Equivalence Class Testing

Chapter 6

Introduction

- Boundary Value Testing derives test cases with
- Massive redundancy
- Serious gaps
- Equivalence Class Testing attempts to alleviate these problems
- Two orthogonal dimensions
- Robustness
- Single/Multiple Fault Assumption

Equivalence Class Testing

- Partition the set of all test cases into mutually disjoint subsets whose union is the entire set
- Choose one test case from each subset
- Two important implications for testing:

1. The fact that the entire set is represented provides a form of completeness
2. The disjointness assures a form of nonredundancy

Equivalence Class Selection

- If the equivalence classes are chosen wisely, the potential redundancy among test cases is greatly reduced.
- The key point in equivalence class testing is the choice of the equivalence relation that determines the classes.
- We will differentiate below, between four different types of equivalence class testing.

Applicability

- Equivalence Class Testing is appropriate when the system under test can be expressed as a function of one or more variables, whose domains have well defined intervals
- For a two-variable function $\mathrm{F}(\mathrm{x} 1, \mathrm{x} 2)$
$a \leq x_{1} \leq d$, with intervals $[a, b),[b, c),[c, d]$
$e \leq x_{2} \leq g$, with intervals [e,f), $[f, g]$

Weak Normal ECT

Strong Normal ECT

Weak Robust ECT

Strong Robust ECT

Triangle Equivalence Classes

- Four possible outputs:
- Not a Triangle, Isosceles, Equilateral, Scalene
- We can use these to identify output (range) equivalence classes:
$R 1=\{$ the triangle with sides a, b, c, is equilateral\}
$R 2=$ \{the triangle with sides a, b, c, is isosceles\}
$R 3=\{$ the triangle with sides a, b, c, is scalene $\}$
$R 4=\{$ sides a, b, c do not form a triangle $\}$

Weak Normal Test Cases

Test Case	a	b	c	Expected Output
WN1	5	5	5	Equilateral
WN2	2	2	3	Isosceles
WN3	3	4	5	Scalene
WN4	4	1	2	Not a Triangle

Weak Robust Test Cases

Test Case	a	b	c	Expected Output
WR1	-1	5	5	a not in range
WR2	5	-1	5	b not in range
WR3	5	5	-1	c not in range
WR4	201	5	5	a not in range
WR5	5	201	5	b not in range
WR6	5	5	201	c not in range

Input equivalence classes

$D 1=\{\langle a, b, c>| a=b=c\}$
$D 2=\{\langle a, b, c\rangle \mid a=b, a \neq c\}$
$D 3=\{\langle a, b, c\rangle \mid a=c, a \neq b\}$
D4 $=\{\langle a, b, c\rangle \mid b=c, a \neq b\}$
D5 $=\{\langle a, b, c\rangle \mid a \neq b, a \neq c, b \neq c\}$
D6= $\{\langle a, b, c\rangle \mid a \geq b+c\}$
D7= $\{\langle a, b, c\rangle \mid b \geq a+c\}$
$D 8=\{\langle a, b, c\rangle \mid c \geq a+b\}$

NextDate Equivalence Classes

$$
\begin{aligned}
& \text { M1 }=\{\text { month } \mid \text { month has } 30 \text { days }\} \\
& \text { M2 }=\{\text { month } \mid \text { month has } 31 \text { days }\} \\
& \text { M3 }=\{\text { month } \mid \text { month is February }\} \\
& \text { D1 }=\{\text { day } \mid 1 \leq \text { day } \leq 28\} \\
& \text { D2 }=\{\text { day } \mid \text { day }=29\} \\
& \text { D3 }=\{\text { day } \mid \text { day }=30\} \\
& \text { D4 }=\{\text { day } \mid \text { day }=31\} \\
& \mathrm{Y} 1=\{\text { year } \mid \text { year }=1900\} \\
& \mathrm{Y} 2=\{\text { year } \mid \text { year is a leap year }\} \\
& \mathrm{Y} 3=\{\text { year } \mid \text { year is a common year }\}
\end{aligned}
$$

Weak Normal Test Cases

Test Case	Month	Day	Year	Expected Output
WN1	6	14	1900	$6 / 15 / 1900$
WN2	7	29	1996	$7 / 30 / 1996$
WN3	2	30	2002	Invalid input date
WN4	6	31	1900	Invalid input date

NextDate discussion

- There are 36 strong normal test cases ($3 \times 4 \times 3$)
- Some redundancy creeps in
- Testing February 30 and 31 for three different types of years seems unlikely to reveal errors
- There are 150 strong robust test cases (5 x 6×5)

Guidelines and observations

- Equivalence Class Testing is appropriate when input data is defined in terms of intervals and sets of discrete values.
- Equivalence Class Testing is strengthened when combined with Boundary Value Testing
- Strong equivalence takes the presumption that variables are independent. If that is not the case, redundant test cases may be generated

Guidelines and observations

- Complex functions, such as the NextDate program, are well-suited for Equivalence Class Testing
- Several tries may be required before the "right" equivalence relation is discovered

