Decision Table-Based Testing

Chapter 7

Decision Tables - Wikipedia

- A precise yet compact way to model complicated logic
- Associate conditions with actions to perform
- Can associate many independent conditions with several actions in an elegant way

Decision Table Terminology

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	T	T	T	F	F	F
c 2	T	T	F	T	T	F
c 3	T	F	-	T	F	-
a 1	X	X		X		
a 2	X				X	
a 3		X		X		
a 4			X			X

Printer Troubleshooting DT

Conditions	Printer does not print	Y	Y	Y	Y	N	N	N	N
	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	N	Y	N	Y	N	Y	N
Actions	Heck the power cable			x					
	Check the printer-computer cable	x		X					
	Ensure printer software is installed	x		X		x		x	
	Check/replace ink	X	X			x	x		
	Check for paper jam		X		X				

Let's try this for the Triangle problem

Triangle Decision Table

C1: $\mathrm{a}<\mathrm{b}+\mathrm{c}$?	F	T	T	T	T	T		T	T	T	T	T	T
C2: $b<a+c$?	-	F	T			T		T	T	T	T	T	T
C3: c < a+b?	-	-	F		T	T		T	T	T	T	T	T
C4: $\mathrm{a}=\mathrm{b}$?	-	-	-		T	T		T	T	F	F	F	F
C5: $\mathrm{a}=\mathrm{c}$?	-	-	-		T	T		F	F	T	T	F	F
C6: $\mathrm{b}=\mathrm{c}$?	-	-	-		T	F		T	F	T	F	T	F
A1: Not a Triangle	X	X	X										
A2: Scalene													X
A3: Isosceles									X		X	X	
A4: Equilateral					x								
A5: Impossible						X		X		X			

Triangle Test Cases

Case ID	a	b	c	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	$?$	$?$	$?$	Impossible
DT6	$?$	$?$	$?$	Impossible
DT7	2	2	3	Isosceles
DT8	$?$	$?$	$?$	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

NextDate Decision Table

- The NextDate problem illustrates the problem of dependencies in the input domain
- Decision tables can highlight such dependencies
- Impossible dates can be clearly marked as a separate action
- Let's try it...

NextDate Equivalence Classes

$$
\begin{aligned}
& \text { M1 }=\{\text { month } \mid \text { month has } 30 \text { days }\} \\
& \text { M2 }=\{\text { month } \mid \text { month has } 31 \text { days }\} \\
& \text { M3 }=\{\text { month } \mid \text { month is February }\} \\
& \text { D1 }=\{\text { day } \mid 1 \leq \text { day } \leq 28\} \\
& \text { D2 }=\{\text { day } \mid \text { day }=29\} \\
& \text { D3 }=\{\text { day } \mid \text { day }=30\} \\
& \mathrm{D} 4=\{\text { day } \mid \text { day }=31\} \\
& \mathrm{Y} 1=\{\text { year } \mid \text { year }=1900\} \\
& \mathrm{Y} 2=\{\text { year } \mid \text { year is a leap year }\} \\
& \mathrm{Y} 3=\{\text { year } \mid \text { year is a common year }\}
\end{aligned}
$$

NextDate DT (1st try - partial)

C1: month in M1?	T	T	T	T	T	T	T	T	T	T	T	T
C2: month in M2?												
C3: month in M3?												
C4: day in D1?	T	T	T									
C5: day in D2?				T	T	T						
C6: day in D3?							T	T	T			
C7: day in D4?										T	T	T
C8: year in Y1?	T			T			T			T		
C9: year in Y2?		T			T			T			T	
C10: year in Y3?			T			T			T			T
A1: Impossible										X	X	X
A2: Next Date	X	X	X	X	X	X	X	X	X			

NextDate DT (2nd try - part 1)

C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	-	-	-	-	-	-	-	-
A1: Impossible				X				
A2: Increment day	X	X			X	X	X	
A3: Reset day			X					X
A4: Increment month			X					$?$
A5: reset month								$?$
A6: Increment year								$?$

NextDate DT (2nd try - part 2)

C1: month in	M3							
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y 1	Y 2	Y 3	Y 1	Y 2	Y 3	-	-
A1: Impossible				X		X	X	X
A2: Increment day		X						
A3: Reset day	X		X		X			
A4: Increment month	X		X		X			
A5: reset month								
A6: Increment year								

New Equivalence Classes

M1 $=$ \{month | month has 30 days $\}$
M2 $=$ \{month | month has 31 days $\}$
M3 $=$ \{month | month is December $\}$
M4 $=$ \{month | month is February $\}$
D1 $=\{$ day $\mid 1 \leq$ day $\leq 27\}$
D2= \{day | day $=28\}$
D3 $=\{$ day \mid day $=29\}$
D4= $\{$ day \mid day $=30\}$
D5 = \{day | day=31\}
Y1 = \{year | year is a leap year\}
$\mathrm{Y} 2=\{$ year | year is a common year $\}$

NextDate DT (3rd try - part 1)

C1: month in	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in	D1	D2	D3	D 4	D 5	D 1	D 2	D 3	D 4	D 5
C3: year in	-	-	-	-	-	-	-	-	-	-
A1: Impossible					X					
A2: Increment day	X	X	X			X	X	X	X	
A3: Reset day				X						X
A4: Increment month				X						X
A5: reset month										
A6: Increment year										

NextDate DT (3rd try - part 2)

C1: month in	M3	M3	M3	M3	M3	M4						
C2: day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
C3: year in	-	-	-	-	-	-	Y1	Y2	Y1	Y2	-	-
A1: Impossible										X	X	X
A2: Increment day	X	X	X	X		X	X					
A3: Reset day					X			X	X			
A4: Increment month								X	X			
A5: reset month					X							
A6: Increment year					X							

Test Case Design

- To identify test cases with decision tables, we interpret conditions as inputs, and actions as outputs.
- Sometimes conditions end up referring to equivalence classes of inputs, and actions refer to major functional processing portions of the item being tested.
- The rules are then interpreted as test cases.

Applicability

- The specification is given or can be converted to a decision table .
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of rule evaluation has no effect on resulting action .
- Once a rule is satisfied and the action selected, no other rule need be examined.
- The order of executing actions in a satisfied rule is of no consequence.

Applicability

- The restrictions do not in reality eliminate many potential applications.
- In most applications, the order in which the predicates are evaluated is immaterial.
- Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.

Decision Tables - Issues

- Before deriving test cases, ensure that
- The rules are complete
- Every combination of predicate truth values is explicit in the decision table
- The rules are consistent
- Every combination of predicate truth values results in only one action or set of actions

Guidelines and Observations

- Decision Table testing is most appropriate for programs where
- There is a lot of decision making
- There are important logical relationships among input variables
- There are calculations involving subsets of input variables
- There are cause and effect relationships between input and output
- There is complex computation logic (high cyclomatic complexity)

Guidelines and Observations

- Decision tables do not scale up very well
- May need to
- Use extended entry decision tables
- Algebraically simplify tables
- Decision tables can be iteratively refined
- The first attempt may be far from satisfactory

Variable Negation Strategy

- An approach that can help with the scaling problems of decision table-based testing
- Applicable when the system under test can be represented as a truth table (binary input and output)
- Designed to select a small subset of the 2^{N} test cases

Example truth table

Variant Number	Normal Pressure	Call For Heat	Damper Shut	Manual Mode	Ignition Enable
	A	B	C	D	Z
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	122

Deriving the Logic Function

- Review boolean algebra
- $\mathbf{A B}=A$ and B
- $\mathbf{A}+\mathbf{B}=A$ or B
- ~A $=\operatorname{not} A$
- A logic function maps n boolean input variables to a boolean output variable
- A truth table is an enumeration of all possible input and output values

Logic function

- The logic function for the example is

$$
Z=A B \sim C+A D
$$

- Several techniques to derive it
- Karnaugh maps
- Cause-effect graphs
- A compact logic function will produce more powerful test cases

Variable Negation Strategy

- Designed to reveal faults that hide in a don' t care
- The test suite contains:
- Unique true points: A variant per term t, so that t is True and all other terms are False
- Near False Points: A variant for each literal in a term. The variant is obtained by negating the literal and is selected only if it makes $Z=0$
- Each variant creates a test candidate set
- Unique true point candidate sets in boiler example: $\{12\}$ \{9,11,15\}

Negation variants

Candidate set number	Term negation	Variants containing this negation	Variants containing this negation where $\mathrm{Z}=0$
2	ABC	14,15	14
3	$\mathrm{~A} \sim \mathrm{~B} \sim \mathrm{C}$	8,9	8
4	$\sim \mathrm{AB} \sim \mathrm{C}$	4,5	4,5
6	$\mathrm{~A} \sim \mathrm{D}$	$8,10,12,14$	$8,10,14$
7	$\sim \mathrm{AD}$	$1,3,5,7$	$1,3,5,7$

Selecting the test cases

- At least one variant from each candidate set
- Can be done by inspection
- Random selection is also used
- Near False Points exercise combinations of don' t care values
- 6% of all possible tests are created
- 98% of simulated bugs can be found

Test suite

- Candidate sets

12
8
4,5
9,11,15
8,10,14
1,3,5,7

- Minimum Test suite

5

8
9
12
14

