk sizes can be used for
different torrents, typically 64 KB to 512 KB. The torrent file contains the name
of each chunk, given as a 160-bit SHA-1 hash of the chunk. We will cover
cryptographic hashes such as SHA-1 in Chap. 8. For now, you can think of a hash
as a longer and more secure checksum. Given the size of chunks and hashes, the
torrent file is at least three orders of magnitude smaller than the content, so it can
be transferred quickly.

To download the content described in a torrent, a peer first contacts the
tracker for the torrent. The tracker is a server that maintains a list of all the other
peers that are actively downloading and uploading the content. This set of peers
is called a swarm. The members of the swarm contact the tracker regularly to
report that they are still active, as well as when they leave the swarm. When a
new peer contacts the tracker to join the swarm, the tracker tells it about other
peers in the swarm. Getting the torrent and contacting the tracker are the first two
steps for downloading content, as shown in Fig. 7-70.

Seed
peer

Unchoked
peers

Tracker

Torrent

Peer

1: Get torrent
metafile

2: Get peers
from tracker

3: Trade chunks
with peers

Source of
content

Figure 7-70. BitTorrent.

The second problem is how to share content in a way that gives rapid down-
loads. When a swarm is first formed, some peers must have all of the chunks that
make up the content. These peers are called seeders. Other peers that join the
swarm will have no chunks; they are the peers that are downloading the content.

While a peer participates in a swarm, it simultaneously downloads chunks that
it is missing from other peers, and uploads chunks that it has to other peers who

10

CSE 3213, W14 19

•  Seeders have the whole file
–  If everyone got seeded chunks in same order bottlenecks would

occur

•  Peers exchange lists of owned chunks with other peers
–  Select rare chunks that are hard to find for download
–  Downloading a rare chunk creates a copy of it and makes it easier

for others to find

Sharing Content for Rapid Download

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 751

content, and is used by a peer to verify the integrity of the data that it downloads
from other peers. Other users who want to download the content must first obtain
the torrent, say, by finding it on a Web page advertising the content.

The torrent is just a file in a specified format that contains two key kinds of
information. One kind is the name of a tracker, which is a server that leads peers
to the content of the torrent. The other kind of information is a list of equal-sized
pieces, or chunks, that make up the content. Different chunk sizes can be used for
different torrents, typically 64 KB to 512 KB. The torrent file contains the name
of each chunk, given as a 160-bit SHA-1 hash of the chunk. We will cover
cryptographic hashes such as SHA-1 in Chap. 8. For now, you can think of a hash
as a longer and more secure checksum. Given the size of chunks and hashes, the
torrent file is at least three orders of magnitude smaller than the content, so it can
be transferred quickly.

To download the content described in a torrent, a peer first contacts the
tracker for the torrent. The tracker is a server that maintains a list of all the other
peers that are actively downloading and uploading the content. This set of peers
is called a swarm. The members of the swarm contact the tracker regularly to
report that they are still active, as well as when they leave the swarm. When a
new peer contacts the tracker to join the swarm, the tracker tells it about other
peers in the swarm. Getting the torrent and contacting the tracker are the first two
steps for downloading content, as shown in Fig. 7-70.

Seed
peer

Unchoked
peers

Tracker

Torrent

Peer

1: Get torrent
metafile

2: Get peers
from tracker

3: Trade chunks
with peers

Source of
content

Figure 7-70. BitTorrent.

The second problem is how to share content in a way that gives rapid down-
loads. When a swarm is first formed, some peers must have all of the chunks that
make up the content. These peers are called seeders. Other peers that join the
swarm will have no chunks; they are the peers that are downloading the content.

While a peer participates in a swarm, it simultaneously downloads chunks that
it is missing from other peers, and uploads chunks that it has to other peers who

CSE 3213, W14 20

•  Reward peers with good upload behaviour
–  Peer randomly chooses other peers for upload/download
–  Converge on small number of peers that provide best download

•  I.e. if your random choice is bad, stop trading chunks with it
•  But continue randomly searching for better peers

–  If you are not uploading you will tend to be cutoff
•  Download tends to match upload

Upload/Download Balance

L5: Application Topology

SEC. 7.5 CONTENT DELIVERY 751

content, and is used by a peer to verify the integrity of the data that it downloads
from other peers. Other users who want to download the content must first obtain
the torrent, say, by finding it on a Web page advertising the content.

The torrent is just a file in a specified format that contains two key kinds of
information. One kind is the name of a tracker, which is a server that leads peers
to the content of the torrent. The other kind of information is a list of equal-sized
pieces, or chunks, that make up the content. Different chunk sizes can be used for
different torrents, typically 64 KB to 512 KB. The torrent file contains the name
of each chunk, given as a 160-bit SHA-1 hash of the chunk. We will cover
cryptographic hashes such as SHA-1 in Chap. 8. For now, you can think of a hash
as a longer and more secure checksum. Given the size of chunks and hashes, the
torrent file is at least three orders of magnitude smaller than the content, so it can
be transferred quickly.

To download the content described in a torrent, a peer first contacts the
tracker for the torrent. The tracker is a server that maintains a list of all the other
peers that are actively downloading and uploading the content. This set of peers
is called a swarm. The members of the swarm contact the tracker regularly to
report that they are still active, as well as when they leave the swarm. When a
new peer contacts the tracker to join the swarm, the tracker tells it about other
peers in the swarm. Getting the torrent and contacting the tracker are the first two
steps for downloading content, as shown in Fig. 7-70.

Seed
peer

Unchoked
peers

Tracker

Torrent

Peer

1: Get torrent
metafile

2: Get peers
from tracker

3: Trade chunks
with peers

Source of
content

Figure 7-70. BitTorrent.

The second problem is how to share content in a way that gives rapid down-
loads. When a swarm is first formed, some peers must have all of the chunks that
make up the content. These peers are called seeders. Other peers that join the
swarm will have no chunks; they are the peers that are downloading the content.

While a peer participates in a swarm, it simultaneously downloads chunks that
it is missing from other peers, and uploads chunks that it has to other peers who

