
1

CSE 4313
Software Engineering: Testing

Vassilios Tzerpos
bil@cse.yorku.ca

What is testing?

A technical investigation
done to expose

quality-related information
about the product

under test

Defining Testing
n  A technical

n  Logic, mathematics, models, tools
n  investigation

n  An organized and thorough search for
information.

n  We ask hard questions (aka run hard test cases)
and look carefully at the results.

n  done to expose quality-related
information
n  see the next slide

n  about the product under test.

Information Objectives

n  Find important bugs, to get them fixed
n  Check interoperability with other products
n  Help managers make ship/no-ship decisions
n  Block premature product releases
n  Minimize technical support costs
n  Assess conformance to specification
n  Conform to regulations
n  Minimize safety-related lawsuit risk
n  Find safe scenarios for use of the product

Different
objectives

require
different

testing strategies
and will yield

different tests,
different test

documentation
and different test

results.

Our goal
n  Learn testing techniques and the situations in

which they apply
n  Practice with real testing tools and

frameworks
n  Learn how to produce quality problem reports
n  Study special issues for object-oriented

systems
n  Understand the importance of systematic

testing

Tools - Eclipse

n  IDE for Java development
n  Works seamlessly with Junit for unit

testing
n  Open source – Download from

www.eclipse.org
n  In the lab, do: eclipse
n  Try it with your own Java code

2

Tools - Junit
n  A framework for automated unit testing

of Java code
n  Written by Erich Gamma (of Design

Patterns fame) and Kent Beck (creator
of XP methodology)

n  Uses Java 5 features such as
annotations and static imports

n  Download from www.junit.org

A first example
n  Test ADDER:

n  Adds two numbers
that the user enters

n  Each number should
be one or two digits

n  The program echoes
the entries, then
prints the sum.

n  Press <ENTER> after
each number

n  Screen for a test run

? 2
? 3
5

?

Immediate issues

n  Nothing shows what this program is.
You don’t even know you run the right
program.

n  No on-screen instructions.
n  How do you stop the program?
n  The 5 should probably line up with the

2 and 3.

A first set of test cases

99 + 99 -99 + -99
99 + 56 56 + 99
99 + -14 -14 + 99
38 + -99 -99 + 38
-99 + -43 -43 + -99
9 + 9 0 + 0
0 + 23 -23 + 0

Choosing test cases
n  Not all test cases are significant.
n  Impossible to test everything (this simple

program has 39,601 possible different test
cases).

n  If you expect the same result from two tests,
they belong to the same class. Use only one
of them.

n  When you choose representatives of a class
for testing, pick the ones most likely to fail.

Further test cases

100 + 100
<Enter> + <Enter>
123456 + 0
1.2 + 5
A + b
<CTRL-C> + <CTRL-D>
<F1> + <Esc>

3

Other things to consider
n  Storage for the two inputs or the sum

n  127 or 128 can be an important boundary
case

n  Test cases with extra whitespace
n  Test cases involving <Backspace>
n  The order of the test cases might

matter
n  E.g. <Enter> + <Enter>

An object-oriented example

n  Input: Three integers, a, b, c, the
lengths of the side of a triangle

n  Output: Scalene, isosceles, equilateral,
invalid

Test case classes
n  Valid scalene, isosceles, equilateral triangle
n  All permutations of two equal sides
n  Zero or negative lengths
n  All permutations of a + b < c
n  All permutations of a + b = c
n  All permutations of a = b and a + b = c
n  MAXINT values
n  Non-integer inputs

Example implementation
class Triangle{
 public Triangle(LineSegment a, LineSegment b,
 LineSegment c)
 public boolean is_isosceles()
 public boolean is_scalene()
 public boolean is_equilateral()
 public void draw()
 public void erase()

}
class LineSegment {
 public LineSegment(int x1, int y1,

 int x2, int y2)
}

Extra Tests
n  Is the constructor correct?
n  Is only one of the is_* methods true in

every case?
n  Do results repeat, e.g. when running
is_scalene twice or more?

n  Results change after draw or erase?
n  Segments that do not intersect or form

an interior triangle

Inheritance tests
n  Tests that apply to all

Figure objects must still
work for Triangle
objects

n  Tests that apply to all
ClosedFigure objects
must still work for
Triangle objects

Triangle

Figure

ClosedFigure

4

Testing limits
n  Dijkstra: “Program Testing can be

used to show the presence of
defects, but never their absence”.

n  It is impossible to fully test a
software system in a reasonable
amount of time or money

n  “When is testing complete? When
you run out of time or money.”

Complete testing
n  What do we mean by "complete testing"?

n  Complete "coverage": Tested every line/path?
n  Testers not finding new bugs?
n  Test plan complete?

n  Complete testing must mean that, at the end
of testing, you know there are no remaining
unknown bugs.

n  After all, if there are more bugs, you can find
them if you do more testing. So testing
couldn't yet be "complete."

Complete coverage?
n  What is coverage?

n  Extent of testing of certain attributes or pieces of
the program, such as statement coverage or
branch coverage or condition coverage.

n  Extent of testing completed, compared to a
population of possible tests.

n  Why is complete coverage impossible?
n  Domain of possible inputs is too large.
n  Too many possible paths through the program.

Measuring and achieving high
coverage

n  Coverage measurement is a good tool
to show how far you are from
complete testing.

n  But it’s a lousy tool for investigating
how close you are to completion.

Testers live and breathe
tradeoffs
n  The time needed for test-related tasks is

infinitely larger than the time available.
n  Example: Time you spend on

n  Analyzing, troubleshooting, and effectively
describing a failure

n  Is time no longer available for
n  Designing tests Documenting tests
n  Executing tests Automating tests
n  Reviews, inspections Training other staff

The infinite set of tests
n  There are enormous numbers of possible

tests. To test everything, you would have to:
n  Test every possible input to every variable.
n  Test every possible combination of inputs to every

combination of variables.
n  Test every possible sequence through the

program.
n  Test every hardware / software configuration,

including configurations of servers not under your
control.

n  Test every way in which any user might try to use
the program.

5

Testing valid inputs (an example)

n  MASPAR is a parallel computer used for mission-
critical and life-critical applications.
n  To test the 32-bit integer square root function, all

4,294,967,296 values were checked. This took 6 minutes.
n  There were 2 (two) errors, neither of them near any

boundary.
n  The underlying error was that a bit was sometimes mis-set, but

in most error cases, there was no effect on the final calculated
result.

n  Without an exhaustive test, these errors probably wouldn’t
have shown up.

n  What about the 64-bit integer square root? How could we
find the time to run all of these?

Testing valid inputs

n  There were 39,601 possible valid inputs
in ADDER

n  In the Triangle example, assuming only
integers from 1 to 10, there are 104
possibilities for a segment, and 1012 for
a triangle. Testing 1000 cases per
second, you would need 317 years!

Testing invalid inputs

n  The error handling aspect of the system
must also be triggered with invalid
inputs

n  Anything you can enter with a keyboard
must be tried. Letters, control
characters, combinations of these,
question marks, too long strings etc…

Testing edited inputs

n  Need to test that editing works (if
allowed by the spec)

n  Test that any character can be changed
into any other

n  Test repeated editing
n  Long strings of key presses followed by

<Backspace> have been known to crash
buffered input systems

Testing input timing variations
n  Try entering the data very quickly, or very

slowly.
n  Do not wait for the prompt to appear
n  Enter data before, after, and during the

processing of some other event, or just as the
time-out interval for this data item is about to
expire.

n  Race conditions between events often leads
to bugs that are hard to reproduce

Combination testing
n  Example 1: a program crashed when attempting to

print preview a high resolution (back then, 600x600
dpi) output on a high resolution screen. The option
selections for printer resolution and screen resolution
were interacting.

n  Example 2: American Airlines couldn’t print tickets if a
string concatenating the fares associated with all
segments was too long.

n  Example 3: Memory leak in WordStar if text was
marked Bold/Italic (rather than Italic/Bold)

6

What if you don’t test all
possible inputs?
n  Based on the test cases chosen, an

implementation that passes all tests but
fails on a missed test case can be
created.

n  If it can be done on purpose, it can be
done accidentally too.
n  A word processor had trouble with large

files that were fragmented on the disk
(would suddenly lose whole paragraphs)

Testing all paths in the system

A

B

C

D

E

F

G

H

I

X EXIT

< 20 times
through the
loop

Here’s an example that shows that there are too many paths to
test in even a fairly simple program. This is from Myers, The Art
of Software Testing.

Number of paths
n  One path is ABX-Exit. There are 5 ways to get to X

and then to the EXIT in one pass.
n  Another path is ABXACDFX-Exit. There are 5 ways to

get to X the first time, 5 more to get back to X the
second time, so there are 5 x 5 = 25 cases like this.

n  There are 51 + 52 + ... + 519 + 520 = 1014 = 100
trillion paths through the program.

n  It would take only a billion years to test every path (if
one could write, execute and verify a test case every
five minutes).

Further difficulties for testers

n  Testing cannot verify requirements.
Incorrect or incomplete requirements
may lead to spurious tests

n  Bugs in test design or test drivers are
equally hard to find

n  Expected output for certain test cases
might be hard to determine

Conclusion

n  Complete testing is impossible
n  There is no simple answer for this.
n  There is no simple, easily automated,

comprehensive oracle to deal with it.

n  Therefore testers live and breathe
tradeoffs.

