Equivalence Class Testing

Chapter 6

Introduction

- Boundary Value Testing derives test cases with
 - Massive redundancy
 - Serious gaps
- Equivalence Class Testing attempts to alleviate these problems
- Two orthogonal dimensions
 - Robustness
 - Single/Multiple Fault Assumption

Equivalence Class Testing

- Partition the set of all test cases into mutually disjoint subsets whose union is the entire set
- Choose one test case from each subset
- Two important implications for testing:
 - 1. The fact that the entire set is represented provides a form of completeness
 - 2. The disjointness assures a form of nonredundancy

Equivalence Class Selection

- If the equivalence classes are chosen wisely, the potential redundancy among test cases is greatly reduced.
- The key point in equivalence class testing is the choice of the equivalence relation that determines the classes.
- We will differentiate below, between four different types of equivalence class testing.

Applicability

- Equivalence Class Testing is appropriate when the system under test can be expressed as a function of one or more variables, whose domains have well defined intervals
- For a two-variable function F(x1,x2)
 a ≤ x₁ ≤ d, with intervals [a,b), [b,c), [c,d]
 e ≤ x₂ ≤ g, with intervals [e,f), [f,g]

Weak Normal ECT

6

Strong Normal ECT

Weak Robust ECT

Strong Robust ECT

Triangle Equivalence Classes

- Four possible outputs:
 - Not a Triangle, Isosceles, Equilateral, Scalene
- We can use these to identify output (range) equivalence classes:
 - R1= {the triangle with sides a, b, c, is equilateral}
 - R2= {the triangle with sides a, b, c, is isosceles}
 - R3= {the triangle with sides a, b, c, is scalene}
 - R4= {sides a, b, c do not form a triangle}

Weak Normal Test Cases

Test Case	а	b	С	Expected Output
WN1	5	5	5	Equilateral
WN2	2	2	3	Isosceles
WN3	3	4	5	Scalene
WN4	4	1	2	Not a Triangle

Weak Robust Test Cases

Test Case	а	b	С	Expected Output
WR1	-1	5	5	a not in range
WR2	5	-1	5	b not in range
WR3	5	5	-1	c not in range
WR4	201	5	5	a not in range
WR5	5	201	5	b not in range
WR6	5	5	201	c not in range

Input equivalence classes

 $D1 = \{ <a,b,c > | a = b = c \}$ $D2 = \{ <a,b,c > | a = b, a \neq c \}$ $D3 = \{ <a,b,c > | a = c, a \neq b \}$ $D4 = \{ \langle a, b, c \rangle \mid b = c, a \neq b \}$ $D5 = \{ <a,b,c > | a \neq b, a \neq c, b \neq c \}$ $D6 = \{ < a, b, c > | a \ge b + c \}$ $D7 = \{ <a,b,c > | b \ge a+c \}$ $D8 = \{ <a,b,c > | c \ge a+b \}$

NextDate Equivalence Classes

 $M1 = \{month \mid month has 30 days\}$ M2= {month | month has 31 days} M3= {month | month is February} $D1 = \{ day \mid 1 \le day \le 28 \}$ $D2 = \{ day \mid day = 29 \}$ $D3 = \{ day \mid day = 30 \}$ $D4 = \{ day \mid day = 31 \}$ $Y1 = \{year \mid year = 1900\}$ Y2= {year | year is a leap year} Y3= {year | year is a common year}

Weak Normal Test Cases

Test Case	Month	Day	Year	Expected Output
WN1	6	14	1900	6/15/1900
WN2	7	29	1996	7/30/1996
WN3	2	30	2002	Invalid input date
WN4	6	31	1900	Invalid input date

NextDate discussion

- There are 36 strong normal test cases
 (3 x 4 x 3)
- Some redundancy creeps in
 - Testing February 30 and 31 for three different types of years seems unlikely to reveal errors
- There are 150 strong robust test cases
 (5 x 6 x 5)

Guidelines and observations

- Equivalence Class Testing is appropriate when input data is defined in terms of intervals and sets of discrete values.
- Equivalence Class Testing is strengthened when combined with Boundary Value Testing
- Strong equivalence takes the presumption that variables are independent. If that is not the case, redundant test cases may be generated

Guidelines and observations

- Complex functions, such as the NextDate program, are well-suited for Equivalence Class Testing
- Several tries may be required before the "right" equivalence relation is discovered